Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum

Guy F. de Téramond

Universidad de Costa Rica

Ferrara International School

Niccolò Cabeo 2012

Hadronic Spectroscopy

Ferrara, May 21 - 26, 2011

The objective of these lectures is to describe recent analytical insights into the nonperturbative nature of the strong coupled dynamics of light-hadron bound states. The holographic approach described in the lectures is at the confluence of phenomenology, light-front physics and the gauge/gravity correspondence. Important dynamical properties of hadrons such as their light-front wavefunctions, form factors and the systematics of their excitation spectrum are well described in this framework.
1 General Introduction

 Internal Structure of the Proton
 Quantum Chromodynamics
 Lattice QCD
 General Theory of Relativity to the Rescue ?
 Gauge/Gravity Correspondence and QCD

2 Light Front Dynamics

 Light-Front Quantization of QCD
 Light-Front Fock Representation
 Semiclassical Approximation to QCD in the Light Front
 Meson Spectrum in Hard-Wall Model

3 Light-Front Holographic Mapping of Wave Equations

 Higher Spin Wave Equations in AdS Space
 Dual QCD Light-Front Wave Equation
 Meson Spectrum in Soft-Wall Model
4 Fermionic Modes in AdS Space and Baryon Spectrum
 Higher Spin Wave Equations in AdS Space
 Baryon Spectrum in Soft-Wall Model

5 Light-Front Holographic Mapping of Current Matrix Elements
 Nucleon Elastic Form Factors
 Nucleon Transition Form Factors
 Flavor Decomposition of Elastic Nucleon Form Factors
 Pion Transition Form Factor
 Higher Fock Components in LF Holographic QCD

Conclusions
1 Introduction

Internal Structure of the Proton

- High Energy (20 GeV) scattering at SLAC (1969) revealed the internal structure of the proton

- Deep inelastic scattering experiments (1967-1973): Bjorken and Feynman partons identified with Gell-Mann and Zweig quarks

- Quarks were not just hypothetical mathematical entities but the true building blocks of hadrons
Quantum Chromodynamics (QCD)

- Quarks should have an additional quantum number “color”
 \[\psi(x)_i, \quad i = R, G, B \]

- QCD Lagrangian follows from the gauge invariance of the theory
 \[\psi(x) \rightarrow e^{i\alpha^a(x)T^a} \psi(x), \quad \left[T^a, T^b\right] = if_{abc}T^c \]
 \[(T^a)_{ij}, \quad i, j = 1, 2, 3, \quad a, b = 1, 2, \ldots 8 \]

- Find QCD Lagrangian
 \[\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} \text{Tr} (G^{\mu\nu} G_{\mu\nu}) + i\overline{\psi} D_\mu \gamma^\mu \psi + m\overline{\psi} \psi \]
 \[\text{where } D_\mu = \partial_\mu - igT^a A^a_\mu, \quad G^{a}_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f_{abc} A^b_\mu A^c_\nu \]

- Quarks and gluons interactions from color charge, but ... gluons also interact with each other: strongly coupled non-abelian gauge theory → confinement!

- But how could the actual existence of gluons be demonstrated experimentally?
• In the mid 1970s QCD was referred as the “candidate” theory of the strong interactions

• Asymptotically free QFT which can describe scaling

• First hint of gluons from deep-inelastic scattering experiments:
 only half of a proton’s momentum is carried by the quarks

• PETRA storage ring at DESY (1979):
 first direct experimental proof of the existence of the gluon

• QCD becomes fundamental theory of quarks and gluons:
 interactions of quarks and gluons at high energies is well described by QCD

• Most challenging problem of strong interaction dynamics: determine
 the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom

• “Enormous complexity out of a very simple Lagrangian” (H. Fritsch)
Lattice QCD

- Lattice numerical simulations at the petaflop/sec scale (resolution $\sim L/a$)
- Sums over quark paths with billions of dimensions
- Dynamical properties in Minkowski space-time not amenable to Euclidean lattice computations
- Computational complexity of hadronic excitation spectrum beyond ground state configuration
General Theory of Relativity to the Rescue?

- Space curvature determined by the mass-energy present following Einstein’s equations

\[
R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \kappa T_{\mu\nu}
\]

- Matter curves space and space determines how matter moves
- Perhaps, but in a holographic sense: duality between theories in different number of space-time dimensions!
Gauge/Gravity Correspondence and QCD

- Recent developments inspired by the AdS/CFT correspondence [Maldacena (1998)] between gravity in AdS space and conformal field theories in physical space-time provide physical insights into the non-perturbative dynamics of QCD

- Description of strongly coupled gauge theory using a dual gravity description in a higher dimensional space (holographic)

- Isomorphism of $SO(4,2)$ group of conformal transformations with generators $P^\mu, M^{\mu\nu}, K^\mu, D$, with the group of isometries of AdS$_5$, a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space

 Isometry group: most general group of transformations which leave invariant the distance between two points E_j: $S^N \sim O(N+1)$

 Dimension of isometry group of AdS$_{d+1}$ is $\frac{(d+1)(d+2)}{2}$

- Mapping of AdS gravity to QCD quantized at fixed light-front time gives a precise relation between wave functions in AdS space and the LF wavefunctions describing the internal structure of hadrons
• AdS$_5$ metric:

\[
\frac{ds^2}{L_{\text{AdS}}} = \frac{R^2}{z^2} \left(\eta_{\mu\nu} dx^\mu dx^\nu - dz^2 \right)_{L_{\text{Minkowski}}}
\]

