Maximum Wavelength of Confined Quarks and Gluons and Properties of QCD

Stan Brodsky, SLAC

JTI Workshop on Dynamics of Symmetry Breaking

Argonne National Laboratory, IL
April 13-17, 2009
In Collaboration with Robert Shrock and Guy de Teramond

QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes

- **Conformal window:** \(\alpha_s(Q^2) \sim \text{const at small } Q^2 \)

- Use mathematical mapping of the conformal group \(\text{SO}(4,2) \) to \(\text{AdS}_5 \) space

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

Map \(\text{AdS}_5 \times S_5 \) to conformal \(N=4 \) SUSY
Conformal Theories are invariant under the Poincare and conformal transformations with

\[M^{\mu\nu}, P^\mu, D, K^\mu, \]

the generators of \(\text{SO}(4,2) \)

\(\text{SO}(4,2) \) has a mathematical representation on AdS5
Scale Transformations

- Isomorphism of $SO(4,2)$ of conformal QCD with the group of isometries of AdS space

$$ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^\mu dx^\nu - dz^2),$$

Invariant measure

$x^\mu \rightarrow \lambda x^\mu$, $z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.

- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \rightarrow \lambda^2 x^2, \quad z \rightarrow \lambda z.$$

$x^2 = x_\mu x^\mu$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.
Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

ψ (x, z) ~ z^Δ

ψ (x, z) ~ z^Δ

5-Dimensional Anti-de Sitter Spacetime

Confinement Radius

AdS Boundary (z=0)

4-Dimensional Flat Spacetime (hologram)

de Teramond, sjb

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances.

- Analogous to the Schrodinger Theory for Atomic Physics.

- AdS/QCD Light-Front Holography.

- Hadronic Spectra and Light-Front Wavefunctions.
• *Light-Front Holography*

\[\phi(z) \]

\[\psi_n(x_i, \vec{k}_\perp i, \lambda_i) \]

• *Light Front Wavefunctions:*

Schrödinger Wavefunctions of Hadron Physics
Prediction from AdS/QCD: Meson LFWF

\[\psi_M(x, k^2_\perp) \]

"Soft Wall" model

de Teramond, sjb

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
Goal: First Approximant to QCD
Counting rules for Hard Exclusive Scattering Regge Trajectories QCD at the Amplitude Level

AdS/CFT
Mapping of Poincare’ and Conformal SO(4,2) symmetries of 3 +1 space to AdS5 space

AdS/QCD
Conformal Invariance + Confinement at large distances

Semi-Classical QCD / Wave Equations
Light Front Holography

Boost Invariant 3+1 Light-Front Wave Equations
Integrable!

Hadron Spectra, Wavefunctions, Dynamics

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
Verifying Asymptotic Freedom

\[\frac{\sigma(e^+e^-\rightarrow \text{three jets})}{\sigma(e^+e^-\rightarrow \text{two jets})} \]

Ratio of rate for \(e^+e^- \rightarrow q\bar{q}g \) to \(e^+e^- \rightarrow q\bar{q} \)

at \(Q = E_{CM} = E_{e^-} + E_{e^+} \)

proportional to \(\alpha_s(Q) \)

\[\alpha(Q^2) \simeq \frac{4\pi}{\beta_0} \frac{1}{\log Q^2/\Lambda_{QCD}^2} \]
\[\Gamma_{bj}^{p-n} (Q^2) \equiv \frac{g_A}{6} \left[1 - \frac{\alpha_s g_1 (Q^2)}{\pi} \right] \]

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

IR conformal window

\[\alpha_s^{g_1} (Q^2) \]

GDH constraint

- JLab CLAS
- JLab PLB 650 4 244
- $\alpha_{s,g_1}/\pi$ world data
- $\alpha_{s,F_3}/\pi$
- GDH limit
- pQCD evol. eq.
- $\alpha_{s,\tau}/\pi$ OPAL

JTI Workshop ANL

April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky

SLAC
Deur, Korsch, et al.

\[\frac{\alpha_s}{\pi} J_{\text{Lab}} \quad \text{GDH limit} \quad \text{Fit} \quad pQCD \text{ evol. eq.} \]

Cornwall

\[\text{Bhagwat et al.} \quad \text{Maris-Tandy} \quad \text{DSE gluon couplings} \]

\[\text{Bloch et al.} \quad \text{Godfrey-Isgur} \quad \text{Lattice QCD} \]

\(Q \text{ (GeV)} \)

