P2P Data Copy Program bbcp

http://www.slac.stanford.edu/~abh/CHEP2001/p2p_bbcp.htm

Andrew Hanushevsky, Artem Trunov, Les Cottrell Stanford Linear Accelerator Center September, 2001

Produced under contract DE-AC03-76SF00515 between Stanford University and the Department of Energy

Why bbcp?

- Assess peer-to-peer technology
 - Fast deployment (minimal administration)
- Test novel data transfer algorithms
 - C++ component design
- Assess high level, low cost security
 - ssh-based authentication (control path)
 - Single use passwords (data path)
- Test familiar syntax to expedite use
 - Syntax same as for scp

Peer-to-Peer Technology

- No identifiable client or server
 - Any node can act as data source or sink
- Well established for file sharing
 - Napster, Aimster, Gnutella, etc.
 - In many ways, rcp and scp similar to P2P
- Well suited for fast service deployment
 - If you have the program you have the service
 - Usually no need for administrators to get involved

Peer-to-Peer Architecture

Peer-to-Peer & Firewalls

Novel Algorithms

- Data pipelining
 - Multiple streams "simultaneously" pushed
 - Automatically adapts to router traffic shaping
 - ◆ Maximum rate controlled via data "clocking"
- Coordinated buffers
 - All buffers same-sized from end to end
 - ◆ Data queues never over- or under-filled
- Page aligned buffers
 - Allows direct I/O on many filesystems
 - Veritas

Algorithm Design

Security

- Low cost, simple and effective security
 - Leveraging widely deployed infrastructure
 - ◆ If you can ssh there you can copy data
- Sensitive data is encrypted
 - One time passwords and control information
- Bulk data is not encrypted
 - Privacy sacrificed for speed
- Minimal sharing of information
 - Source and Sink do not reveal environment

Protocol Interactions

Invocation

- Familiar syntax
 - **bbcp** [options] source [source [...]] target
- Sources and target can be anything
 - [[username@]hostname:]]path
 - /dev/zero or /dev/null
- Easy but powerful
 - Can gather data from multiple hosts
 - Many usability and performance options
- http://www.slac.stanford.edu/~abh/bbcp

Usability Features

- Serial Input & Output
 - Source & target can even be a pipe or tape drive
- Auto-resume failed copies
 - Only un-copied data transferred after failure
- Preserve group ownership and file times
- Auto-create directories
- Command line include files that list files to be copied
- History log file
- Periodic progress messages
- Transfer rate limiting
- MD5 Checksums
- Compression
- Multiple performance tuning options
- And more ...
 - http://www.slac.stanford.edu/~abh/bbcp

Optional

The Inside Details

The Results

bbcp can perform within 5% of iperf reported maximum performance

For all results visit: http://www-iepm.slac.stanford.edu/monitoring/bulk/bbcp.html

Future Work

- Reduce start-up overhead
 - Make overhead largely independent of streams
- Real-time Adaptation
 - Transfer unit size and number of streams
 - ◆ Investigating network feedback monitors
- Real-time logging
 - Incorporate netlogger

Conclusion

- bbcp algorithms are effective
 - Excellent performance
 - Allow data serialization
- A different approach
 - East vs West
 - East: Transfer data in balance and harmony
 - West: Blast the data as fast as you can