• A distance L_{AdS} shrinks by a warp factor z/R as observed in Minkowski space ($dz = 0$):

\[
L_{\text{Minkowski}} \sim \frac{z}{R} L_{\text{AdS}}
\]

• Since the AdS metric is invariant under a dilatation of all coordinates $x^\mu \rightarrow \lambda x^\mu$, $z \rightarrow \lambda z$, the variable z acts like a scaling variable in Minkowski space

• Short distances $x_\mu x^\mu \rightarrow 0$ maps to UV conformal AdS$_5$ boundary $z \rightarrow 0$

• Large confinement dimensions $x_\mu x^\mu \sim 1/\Lambda_{\text{QCD}}^2$ maps to large IR region of AdS$_5$, $z \sim 1/\Lambda_{\text{QCD}}$, thus there is a maximum separation of quarks and a maximum value of z

• Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS
2 Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different “times” and has its own Hamiltonian, but should give the same physical results

• Forms of Relativistic Dynamics: dynamical vs. kinematical generators [Dirac (1949)]

• *Instant form*: hypersurface defined by $t = 0$, the familiar one

\[H, K \text{ dynamical, } L, P \text{ kinematical} \]

• *Point form*: hypersurface is an hyperboloid

\[P^\mu \text{ dynamical, } M^{\mu\nu} \text{ kinematical} \]

• *Front form*: hypersurface is tangent to the light cone at $\tau = t + z/c = 0$

\[P^-, L^x, L^y \text{ dynamical, } P^+, P_\perp, L^z, K \text{ kinematical} \]

\[P^\pm = P^0 \pm P^3 \]
• LF coordinates

\[x^+ = x^0 + x^3 \]
light-front time

\[x^- = x^0 - x^3 \]
longitudinal space variable

\[\mathbf{x}_\perp = (x^1, x^2) \]
transverse space variable

\[P^+ = P^0 + P^3 \]
longitudinal momentum
\((P^+ > 0) \)

\[P^- = P^0 - P^3 \]
light-front energy

\[\mathbf{P}_\perp = (P^1, P^2) \]
transverse momentum

• Compute \(P \cdot x \) to identify Hamiltonian as conjugate to LF time \(x^+ \)

\[P_\mu x^\mu = \frac{1}{2} \left(P^+ x^- + P^- x^+ \right) - \mathbf{P}_\perp \cdot \mathbf{x}_\perp \]

• On shell relation \(P_\mu P^\mu = P^- P^+ - \mathbf{P}_\perp^2 = M^2 \) leads to dispersion relation for LF Hamiltonian \(P^- \)

\[P^- = \frac{\mathbf{P}_\perp^2 + M^2}{P^+} \]
• LF quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of partonic content of a hadron → LFWFs

• Calculation of matrix elements $\langle P + q | J | P \rangle$ requires boosting the relativistic hadronic bound state from $|P\rangle$ to $|P + q\rangle$: extremely complicated in the instant form but boosts are trivial in the LF

• No coupling to vacuum-induced currents or off-diagonal contributions in the LF

• Form factors in LF expressed as convolution of frame-independent LFWFs (Drell-Yan-West formula)

• Mapping to AdS transition amplitudes possible (Polchinski-Strassler formula: overlap of AdS WFs)

• Hamiltonian equation for bound states similar structure of AdS equations: direct connection of QCD and AdS/CFT possible

Image credit: M. Vanderhaeghen
Light-Front Quantization of QCD

• Express the hadron four-momentum generator $P = (P^+, P^-, P_\perp)$ in terms of dynamical fields

\[
P^- = \frac{1}{2} \int dx^- d^2x_\perp \bar{\psi}_+ \gamma^+ \frac{(i\nabla_\perp)^2 + m^2}{i\partial^+} \psi + \text{(interactions)},
\]

\[
P^+ = \int dx^- d^2x_\perp \bar{\psi}_+ \gamma^+ i\partial^+ \psi_+,
\]

\[
P_\perp = \frac{1}{2} \int dx^- d^2x_\perp \bar{\psi}_+ \gamma^+ i\nabla_\perp \psi_+,
\]

where the integrals are over the null plane $\tau = x^+ = x^0 + x^3$

• LF Hamiltonian P^- generates LF time translations and the generators P^+ and P_\perp are kinematical

• Hamiltonian equation for the relativistic bound state

\[
P^- |\psi(P)\rangle = \frac{\mathcal{M}^2 + P_\perp^2}{P^+} |\psi(P)\rangle
\]

• Construct LF Lorentz invariant Hamiltonian $H_{LF} \equiv P^2 = P^- P^+ - P_\perp^2$

\[
H_{LF} |\psi(P)\rangle = \mathcal{M}^2 |\psi(P)\rangle
\]
Light-Front Fock Representation

• Dirac field ψ, expanded in terms of ladder operators on the initial surface

$$P^- = \sum_\lambda \int \frac{dq^+d^2q_\perp}{(2\pi)^3} \left(\frac{q_\perp^2 + m^2}{q^+} \right) b_\lambda^\dagger(q)b_\lambda(q) + \text{interactions}$$

• LF Lorentz invariant Hamiltonian equation for the relativistic bound state

$$P_\mu P^\mu |\psi(P)\rangle = M^2 |\psi(P)\rangle$$

• State $|\psi(P)\rangle$ is expanded in multi-particle Fock states $|n\rangle$ of the free LF Hamiltonian

$$|\psi\rangle = \sum_n \psi_n |n\rangle, \quad |n\rangle = \{ |uud\rangle, |uudg\rangle, |uud\bar{q}q\rangle, \cdots \}$$

with $k_i^2 = m_i^2$, $k_i = (k_i^+, k_i^-, k_{\perp i})$, for each constituent i in state n

