Use AdS/CFT orthonormal LFWFs as a basis for diagonalizing the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis
- DLCQ discretization -- highly successful 1+1
- Use independent HO LFWFs, remove CM motion
- Similar to Shell Model calculations
Light-Front QCD

Heisenberg Equation

\[H_{LC}^{QCD} |\psi_h\rangle = M_h^2 |\psi_h\rangle \]

Use AdS/QCD basis functions

Massey University

January 17, 2007

AdS/QCD

130

Stan Brodsky, SLAC
New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level

- Holographic Model from AdS/CFT: Confinement at large distances and conformal behavior at short distances

- Model for LFWFs, meson and baryon spectra: many applications!

- New basis for diagonalizing Light-Front Hamiltonian

- Physics similar to MIT bag model, but covariant. No problem with support $0 < x < 1$.

- Quark Interchange dominant force at short distances
Quark Interchange
(Spin exchange in atom-atom scattering)

\[\frac{d\sigma}{dt} = \left| \frac{M(s,t)}{s^2} \right|^2 \]

\[M(t, u)_{\text{interchange}} \propto \frac{1}{ut^2} \]

Gluon Exchange
(Van der Waal -- Landshoff)

\[M(s, t)_{\text{gluon exchange}} \propto sF(t) \]

MIT Bag Model (de Tar), large \(N_c \), \(\text{('t Hooft), AdS/CFT} \)
all predict dominance of quark interchange:

Massey University
January 17, 2007

AdS/QCD

Stan Brodsky, SLAC
AdS/CFT explains why quark interchange is dominant interaction at high momentum transfer in exclusive reactions.

Quark Interchange

\[M(t, u)_{\text{interchange}} \propto \frac{1}{ut^2} \]

Non-linear Regge behavior:

\[\alpha_R(t) \to -1 \]
Why is quark-interchange dominant over gluon exchange?

Example: $M(K^+p \to K^+p) \propto \frac{1}{ut^2}$

Exchange of common u quark

$$M_{QIM} = \int d^2 k_\perp dx \, \psi_C^\dagger \psi_D^\dagger \Delta \psi_A \psi_B$$

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS_5

Quarks travel freely within cavity as long as separation $z < z_0 = \frac{1}{\Lambda_{QCD}}$

LFWFs obey conformal symmetry producing quark counting rules.
Comparison of Exclusive Reactions at Large t

B. R. Baller, (a) G. C. Blazey, (b) H. Courant, K. J. Heller, S. Heppelmann, (c) M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl (d)

University of Minnesota, Minneapolis, Minnesota 55455

D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973

and

S. Gushue (e) and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747

(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: $\pi^\pm p \rightarrow p\pi^\pm, \rho^\pm, \pi^+\Delta^\pm, K^+\Sigma^\pm, (\Lambda^0/\Sigma^0)K^0, K^\pm p \rightarrow pK^\pm; p^\pm p \rightarrow pp^\pm$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

\[\pi^\pm p \rightarrow p\pi^\pm, \]
\[K^\pm p \rightarrow pK^\pm, \]
\[\pi^\pm p \rightarrow \rho^\pm, \]
\[\pi^\pm p \rightarrow \pi^+\Delta^\pm, \]
\[\pi^\pm p \rightarrow K^+\Sigma^\pm, \]
\[\pi^- p \rightarrow \Lambda^0K^0, \Sigma^0K^0, \]
\[p^\pm p \rightarrow pp^\pm. \]
Light-Front Wavefunctions

Dirac’s Front Form: Fixed $\tau = t + z/c$

$$\psi(x, k_{\perp})$$

Invariant under boosts. Independent of P^{μ}

$$H_{LF}^{QCD}|\psi> = M^2|\psi>$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space
The position of the struck quark differs by x^- in the two wave functions.