JTI Workshop ANL
April 14, 2009

Stan Brodsky
SLAC
IR Conformal Window for QCD

• Dyson-Schwinger Analysis: QCD gluon coupling has IR Fixed Point

• Evidence from Lattice Gauge Theory

• Define coupling from observable: indications of IR fixed point for QCD effective charges

• Confined gluons and quarks have maximum wavelength: Decoupling of QCD vacuum polarization at small Q^2

\[\Pi(Q^2) \rightarrow \frac{\alpha}{15\pi} \frac{Q^2}{m^2} \quad Q^2 \ll 4m^2 \]

• Justifies application of AdS/CFT in strong-coupling conformal window

Serber-Uehling

Shrock, de Teramond, sjb

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
\[M_{ee \rightarrow ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u) \]

\[\alpha(t) = \frac{\alpha(0)}{1 - \Pi(t)} \]

Gell Mann-Low Effective Charge for QED
QED One-Loop Vacuum Polarization

\[\Pi(Q^2) = \frac{\alpha(0)}{3\pi} \left[\frac{5}{3} - \frac{4m^2}{Q^2} - (1 - \frac{2m^2}{Q^2}) \sqrt{1 + \frac{4m^2}{Q^2}} \log \frac{1 + \sqrt{1 + \frac{4m^2}{Q^2}}}{1 - \sqrt{1 + \frac{4m^2}{Q^2}}} \right] \]

\[\Pi(Q^2) \sim \frac{\alpha(0)}{3\pi} \log \frac{Q^2}{m^2} \quad Q^2 >> 4m^2 \]

\[\beta = \frac{d(\frac{\alpha}{4\pi})}{d\log Q^2} = \frac{4}{3}(\frac{\alpha}{4\pi})^2 n_\ell > 0 \]

\[\Pi(Q^2) = \frac{\alpha(0) Q^2}{15\pi m^2} \quad Q^2 << 4m^2 \quad \text{Serber-Uehling} \]

\[\beta \propto \frac{Q^2}{m^2} \quad \text{vanishes at small momentum transfer} \]
Lesson from QED:

Lamb Shift in Hydrogen

\[\Delta E \sim \alpha (Z \alpha)^4 \ln (Z \alpha)^2 m_e \]

\[\lambda < \frac{1}{Z \alpha m_e} \]

\[k > Z \alpha m_e \]

Maximum wavelength of bound electron

Infrared divergence of free electron propagator removed because of atomic binding
Lesson from QED and Lamb Shift:
maximum wavelength of bound quarks and gluons

\[k > \frac{1}{\Lambda_{QCD}} \]

\[\lambda < \Lambda_{QCD} \]

B-Meson
Shrock, sjb

gluon and quark propagators cutoff in IR because of color confinement
Maximal Wavelength of Confined Fields

- Colored fields confined to finite domain \((x - y)^2 < \Lambda_{QCD}^{-2}\)
- All perturbative calculations regulated in IR
- High momentum calculations unaffected
- Bound-state Dyson-Schwinger Equation
- Analogous to Bethe’s Lamb Shift Calculation

Quark and Gluon vacuum polarization insertions decouple: IR fixed Point

J. D. Bjorken,
SLAC-PUB 1053
Cargese Lectures 1989

A strictly-perturbative space-time region can be defined as one which has the property that any straight-line segment lying entirely within the region has an invariant length small compared to the confinement scale \(\Lambda_{QCD}^{-1}\) (whether or not the segment is spacelike or timelike).
Single-spin asymmetries

Pseudo-\(T\)-Odd

\[i \vec{S}_p \cdot \vec{q} \times \vec{p}_q \]

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

Collins, Burkardt Ji, Yuan

QCD S- and P- Coulomb Phases --Wilson Line

Light-Front Wavefunction S and P- Waves

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC

JTI Workshop ANL
April 14, 2009
Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P-waves; Wilson line effect; gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale: IR Fixed Point!
- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite

$i \, \vec{S} \cdot \vec{p}_{jet} \times \vec{q}$

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
Maximal Wavelength and QCD Properties

\[h^{\perp}_1(x_1, p^2_\perp) \times \bar{h}^{\perp}_1(x_2, k^2_\perp) \]

DY cos 2\phi correlation at leading twist from double ISI

Product of Boer-Mulders Functions

Kopeliovich

Boer, Hwang, sjb

JTI Workshop ANL

April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky SLAC
Double Initial-State Interactions generate anomalous $\cos 2\phi$:

\[
\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right)
\]

Drell-Yan planar correlations

\[
\frac{\nu}{2} \propto h_1^+(\pi) h_1^+(N).
\]

PQCD Factorization (Lam Tung):

\[
1 - \lambda - 2\nu = 0
\]

Double Initial-State Interactions generate anomalous $\cos 2\phi$:

\[
\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right)
\]

PQCD Factorization (Lam Tung):

\[
1 - \lambda - 2\nu = 0
\]

\[
\pi N \rightarrow \mu^+ \mu^- X \quad \text{NA10}
\]

\[
\nu(Q_T)
\]

Hard gluon radiation.