• Fock components $\psi_n(x_i, k_{\perp i}, \lambda_i^z)$ independent of P^+ and P_\perp and depend only on relative partonic coordinates: momentum fraction $x_i = k_i^+ / P^+$, transverse momentum $k_{\perp i}$ and spin λ_i^z

$$\sum_{i=1}^n x_i = 1, \quad \sum_{i=1}^n k_{\perp i} = 0.$$
Semiclassical Approximation to QCD in the Light Front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Compute \mathcal{M}^2 from hadronic matrix element
 \[
 \langle \psi(P') | P_\mu P^\mu | \psi(P) \rangle = \mathcal{M}^2 \langle \psi(P') | \psi(P) \rangle
 \]

• Find
 \[
 \mathcal{M}^2 = \sum_n \int [dx_i] [d^2k_{\perp i}] \sum_q \left(\frac{k^2_{\perp q} + m_q^2}{x_q} \right) |\psi_n(x_i, k_{\perp i})|^2 + \text{interactions}
 \]

• LFWF ψ_n represents a bound state which is off the LF energy shell $\mathcal{M}^2 - \mathcal{M}_n^2$

 \[
 \mathcal{M}^2_n = \left(\sum_{i=1}^{n} k_i^\mu \right)^2 = \sum_i \frac{k_{\perp i}^2 + m_i^2}{x_i}
 \]

 with $k_a^2 = m_a^2$ for each constituent

• Invariant mass \mathcal{M}_n^2 key variable which controls the bound state

• Semiclassical approximation to QCD:

 \[
 \psi_n(k_1, k_2, \ldots, k_n) \rightarrow \phi_n \left(\frac{(k_1 + k_2 + \cdots + k_n)^2}{\mathcal{M}_n^2} \right), \quad m_q \rightarrow 0
 \]
• In terms of $n - 1$ independent transverse impact coordinates $\mathbf{b}_{\perp j}$, $j = 1, 2, \ldots, n - 1$,

$$
\mathcal{M}^2 = \sum_n \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \psi_n^*(x_i, \mathbf{b}_{\perp i}) \sum_q \left(\frac{-\nabla^2 b_{\perp q} + m_q^2}{x_q} \right) \psi_n(x_i, \mathbf{b}_{\perp i}) + \text{interactions}
$$

• Relevant variable conjugate to invariant mass \mathcal{M}_n^2 (Cluster decomposition)

$$
\zeta = \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \right|
$$

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• For a two-parton system $\zeta^2 = x(1-x) \mathbf{b}_{\perp}^2$

• To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties are encoded in the hadronic mode $\phi(\zeta)$ from

$$
\psi(x, \zeta, \varphi) = e^{iM\varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}
$$

factoring angular φ, longitudinal $X(x)$ and transverse mode $\phi(\zeta)$ (P^+, P_{\perp} and J_z commute with P^-)
• Ultra relativistic limit $m_q \to 0$ longitudinal modes $X(x)$ decouple ($L = L^z$)

\[\mathcal{M}^2 = \int d\zeta \phi^*(\zeta) \sqrt{\zeta} \left(-\frac{d^2}{d\zeta^2} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^2}{\zeta^2} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \phi^*(\zeta) U(\zeta) \phi(\zeta) \]

where the confining forces from the interaction terms are summed up in the effective potential $U(\zeta)$

• LF eigenvalue equation $P_\mu P^\mu |\phi\rangle = \mathcal{M}^2 |\phi\rangle$ is a LF wave equation for ϕ

\[
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} \right) + \frac{U(\zeta)}{\zeta^2} \right) \phi(\zeta) = \mathcal{M}^2 \phi(\zeta)
\]

• Effective relativistic and frame-independent LF Schrödinger equation: U is instantaneous in LF time

• Eigenmodes $\phi(\zeta)$ represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal LF time

• The $SO(2)$ Casimir L^2 corresponds to group of rotations in transverse LF plane
 Casimir operator for $SO(N)$ is $L(L + N - 2)$

• Semiclassical approximation to LF QCD does not account for particle creation and absorption
Meson Spectrum in Hard Wall Model

[LF Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

- Conformal model up to the confinement scale $1/\Lambda_{QCD}$ [Polchinski and Strassler (2002)]

\[
U(\zeta) = \begin{cases}
0 & \text{if } \zeta \leq \frac{1}{\Lambda_{QCD}} \\
\infty & \text{if } \zeta > \frac{1}{\Lambda_{QCD}}
\end{cases}
\]

- Confinement scale $\frac{1}{\Lambda_{QCD}} \sim 1$ Fm, $\Lambda_{QCD} \sim 200$ MeV

- Covariant version of MIT bag model: quarks permanently confined inside a finite region of space

- Normalized eigenfunctions

\[
\langle \phi | \phi \rangle = \int_{0}^{\Lambda_{QCD}^{-1}} d\zeta \phi^2(z) = 1
\]

\[
\phi_{L,k}(\zeta) = \sqrt{2\Lambda_{QCD}} \frac{J_{1+L}(\beta_{L,k})}{J_{1+L}(\beta_{L,k})} \sqrt{\zeta} J_L(\zeta \beta_{L,k} \Lambda_{QCD})
\]

- Eigenvalues

\[
\mathcal{M}_{L,k} = \beta_{L,k} \Lambda_{QCD}
\]
Table 1: $I = 1$ mesons. For a $q\bar{q}$ state $P = (-1)^{L+1}, C = (-1)^{L+S}$