Measure x-distribution from DVCS:

Take Fourier transform of skewness, $\xi = \frac{Q^2}{2p.q}$

the longitudinal momentum transfer

S. J. Brodskya, D. Chakrabartib, A. Harindranathc, A. Mukherjeed, J. P. Varye,a,f
Hadron Optics

\[A(\sigma, \vec{b}_{\perp}) = \frac{1}{2\pi} \int d\xi e^{i\frac{1}{2}\xi\sigma} \tilde{A}(\xi, \vec{b}_{\perp}) \]

\[\sigma = \frac{1}{2}x^- P + \xi = \frac{Q^2}{2p.q} \]

The Fourier Spectrum of the DVCS amplitude in \(\sigma \) space for different fixed values of \(|b_{\perp}| \).

DVCS Amplitude using holographic QCD meson LFWF

\[\Lambda_{QCD} = 0.32 \]

Massey University
January 17, 2007

S. J. Brodskya, D. Chakrabartib, A. Harindranathc, A. Mukherjeed, J. P. Varye, a, f
Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes, distribution amplitudes, direct subprocesses, hadronization.

- Relation of spin, momentum, and other distributions to physics of the hadron itself.

- Connections between observables, orbital angular momentum

- Role of FSI and ISIs—Sivers effect
Some Applications of Light-Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm

• Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role if ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to physics of the hadron itself.
Single-spin asymmetries

Pseudo-\(T\)-Odd

\[i \vec{S}_p \cdot \vec{q} \times \vec{p}_q \]

Leading-Twist Sivers Effect

Light-Front Wavefunction

\(S\) and \(P\)-Waves

D. S. Hwang, I. A. Schmidt, sjb

Stan Brodsky, SLAC

Massey University
January 17, 2007

AdS/QCD I41
Final-State Interactions Produce T-Odd (Sivers Effect)

- Bjorken Scaling!
- Arises from Interference of Final-State Coulomb Phases in S and P waves
- Relate to the quark contribution to the target proton anomalous magnetic moment

$\vec{S} \cdot \vec{p}_{jet} \times \vec{q}$

Hwang, Schmidt, sjb; Burkardt

Massey University
January 17, 2007 AdS/QCD

Stan Brodsky, SLAC
Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark! $i \vec{S} \cdot \vec{p}_{jet} \times \vec{q}$
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Unexpected QCD Effect -- thought to be zero!
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD Coulomb phase at soft scale
- Measure in jet trigger or leading hadron
- Sum of Sivers Functions for all quarks and gluons vanishes. (Zero gravito-anomalous magnetic moment: $B(\alpha) = 0$)
First evidence for non-zero Sivers function!

\Rightarrow presence of non-zero quark orbital angular momentum!

Positive for π^+...
Consistent with zero for π^-...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment

Massey University
January 17, 2007

AdS/QCD

Stan Brodsky, SLAC
Single Spin Asymmetry In the Drell Yan Process
\[\vec{S}_p \cdot \vec{p} \times \vec{q}_{\gamma^*} \]
Quarks Interact in the Initial State
Interference of Coulomb Phases for \(S \) and \(P \) states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional to the Proton Anomalous Moment and \(\alpha_s \).
Opposite Sign to DIS! No Factorization

Collins; Hwang, Schmidt. sjb
DY $\cos 2\phi$ correlation at leading twist from double ISI
DY $\cos 2\phi$ correlation at leading twist from double ISI
Anomalous effect from Double ISI in Massive Lepton Production

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semi-inclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

\[\cos 2\phi \text{ correlation} \]
Double Initial-State Interactions generate anomalous $\cos 2\phi$:

Drell-Yan planar correlations

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right)$$

PQCD Factorization (Lam Tung): $1 - \lambda - 2\nu = 0$

$$\frac{\nu}{2} \propto h_1^+(\pi) h_1^+(N) .$$

\(\pi N \rightarrow \mu^+ \mu^- X\) NA10

Violates Lam-Tung relation!