Double ISI.

Volates Lam-Tung relation!

Model: Boer, Hwang, sjb

Maximal Wavelength and QCD Properties

Stan Brodsky

SLAC
Remarkable observation at HERA

10% to 15% of DIS events are diffractive!

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA}. No acceptance corrections have been applied.

Deep Inelastic Electron-Proton Scattering

Conventional wisdom wrong:
Final-state interactions of struck quark cannot be neglected

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
Final-State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
QCD Mechanism for Rapidity Gaps

Wilson Line: \(\bar{\psi}(y) \int_0^y dx \, e^{iA(x)\cdot dx} \psi(0) \)

 Origin of Diffractive DIS
Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC
Final State Interactions in QCD

\[\begin{array}{c}
\gamma^* \\
q \\
k_1 \quad k_2
\end{array} \quad \begin{array}{c}
\gamma^* \\
q \\
k_1 \quad k_2
\end{array} \]

Feynman Gauge Light-Cone Gauge

Result is Gauge Independent
Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target
Conformal symmetry: Template for QCD

- Take conformal symmetry as initial approximation; then correct for non-zero beta function and quark masses

- Eigensolutions of ERBL evolution equation for distribution amplitudes

- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation

- Fix Renormalization Scale (BLM, Effective Charges)

- Use AdS/CFT

V. Braun et al; Frishman, Lepage, Sachrajda, sjb

H. J. Lu, sjb

Kataev, Gabadadze, Rathsman, Lu, sjb

Grunberg

Lepage, Mackenzie, Binger, sjb

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

30

Stan Brodsky
SLAC
Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

\[
R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right].
\]

\[
\int_0^1 dx \left[g_1^{ep}(x, Q^2) - g_1^{en}(x, Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[1 - \frac{\alpha g_1(Q)}{\pi} \right].
\]
Generalized Crewther Relation

\[
[1 + \frac{\alpha_R(s^*)}{\pi}] \left[1 - \frac{\alpha g_1(q^2)}{\pi}\right] = 1
\]

\[\sqrt{s^*} \approx 0.52Q\]

Conformal relation true to all orders in perturbation theory

No radiative corrections to axial anomaly

Nonconformal terms set relative scales (BLM)

Analytic matching at quark thresholds

No renormalization scale ambiguity!
\[
\frac{\alpha_R(Q)}{\pi} = \frac{\alpha_{MS}(Q)}{\pi} + \left(\frac{\alpha_{MS}(Q)}{\pi} \right)^2 \left[\left(\frac{41}{8} - \frac{11}{3} \zeta_3 \right) C_A - \frac{1}{8} C_F + \left(-\frac{11}{12} + \frac{2}{3} \zeta_3 \right) f \right] \\
+ \left(\frac{\alpha_{MS}(Q)}{\pi} \right)^3 \left\{ \left(\frac{90445}{2592} - \frac{2737}{108} \zeta_3 - \frac{55}{18} \zeta_5 - \frac{121}{432} \pi^2 \right) C_A^2 + \left(-\frac{127}{48} - \frac{143}{12} \zeta_3 + \frac{55}{3} \zeta_5 \right) C_A C_F - \frac{23}{32} C_F^2 \\
+ \left[\left(\frac{970}{81} + \frac{224}{27} \zeta_3 + \frac{5}{9} \zeta_5 + \frac{11}{108} \pi^2 \right) C_A + \left(-\frac{29}{96} + \frac{19}{6} \zeta_3 - \frac{10}{3} \zeta_5 \right) C_F \right] f \\
+ \left(\frac{151}{162} - \frac{19}{27} \zeta_3 - \frac{1}{108} \pi^2 \right) f^2 + \left(\frac{11}{144} - \frac{1}{6} \zeta_3 \right) \frac{d^{abc} d^{abc}}{C_F d(R)} \frac{\left(\sum_f Q_f \right)^2}{\sum_f Q_f^2} \right\}.
\]