<table>
<thead>
<tr>
<th>L</th>
<th>S</th>
<th>n</th>
<th>J^{PC}</th>
<th>$I = 1$ Meson</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0^{-+}</td>
<td>$\pi(140)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0^{-+}</td>
<td>$\pi(1300)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0^{-+}</td>
<td>$\pi(1800)$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1^{--}</td>
<td>$\rho(770)$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1^{--}</td>
<td>$\rho(1450)$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1^{--}</td>
<td>$\rho(1700)$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1^{+-}</td>
<td>$b_1(1235)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0^{++}</td>
<td>$a_0(980)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0^{++}</td>
<td>$a_0(1450)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1^{++}</td>
<td>$a_1(1260)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2^{++}</td>
<td>$a_2(1320)$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2^{-+}</td>
<td>$\pi_2(1670)$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2^{-+}</td>
<td>$\pi_2(1880)$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3^{--}</td>
<td>$\rho_3(1690)$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4^{++}</td>
<td>$a_4(2040)$</td>
</tr>
</tbody>
</table>
Orbital and radial excitations for the π and the ρ $I=1$ meson families ($\Lambda_{QCD} = 0.32$ GeV)

- Pion is not chiral
- $\mathcal{M} \sim 2n + L$ in contrast to usual Regge dependence $\mathcal{M}^2 \sim n + L$
- Important $J - L$ splitting (different J for same L) in mesons not described by hard-wall model
- Radial modes not well described in hard-wall model
3 Light-Front Holographic Mapping

Higher Spin Wave Equations in AdS Space

- Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)
- Spin-J in AdS represented by totally symmetric rank J tensor field $\Phi_{M_1...M_J}$
- Action for spin-J field in AdS$_{d+1}$ in presence of dilaton background $\varphi(z)$ \(x^M = (x^\mu, z) \)

\[
S = \frac{1}{2} \int d^d x \, dz \, \sqrt{g} \, e^{\varphi(z)} \left(g^{MN} g^{M_1M_1'} \cdots g^{M_JM_J'} D_M \Phi_{M_1...M_J} D_N \Phi_{M_1'...M_J'} - \mu^2 g^{M_1M_1'} \cdots g^{M_JM_J'} \Phi_{M_1...M_J} \Phi_{M_1'...M_J'} + \cdots \right)
\]

where D_M is the covariant derivative which includes parallel transport (affine connection)

\[
D_M \Phi_{M_1...M_J} = \partial_M \Phi_{M_1...M_J} - \Gamma^K_{MM_1} \Phi_{K...M_J} - \cdots - \Gamma^K_{MM_J} \Phi_{M_1...K}
\]

- Physical hadron has plane-wave and polarization indices along $3+1$ physical coordinates

\[
\Phi_P(x, z)_{\mu_1...\mu_J} = e^{-i P \cdot x} \Phi(z)_{\mu_1...\mu_J}, \quad \Phi_{z\mu_2...\mu_J} = \cdots = \Phi_{\mu_1\mu_2...z} = 0
\]

with four-momentum P_μ and invariant hadronic mass $P_\mu P^\mu = M^2$
• Construct effective action in terms of spin-\(J\) modes \(\Phi_J\) with only physical degrees of freedom

[H. G. Dosch, S. J. Brodsky and GdT]

• Introduce fields with Lorentz (tangent) indices

\[
g_{MN}(x) = \eta_{AB} e^A_M(x) e^B_N(x)
\]

\[
\hat{\Phi}_{A_1 A_2 \cdots A_J} = e^{M_1}_{A_1} e^{M_2}_{A_2} \cdots e^{M_J}_{A_J} \Phi_{M_1 M_2 \cdots M_J} = \left(\frac{z}{R}\right)^J \Phi_{A_1 A_2 \cdots A_J}
\]

where \(M, N = 1, \cdots, d + 1\) curved space indices, \(A, B = 1, \cdots, d + 1\) tangent indices

• Find effective action for the Lorentz spin-\(J\) mode \(\hat{\Phi}_J = \hat{\Phi}_{\mu_1 \cdots \mu_J}\)

\[
S = \frac{1}{2} \int d^d x \, d z \sqrt{g} e^\varphi(z) \left(g^{NN'} \partial_N \hat{\Phi}_{J} \partial_{N'} \hat{\Phi}_{J} - \mu^2 \hat{\Phi}_{J} \hat{\Phi}_{J}\right)
\]

upon \(\mu\)-rescaling

• Variation of the action gives AdS wave equation for spin-\(J\) mode \(\Phi_J = \Phi_{\mu_1 \cdots \mu_J}\)

\[
\left[-\frac{z^{d-1-2J}}{e^\varphi(z)} \partial_z \left(\frac{e^\varphi(z)}{z^{d-1-2J}} \partial_z \right) + \left(\frac{\mu R}{z}\right)^2\right] \Phi_J(z) = \mathcal{M}^2 \Phi_J(z)
\]

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]
Dual QCD Light-Front Wave Equation

[GrT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Upon substitution $z \rightarrow \zeta$ and $\phi_J(\zeta) \sim \zeta^{-3/2} + J e^{\varphi(z)/2} \Phi_J(\zeta)$ in AdS WE

$$\left[-\frac{z^{d-1-2J}}{e^{\varphi(z)}} \frac{\partial}{\partial z} \left(\frac{e^{\varphi(z)}}{z^{d-1-2J}} \partial_z \right) + \left(\frac{\mu R}{z} \right)^2 \right] \Phi_J(z) = M^2 \Phi_J(z)$$

find LFWE ($d = 4$)