Model: Boer, Hwang, sjb

AdS/QCD

Stan Brodsky, SLAC
Problem for factorization when both ISI and FSI occur
Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.
Remarkable observation at HERA

10% to 15% of DIS events are diffractive!

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q^2_{DA} for two ranges of x_{DA}. No acceptance corrections have been applied.

In a large fraction ($\sim 10-15\%$) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum.

This leaves a large rapidity gap between the proton and the produced particles.

The t-channel exchange must be color singlet \rightarrow a pomeron??
Diffractive Structure Function F_2^D

Diffractive inclusive cross section

$$
\frac{d^3 \sigma_{NC}^{diff}}{dx_P \, d\beta \, dQ^2} \propto \frac{2\pi \alpha_s^2}{xQ^4} \, F_2^D(3) (x_P, \beta, Q^2)
$$

$$
F_2^D (x_P, \beta, Q^2) = f(x_P) \cdot F_2^{IP} (\beta, Q^2)
$$

extract DPDF and $xg(x)$ from scaling violation

Large kinematic domain $3 < Q^2 < 1600 \text{ GeV}^2$
Precise measurements sys 5%, stat 5–20%
Final-State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM Enberg, Hoyer, Ingelman, SJB
Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron

Massey University January 17, 2007

AdS/QCD 155

Stan Brodsky, SLAC
QCD Mechanism for Rapidity Gaps

Wilson Line: $\Psi(y) \int_0^y dx \, e^{iA(x) \cdot dx} \Psi(0)$

Reproduces lab-frame color dipole approach
Final State Interactions in QCD

Feynman Gauge

Light-Cone Gauge

Result is Gauge Independent
Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target
Physics of Rescattering

- Sivers Asymmetry and Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon
• Diffractive DIS

• Non-Unitary Correction to DIS: Structure functions are not probability distributions

• Nuclear Shadowing, Antishadowing -- Not in Target WF

• Single Spin Asymmetries -- opposite sign in DY and DIS

• DY $\cos 2\phi$ distribution at leading twist from double ISI -- not given by PQCD factorization -- breakdown of factorization!

• Wilson Line Effects not 1 even in LCG

• Must correct hard subprocesses for initial and final-state soft gluon attachments

• Corrections to Handbag Approximation in DVCS!
“Dangling Gluons”

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2\phi$ correlation at leading twist from double ISI--not given by standard PQCD factorization
- Wilson Line Effects persist even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments -- Ji gauge link, Kovchegov gauge
Light-Front QCD Phenomenology

• Hidden color, Intrinsic glue, sea, Color Transparency

• Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints

• Vanishing anomalous gravitomagnetic moment

• Relation between edm and anomalous magnetic moment

• Cluster Decomposition Theorem for relativistic systems

• OPE: DGLAP, ERBL evolution; invariant mass scheme
New Perspectives on QCD
Phenomena from AdS/CFT

• **AdS/CFT**: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory

• New Way to Implement Conformal Symmetry

• **Holographic Model**: Conformal Symmetry at Short Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, wavefunctions, interactions

• **AdS/CFT provides novel insights into the quark structure of hadrons**
Outlook

- Only one scale Λ_{QCD} determines hadronic spectrum (slightly different for mesons and baryons).
- Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.
- String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS boundary.
- Only dimension 3, $\frac{9}{2}$ and 4 states $\bar{q}q$, qqq, and gg appear in the duality at the classical level!
- Non-zero orbital angular momentum and higher Fock-states require introduction of quantum fluctuations.
- Simple description of space and time-like structure of hadronic form factors.
- Dominance of quark-interchange in hard exclusive processes emerges naturally from the classical duality of the holographic model. Modified by gluonic quantum fluctuations.
- Covariant version of the bag model with confinement and conformal symmetry.
Novel Heavy Flavor Physics