\[
\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_{MS}(Q)}{\pi} + \left(\frac{\alpha_{MS}(Q)}{\pi} \right)^2 \left[\frac{23}{12} C_A - \frac{7}{8} C_F - \frac{1}{3} f \right] \\
+ \left(\frac{\alpha_{MS}(Q)}{\pi} \right)^3 \left\{ \left(\frac{5437}{648} - \frac{55}{18} \zeta_5 \right) C_A^2 + \left(-\frac{1241}{432} + \frac{11}{9} \zeta_3 \right) C_A C_F + \frac{1}{32} C_F^2 \\
+ \left[\left(\frac{3535}{1296} - \frac{1}{2} \zeta_3 + \frac{5}{9} \zeta_5 \right) C_A + \left(\frac{133}{864} + \frac{5}{18} \zeta_3 \right) C_F \right] f + \frac{115}{648} f^2 \right\}.
\]

Eliminate MSbar, Find Amazing Simplification

JTI Workshop ANL
April 14, 2009
Maximal Wavelength and QCD Properties
Stan Brodsky
SLAC
\[R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right]. \]

\[\int_0^1 dx \left[g_1^{ep}(x, Q^2) - g_1^{en}(x, Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[1 - \frac{\alpha_{g_1}(Q)}{\pi} \right] \]

\[\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_R(Q^*)}{\pi} - \left(\frac{\alpha_R(Q^{**})}{\pi} \right)^2 + \left(\frac{\alpha_R(Q^{***})}{\pi} \right)^3 \]

Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb
Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation
Transitivity Property of Renormalization Group

Relation of observables independent of intermediate scheme C

$A \rightarrow C \quad C \rightarrow B \quad \text{identical to} \quad A \rightarrow B$
Leading Order Commensurate Scales

\[\alpha_\tau (1.36Q) \]
\[\alpha_\eta b (1.67Q) \]
\[\alpha_{GLS} (1.18Q) \]
\[\alpha_M (0.904Q) \]
\[\alpha_p (Q) \]
\[\alpha_{MS} (0.435Q) \]
\[\alpha_T (2.77Q) \]
\[\alpha_R (0.614Q) \]
\[\alpha_g (1.18Q) \]

Translation between schemes at LO

JTI Workshop ANL
April 14, 2009
Maximal Wavelength and QCD Properties
Stan Brodsky
SLAC
Leading-Twist PQCD Factorization for form factors, exclusive amplitudes

\[M = \int \prod dx_i dy_i \phi_F(x_i, \bar{Q}) \times T_H(x_i, y_i, \bar{Q}) \times \phi_I(y_i, \bar{Q}) \]

If \(\alpha_s(\bar{Q}^2) \approx \text{constant} \)

\[Q^4 F_1(Q^2) \approx \text{constant} \]
• Scaling behavior for large Q^2: $Q^4F^p_1(Q^2) \to \text{constant}$

\[
\begin{array}{c}
\text{Proton } \tau = 3
\end{array}
\]

Conformal behavior: $Q^2 F_\pi (Q^2) \rightarrow \text{const}$

\[\begin{align*}
&\text{Determination of the Charged Pion Form Factor at} \\
&\text{Q2=1.60 and 2.45 (GeV/c)^2.} \\
&\text{By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp.} \\
&\text{e-Print Archive: nucl-ex/0607005}
\end{align*} \]
Consequences of Maximum Quark and Gluon Wavelength

- Infrared integrations regulated by confinement
- Infrared fixed point of QCD coupling
 \[\alpha_s(Q^2) \text{ finite, } \beta \to 0 \text{ at small } Q^2 \]
- Bound state quark and gluon Dyson-Schwinger Equation
- Quark and Gluon Condensates exist within hadrons

Casher, Susskind
Shrock, sjb
Maximum wavelength of bound quarks and gluons

\[k > \frac{1}{\Lambda_{\text{QCD}}} \]

\[\lambda < \Lambda_{\text{QCD}} \]

Use Dyson-Schwinger Equation for bound-state quark propagator: find confined condensate

\[\langle \bar{b} | \bar{q}q | \bar{b} \rangle \text{ not } \langle 0 | \bar{q}q | 0 \rangle \]

B-Meson

Shrock, sjb

JTI Workshop ANL
April 14, 2009

Maximal Wavelength and QCD Properties

Stan Brodsky
SLAC