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right) \phi_J(\zeta) = M^2 \phi_J(\zeta)$$

with

$$U(\zeta) = \frac{1}{2} \varphi''(z) + \frac{1}{4} \varphi'(z)^2 + \frac{2J - 3}{2z} \varphi'(z)$$

and $(\mu R)^2 = -(2 - J)^2 + L^2$

- LF Schrödinger equation from AdS$_5$ mapping to physical 3+1 Minkowski space at fixed LF time x^+
- AdS Breitenlohner-Freedman bound $(\mu R)^2 \geq -4$ equivalent to LF QM stability condition $L^2 \geq 0$
- Scaling dimension τ of AdS mode $\hat{\Phi}_J$ is $\tau = 2 + L$ in agreement with twist scaling dimension of a two parton bound state in QCD and determined by QM stability condition
Meson Spectrum in Soft Wall Model

- Linear Regge trajectories [Karch, Katz, Son and Stephanov (2006)]
- Dilaton profile $\varphi(z) = +\kappa^2 z^2$
- Effective potential: $U(z) = \kappa^4 \zeta^2 + 2\kappa^2 (J - 1)$
- LF WE

\[
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (J - 1)\right) \phi_J(\zeta) = M_J^2 \phi_J(\zeta)
\]

- Normalized eigenfunctions $\langle \phi | \phi \rangle = \int d\zeta \phi^2(z) = 1$

\[
\phi_{n,L}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^{L}(\kappa^2 \zeta^2)
\]

- Eigenvalues

\[
\mathcal{M}_{n,J,L}^2 = 4\kappa^2 \left(n + \frac{J + L}{2}\right)
\]
LFWFs $\phi_{n,L}(\zeta)$ in physical space-time: (L) orbital modes and (R) radial modes
• $J = L + S$, $I = 1$ meson families $\mathcal{M}^2_{n,L,S} = 4\kappa^2 (n + L + S/2)$

$4\kappa^2$ for $\Delta n = 1$
$4\kappa^2$ for $\Delta L = 1$
$2\kappa^2$ for $\Delta S = 1$

Orbital and radial excitations for the π ($\kappa = 0.59$ GeV) and the ρ $l=1$ meson families ($\kappa = 0.54$ GeV)

• Triplet splitting for the $L = 1$, $J = 0, 1, 2$, $I = 1$ vector meson a-states

$\mathcal{M}_{a_2(1320)} > \mathcal{M}_{a_1(1260)} > \mathcal{M}_{a_0(980)}$

• $J - L$ splitting in mesons and radial excitations are well described in soft-wall model

Fermionic Modes in AdS Space and Baryon Spectrum

• Lattice calculations of the ground state hadron masses agree very well with experimental values.

• However, excitation spectrum of nucleon represents an important challenge to LQCD due to enormous computational complexity beyond ground state configuration and multi-hadron thresholds.

• Large basis of interpolating operators required in LQCD since excited nucleon states are classified according to irreducible representations of the lattice, not the angular momentum.

• The gauge/gravity duality can give important insights into the strongly coupled dynamics of nucleons using simple analytical methods.

• Analytical exploration of systematics of light-baryon resonances and nucleon form factors.

• Extension of holographic ideas to spin-$\frac{1}{2}$ (and higher half-integral J) hadrons by considering propagation of RS spinor field $\Psi_{\alpha M_1 \ldots M_{J-1}/2}$ in AdS space.
Higher Spin Wave Equations in AdS Space

- For fermion fields in AdS one cannot break conformality with introduction of dilaton background since it can be scaled away leaving the action conformally invariant [I. Kirsch (2006)]

- Introduce an effective confining potential \(V(z) \) in the action for a Dirac field in AdS \(d+1 \)

\[
S_F = \int d^d x \, dz \sqrt{g} g^{M_1M'_1} \cdots g^{M_TM'_T} (\overline{\Psi}_{M_1\ldots M_T} (ie^M_A \Gamma^A D_M - \mu - V(z)) \Psi_{M'_1\ldots M'_T} + \cdots)
\]

where \(D_M \) is the covariant derivative of the spinor field \(\Psi_{\alpha M_1\ldots M_T} \), \(T = J - \frac{1}{2} \)

\[
D_M \Psi_{M_1\ldots M_T} = \partial_M \Psi_{M_1\ldots M_T} - \frac{i}{2} \omega_M^{AB} \Sigma_{AB} \Psi_{M_1\ldots M_T} - \Gamma^K_{MM_1} \Psi_{K\ldots M_T} - \cdots - \Gamma^K_{MM_M} \Psi_{M_1\ldots K}
\]

- \(M, N = 1, \cdots, d+1 \) curved space indices, \(A, B = 1, \cdots, d+1 \) tangent indices

- \(e^M_A \) is the vielbein, \(w_M^{AB} \) spin connection, \(\Sigma_{AB} \) generators of the Lorentz group, \(\Sigma_{AB} = \frac{i}{4} [\Gamma_A, \Gamma_B] \)

- \(\Gamma^A \) tangent space Dirac matrices \(\{ \Gamma^A, \Gamma^B \} = \eta^{AB} \)

- For \(d \) even we choose \(\Gamma_A = (\Gamma_\mu, \Gamma_z) \) with \(\Gamma_z = -\Gamma^z = \Gamma_0 \Gamma_1 \cdots \Gamma_{d-1} \)