- LFWFS -- remarkable model from AdS/CFT
- AdS/CFT: Hadron Spectra and Dynamics, Counting Rules
- Intrinsic Charm and Bottom: rigorous prediction of QCD
- B decays: Many Novel QCD Effects
- Exclusive Channels: QCD at Amplitude Level
- Test B-analyses in other hard exclusive reactions, such as two-photon reactions
- Initial and Final State QCD Interactions -- Breakdown of QCD Factorization in Heavy Quark Hadroproduction!
- Renormalization scale not arbitrary
A Few References: Bottom-up-Approach

- Derivation of dimensional counting rules of hard exclusive glueball scattering in AdS/CFT:
 Polchinski and Strassler, hep-th/0109174.

- Deep inelastic scattering in AdS/CFT:
 Polchinski and Strassler, hep-th/0209211.

- Unified description of the soft and hard pomeron in AdS/CFT:
 Brower, Polchinski, Strassler and Tan, hep-th/0603115.

- Hadron couplings and form factors in AdS/CFT:
 Hong, Yoon and Strassler, hep-th/0409118.

- Low lying meson spectra, chiral symmetry breaking and hadron couplings in AdS/QCD (Emphasis on axial and vector currents)
 Erlich, Katz, Son and Stephanov, hep-ph/0501128,
• Gluonium spectrum (top-bottom):
 Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihaiescu and Nuñez, hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower, Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

• Other aspects of high energy scattering in warped spaces:
 Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma ($\eta/s = 1/4\pi$):
Counting rules, low lying meson and baryon spectra and form factors in AdS/CFT, holographic light front representation and mapping of string amplitudes to light-front wavefunctions, integrability and stability of AdS/CFT equations (Emphasis on hadronic quark constituents)

1. “Light-Front Dynamics and AdS/QCD: The Pion Form Factor in the Space- and Time-Like Regions”
S. J. Brodsky and G. F. de Teramond

2. “AdS/CFT and QCD”
S. J. Brodsky and G. F. de Teramond
arXiv:hep-th/0702205
SLAC-PUB-12361(2007)
Invited talk at 2006 International Workshop on the Origin of Mass and Strong Coupling Gauge Theories (SCGT 06), Nagoya, Japan, 21-24 Nov 2006

3. “Hadronic spectra and light-front wavefunctions in holographic QCD”
S. J. Brodsky and G. F. de Teramond

4. “Advances in light-front quantization and new perspectives for QCD from AdS/CFT”
S. J. Brodsky and G. F. de Teramond
Invited talk at Workshop on Light-Cone QCD and Nonperturbative Hadron Physics 2005 (LC 2005), Cairns, Queensland, Australia, 7-15 Jul 2005

5. “Hadron spectroscopy and wavefunctions in QCD and the AdS/CFT correspondence”
S. J. Brodsky and G. F. de Teramond
Invited talk at 11th International Conference on Hadron Spectroscopy (Hadron05), Rio de Janeiro, Brazil, 21-26 Aug 2005
6. “Applications of AdS/CFT duality to QCD”
S. J. Brodsky and G. F. de Teramond
Invited talk at International Conference on QCD and Hadronic Physics, Beijing, China, 16-20 Jun 2005

7. “Nearly conformal QCD and AdS/CFT”
G. F. de Teramond and S. J. Brodsky
SLAC-PUB-11375(2005)
Presented at 1st Workshop on Quark-Hadron Duality and the Transition to pQCD, Frascati, Rome, Italy, 6-8 Jun 2005

8. “The hadronic spectrum of a holographic dual of QCD”
G. F. de Teramond and S. J. Brodsky

9. “Baryonic states in QCD from gauge / string duality at large N(c)”
G. F. de Teramond and S. J. Brodsky
arXiv:hep-th/0409074
Presented at ECT* Workshop on Large Nc QCD 2004, Trento, Italy, 5-9 Jul 2004

10. “Light-front hadron dynamics and AdS/CFT correspondence”
S. J. Brodsky and G. F. de Teramond