- For \(d = 4 \): \(\Gamma_A = (\gamma_\mu, -i\gamma_5) \)
• Physical hadron has plane-wave, spinors, and polarization along $3+1$ physical coordinates

$$\Psi_P(x, z)_{\mu_1\cdots\mu_T} = e^{-iP \cdot x} \Psi(z)_{\mu_1\cdots\mu_T}, \quad \Psi_{z\mu_2\cdots\mu_T} = \cdots = \Psi_{\mu_1\mu_2\cdots z} = 0$$

with four-momentum P_μ and invariant hadronic mass $P_\mu P^\mu = M^2$

• Construct effective action in terms of spin-J modes $\hat{\Psi}_J$ with only physical degrees of freedom

[H. G. Dosch, S. J. Brodsky and GdT]

• Introduce fields with Lorentz indices \((T = J - \frac{1}{2})\)

$$\hat{\Psi} A_1 A_2 \cdots A_T = e_{A_1}^M e_{A_2}^M \cdots e_{A_T}^M \Psi_{M_1 M_2 \cdots M_T} = \left(\frac{z}{R} \right)^T \Psi_{A_1 A_2 \cdots A_T}$$

• Find effective action for the Lorentz spin-J mode $\hat{\Psi}_J = \hat{\Phi}_{\mu_1\cdots\mu_{J-1/2}}$

$$S_F = \int d^d x \, d z \sqrt{g} \left(\bar{\hat{\Psi}}_J \left(i z \eta^{MN} \Gamma_M \partial_N + \frac{i}{2} \Gamma_z - \mu R - RV(z) \right) \hat{\Psi}_J \right)$$

• Variation of the action gives AdS wave equation for spin-J mode $\Phi_J = \Phi_{\mu_1\cdots\mu_{J-1/2}}$

$$\left[i \left(z \eta^{MN} \Gamma_M \partial_N + \frac{d}{2} \Gamma_z \right) - \mu R - RV(z) \right] \Psi_J = 0$$

upon μ-rescaling

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]
Baryon Spectrum in Soft-Wall Model

- Upon substitution $z \rightarrow \zeta$ and
 \[
 \Psi_J(x, z) = e^{-iP \cdot x} z^2 \psi^J(z) u(P),
 \]
 find LFWE for $d = 4$
 \[
 \frac{d}{d\zeta} \psi^J_+ + \frac{\nu + \frac{1}{2}}{\zeta} \psi^J_+ + U(\zeta) \psi^J_+ = \mathcal{M} \psi^J_+,
 \]
 \[
 -\frac{d}{d\zeta} \psi^J_- + \frac{\nu + \frac{1}{2}}{\zeta} \psi^J_- + U(\zeta) \psi^J_- = \mathcal{M} \psi^J_-,
 \]
 where $U(\zeta) = \frac{R}{\zeta} V(\zeta)$

- Choose linear potential $U = \kappa^2 \zeta$

- Eigenfunctions
 \[
 \psi^J_+(\zeta) \sim \zeta^{\frac{1}{2} + \nu} e^{-\kappa^2 \zeta^2/2} L^n(\kappa^2 \zeta^2), \quad \psi^J_-(\zeta) \sim \zeta^{\frac{3}{2} + \nu} e^{-\kappa^2 \zeta^2/2} L^{n+1}(\kappa^2 \zeta^2)
 \]

- Eigenvalues
 \[
 \mathcal{M}^2 = 4\kappa^2(n + \nu + 1), \quad \nu = L + 1 \quad (\tau = 3)
 \]

- Full $J - L$ degeneracy (different J for same L) for baryons along given trajectory!
<table>
<thead>
<tr>
<th>L</th>
<th>S</th>
<th>n</th>
<th>Baryon State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N_{\frac{1}{2}}^1$ (940)</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$N_{\frac{1}{2}}^1$ (1440)</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>2</td>
<td>$N_{\frac{1}{2}}^1$ (1710)</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$\Delta_{\frac{3}{2}}^3$ (1232)</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>$\Delta_{\frac{3}{2}}^3$ (1600)</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N_{\frac{1}{2}}^{-1}$ (1535) $N_{\frac{3}{2}}^{-1}$ (1520)</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$N_{\frac{1}{2}}^{-1}$ (1650) $N_{\frac{3}{2}}^{-1}$ (1700) $N_{\frac{5}{2}}^{-1}$ (1675)</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\Delta_{\frac{1}{2}}^3$ (1620) $\Delta_{\frac{3}{2}}^3$ (1700)</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N_{\frac{3}{2}}^3$ (1720) $N_{\frac{5}{2}}^3$ (1680)</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$N_{\frac{5}{2}}^5$ (1900)</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$\Delta_{\frac{1}{2}}^3$ (1910) $\Delta_{\frac{3}{2}}^3$ (1920) $\Delta_{\frac{5}{2}}^3$ (1905) $\Delta_{\frac{7}{2}}^3$ (1950)</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N_{\frac{5}{2}}^5$ $N_{\frac{7}{2}}^5$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$N_{\frac{3}{2}}^7$ $N_{\frac{5}{2}}^7$ $N_{\frac{7}{2}}^7$ (2190) $N_{\frac{9}{2}}^7$ (2250)</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\Delta_{\frac{5}{2}}^9$ $\Delta_{\frac{7}{2}}^9$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N_{\frac{7}{2}}^9$ $N_{\frac{9}{2}}^9$ (2220)</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$\Delta_{\frac{5}{2}}^9$ $\Delta_{\frac{7}{2}}^9$ $\Delta_{\frac{9}{2}}^9$ $\Delta_{\frac{11}{2}}^9$ (2420)</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N_{\frac{9}{2}}^9$ $N_{\frac{11}{2}}^9$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$N_{\frac{7}{2}}^9$ $N_{\frac{9}{2}}^9$ $N_{\frac{11}{2}}^9$ (2600) $N_{\frac{13}{2}}^9$</td>
</tr>
</tbody>
</table>
• Gap scale $4\kappa^2$ determines trajectory slope and spectrum gap between plus-parity spin-$\frac{1}{2}$ and minus-parity spin-$\frac{3}{2}$ nucleon families!

• No $J - L$ splitting!
• Fix the energy scale to the proton mass for the lowest state $n = 0, L = 0$

• Subtraction to mass scale may be understood as displacement required to describe nucleons with $N_C = 3$ as composite system with twist $3 + L$ instead of a quark-squark bound state with twist $2 + L$

• Phenomenological rules for increase in mass \mathcal{M}^2 to construct full baryon spectrum from proton state

\[
\begin{align*}
4\kappa^2 & \quad \text{for } \Delta n = 1 \\
4\kappa^2 & \quad \text{for } \Delta L = 1 \\
2\kappa^2 & \quad \text{for } \Delta S = 1 \\
2\kappa^2 & \quad \text{for } \Delta P = \pm
\end{align*}
\]

• Eigenvalues

\[
\begin{align*}
\mathcal{M}^{2(+)}_{n,L,S} &= 4\kappa^2 \left(n + L + S/2 + 3/4 \right) \\
\mathcal{M}^{2(-)}_{n,L,S} &= 4\kappa^2 \left(n + L + S/2 + 5/4 \right)
\end{align*}
\]
Orbital and radial excitations for positive parity N and Δ baryon families ($\kappa = 0.49 - 0.51$ GeV)

[See also: H. Forkel, M. Beyer and T. Frederico, JHEP 0707, 077 (2007)]
Baryon orbital trajectories for $n = 0$ and $\kappa = 0.49 - 0.51$ GeV

- $\Delta(1930)$ quantum number assignment (E. Klempt and J. M. Richard (2010): $S = 3/2$, $L = 1$, $n = 1$

- Find $M_{\Delta(1930)} = 4\kappa \simeq 2$ GeV compared with experimental value 1.96 GeV
4 Light-Front Holographic Mapping of Current Matrix Elements

[S. J. Brodsky and GdT, PRL 96, 201601 (2006)] Mapping of EM currents
[S. J. Brodsky and GdT, PRD 78, 025032 (2008)] Mapping of energy-momentum tensor

• EM transition matrix element in QCD: local coupling to pointlike constituents

\[\langle P' | J^\mu | P \rangle = (P + P')^\mu F(Q^2) \]

where \(Q = P' - P \) and \(J^\mu = e_q q q_\gamma^\mu q \)

• EM hadronic matrix element in AdS space from coupling of external EM field propagating in AdS with extended mode \(\Phi(x, z) \)

\[\int d^4x \, dz \, \sqrt{g} \, A^M(x, z) \Phi^*_P(x, z) \partial_\mu \Phi_P(x, z) \]

\[\sim (2\pi)^4 \delta^4(P' - P) \epsilon_\mu (P + P')^\mu F(Q^2) \]

• How to recover hard pointlike scattering at large \(Q \) out of soft collision of extended objects?

[Polchinski and Strassler (2002)]

• Mapping of \(J^+ \) elements at fixed light-front time: \(\Phi_P(z) \leftrightarrow |\psi(P)\rangle \)
• Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if LFWF is factorized

$$\psi(x, \zeta, \varphi) = e^{iM\varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}$$

• Find

$$X(x) = \sqrt{x(1-x)}, \quad \phi(\zeta) = \left(\frac{\zeta}{R}\right)^{-3/2} \Phi(\zeta), \quad z \rightarrow \zeta$$

• Form factor in soft-wall model expressed as $\tau - 1$ product of poles along vector radial trajectory (twist $\tau = N + L$) [Brodsky and GdT, Phys.Rev. D77 (2008) 056007]

$$F_\tau(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{M^2_\rho}\right) \left(1 + \frac{Q^2}{M^2_{\rho'}}\right) \cdots \left(1 + \frac{Q^2}{M^2_{\rho^{\tau-2}}}\right)}$$

• Analytical form $F(Q^2)$ incorporates correct scaling from constituents and mass gap from confinement

• $M_{\rho_n}^2 \rightarrow 4\kappa^2(n + 1/2)$ since VM is twist-2 $q\bar{q}$ and not twist 3 squark-squark with $L = 1$

- **Nucleon EM form factor**

 \[
 \langle P' | J^\mu(0) | P \rangle = u(P') \left[\gamma^\mu F_1(q^2) + \frac{i\sigma^{\mu\nu} q^\nu}{2M} F_2(q^2) \right] u(P)
 \]

- **EM hadronic matrix element in AdS space from non-local coupling of external EM field in AdS with fermionic mode** \(\Psi_P(x, z)\)

 \[
 \int d^4x \, dz \, \sqrt{g} \, \overline{\Psi}_{P'}(x, z) \, e_M^A A^M_A(x, z) \Psi_P(x, z)
 \sim (2\pi)^4 \delta^4 (P' - P - q) \epsilon_\mu u(P') \gamma^\mu F_1(q^2) u(P)
 \]

- **Effective AdS/QCD model: additional term in the 5-dim action**

 \[
 \int d^4x \, dz \, \sqrt{g} \, \overline{\Psi} \, e_M^A e_N^B [\Gamma_A, \Gamma_B] \, F^{MN} \Psi
 \sim (2\pi)^4 \delta^4 (P' - P - q) \epsilon_\mu u(P') \frac{i\sigma^{\mu\nu} q^\nu}{2M} F_2(q^2) u(P)
 \]

- **Generalized Parton Distributions in AdS/QCD**

 [Vega, Schmidt, Gutsche and Lyubovitskij, Phys.Rev. D83 (2011) 036001]
Using $SU(6)$ flavor symmetry and normalization to static quantities
Nucleon Transition Form Factors

\[F_{1 \, N \rightarrow N^*}(Q^2) = \frac{\sqrt{2}}{3} \frac{Q^2}{M^2_{\rho}} \left(1 + \frac{Q^2}{M^2_{\rho}} \right) \left(1 + \frac{Q^2}{M^2_{\rho'}} \right) \left(1 + \frac{Q^2}{M^2_{\rho''}} \right). \]

Proton transition form factor to the first radial excited state. Data from JLab
Flavor Decomposition of Elastic Nucleon Form Factors

- Proton SU(6) WF: \(F_{u,1}^p = \frac{5}{3} G_+ + \frac{1}{3} G_- \), \(F_{d,1}^p = \frac{1}{3} G_+ + \frac{2}{3} G_- \)
- Neutron SU(6) WF: \(F_{u,1}^n = \frac{1}{3} G_+ + \frac{2}{3} G_- \), \(F_{d,1}^n = \frac{5}{3} G_+ + \frac{1}{3} G_- \)

\[
G_+(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{M_{\rho}^2}\right)\left(1 + \frac{Q^2}{M_{\rho'}^2}\right)}
\]

and

\[
G_-(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{M_{\rho}^2}\right)\left(1 + \frac{Q^2}{M_{\rho'}^2}\right)\left(1 + \frac{Q^2}{M_{\rho''}^2}\right)}
\]
Pion Transition Form-Factor

- Definition of $\pi - \gamma$ TFF from $\gamma^* \pi^0 \rightarrow \gamma$ vertex in the amplitude $e\pi \rightarrow e\gamma$
 \[\Gamma^\mu = -ie^2 F_{\pi\gamma}(q^2)\epsilon_{\mu\nu\rho\sigma}(p_\pi)\nu\epsilon_\rho(k)q_\sigma, \quad k^2 = 0 \]

- Asymptotic value of pion TFF is determined by first principles in QCD:
 \[Q^2 F_{\pi\gamma}(Q^2 \rightarrow \infty) = 2f_\pi \quad \text{[Lepage and Brodsky (1980)]} \]

- Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]
 \[\int d^4x \int dz \epsilon^{LMNPQ} A_L \partial_M A_N \partial_P A_Q \]
 \[\sim (2\pi)^4 \delta^{(4)}(p_\pi + q - k) F_{\pi\gamma}(q^2)\epsilon^{\mu\nu\rho\sigma} \epsilon_\mu(q)(p_\pi)\nu\epsilon_\rho(k)q_\sigma \]

- Find for $A_z \propto \Phi_\pi(z)/z$
 \[F_{\pi\gamma}(Q^2) = \frac{1}{2\pi} \int_0^\infty \frac{dz}{z} \Phi_\pi(z)V(Q^2, z) \]
 with normalization fixed by asymptotic QCD prediction

- $V(Q^2, z)$ bulk-to-boundary propagator of γ^*
Higher Fock Components in LF Holographic QCD

- Effective interaction leads to \(qq \rightarrow qq, q\bar{q} \rightarrow q\bar{q} \) but also to \(q \rightarrow qq\bar{q} \) and \(\bar{q} \rightarrow \bar{q}qq \).

- Higher Fock states can have any number of extra \(q\bar{q} \) pairs, but surprisingly no dynamical gluons.

- Example of relevance of higher Fock states and the absence of dynamical gluons at the hadronic scale:

\[
|\pi\rangle = \psi_{q\bar{q}/\pi}|q\bar{q}\rangle_{\tau=2} + \psi_{qqq\bar{q}}|qqq\bar{q}\rangle_{\tau=4} + \cdots
\]

- Modify form factor formula introducing finite width: \(q^2 \rightarrow q^2 + \sqrt{2iM\Gamma} \) \((P_{q\bar{q}qq} = 13\%) \)
5 Conclusions

- The gauge/gravity duality leads to a simple analytical frame-independent nonperturbative semiclassical approximation to the light-front Hamiltonian problem for QCD: “Light-Front Holography”

- Unlike usual instant-time quantization the Hamiltonian equation in the light-front is frame independent and has a structure similar to eigenmode equations in AdS

- AdS transition matrix elements (overlap of AdS wave functions) map to current matrix elements in LF QCD (convolution of frame-independent light-front wave functions)

- Mapping of AdS gravity to boundary QFT quantized at fixed light-front time gives a precise relation between holographic wave functions in AdS and LFWFs describing the internal structure of hadrons

- No constituent gluons

- Improve the semiclassical approximation: introduce nonzero quark masses and short-range Coulomb-like gluonic corrections (heavy and heavy-light quark systems)

- Apply Lippmann-Schwinger methods to systematically improve the light-front Hamiltonian of the semiclassical holographic approximation
Despite some limitations of AdS/QCD, the light-front holographic approach to the gauge/gravity duality has provided so far significant physical insight into the strongly-coupled nature and internal structure of hadrons. The resulting model provides a simple framework for describing nonperturbative hadron dynamics: the systematics of the excitation spectrum of hadrons: the mass spectrum, observed multiplicities and degeneracies. It also provides powerful new analytical tools for computing hadronic transition amplitudes, incorporating the scaling behavior and the transition from the hard-scattering perturbative domain, where quark and gluons are the relevant degrees of freedom, to the long range confining hadronic region. The holographic mapping provides the basis for a profound connection between physical QCD quantized in the light-front and the physics of hadronic modes in a higher dimensional AdS space.