

Passive and Active Monitoring on a High-performance Network

Les Cottrell, Warren Matthews, Davide Salomoni, Connie Logg – SLAC

www.slac.stanford.edu/grp/scs/net/talk/pam-apr01/

Presented at PAM-2001, Amsterdam April 23-24, 2001

Partially funded by DOE/MICS Field Work Proposal on Internet End-to-end Performance Monitoring (IEPM), also supported by IUPAP

Outline

- Results from active monitoring with PingER: – RTT, Loss, "jitter"
- Passive border monitoring results
- High perf throughput
 - achieving, measuring and impact
- Simulation of high perf throughput

Active WAN Monitoring/PingER

- Measurements from
 - 32 monitors in 14 countries
 - Over 600 remote hosts in over 72 countries
 - Over 3300 monitor-remote site pairs
 - Measurements go back to Jan-95
 - Reports on RTT, loss, reachability, IPDV, throughput, reordering, duplicates, looking at CLP (for bursty losses)...
- Uses ubiquitous "ping" facility of TCP/IP
- Countries monitored
 - Contain 78% of world population
 - 99% of online users of Internet

RTT Region to Region

OK White 0-64ms Green 64-128ms Yellow 128-256ms

NOT OK Pink 256-512ms Red > 512ms

	WORLD	• <u>Australasia</u>	<u>East</u> Europe	<u>North</u> <u>America</u>	<u>West</u> Europe	<u>South</u> <u>America</u>	• <u>Asia</u>
	<u>Australasia</u>	3.95	<u>714.74</u>	<u>300.68</u>	<u>454.68</u>	<u>389.69</u>	<u>373.59</u>
	<u>East</u> <u>Europe</u>		359.03	<u>235.66</u>	<u>87.37</u>	<u>278.01</u>	<u>319.64</u>
	<u>North</u> <u>America</u>		<u>244.24</u>	69.44	<u>153.23</u>	<u>223.06</u>	<u>203.83</u>
ns	<u>West</u> <u>Europe</u>		<u>385.14</u>	<u>163.32</u>	42.97	<u>260.47</u>	<u>290.68</u>
	<u>South</u> <u>America</u>		<u>626.39</u>	<u>421.45</u>	<u>590.69</u>	18.93	<u>780.00</u>
	<u>Asia</u>		<u>472.57</u>	<u>327.85</u>	<u>321.99</u>	447.02	24.00
	<u>Africa</u>		770.90	804.67	804.15		
	<u>Aria</u>			772.00	<u>416.88</u>		
	<u>null</u>			<u>501.30</u>			
	<u>Middle</u> <u>East</u>			<u>1108.97</u>			
	<u>Central</u> <u>America</u>			<u>436.00</u>			

OK within regions, N. America OK with Europe, Japan

Loss to world from US

Using year 2000, fraction of world's population/country from www.nua.ie/surveys/how_many_online/

Fraction of world's population with measured loss performance, seen from US

Losses between Regions

WORLD	• Australasia	<u>East</u> <u>Europe</u>	• <u>North</u> <u>America</u>	<u>West</u> <u>Europe</u>	• <u>South</u> <u>America</u>	• <u>Asia</u>
<u>Australasia</u>	0.10	<u>6.91</u>	<u>0.81</u>	1.12	<u>0.31</u>	1.65
<u>East</u> <u>Europe</u>		5.69	<u>2.66</u>	<u>1.34</u>	<u>1.91</u>	<u>2.63</u>
<u>North</u> <u>America</u>		<u>6.39</u>	0.14	<u>0.23</u>	<u>0.02</u>	<u>0.36</u>
<u>West</u> <u>Europe</u>		<u>4.64</u>	<u>0.28</u>	0.30	<u>-0.20</u>	<u>0.43</u>
<u>South</u> <u>America</u>		<u>15.18</u>	<u>4.13</u>	<u>3.11</u>	-1.37	<u>5.02</u>
<u>Asia</u>		<u>5.93</u>	<u>1.68</u>	1.30	<u>0.00</u>	0.32
<u>Africa</u>		<u>32.73</u>	2.10	<u>5.58</u>		
<u>Aria</u>			<u>2.50</u>	<u>5.00</u>		
null			<u>1.12</u>			
<u>Middle</u> <u>East</u>			<u>3.71</u>			
<u>Central</u> <u>America</u>			<u>1.64</u>			

"Jitter" from N. America to W. Europe

ETSI: DTR/TIPHON-05001 V1.2.5 (1998-09) good speech < 75ms jittel¹⁰

"Jitter" between regions

		W.	Ε.
Median	US	Europe	Europe
US	2	4	15
W. Europe	4	5	22
E. Europe	18	11	29
Asia	18	14	46
S. America	20	17	38
Australasia	4	4	28
Africa	28		

		Ψ.	Ε.
90th%	US	Europe	Europe
US	9	14	25
W. Europe	13	16	39
E. Europe	134	38	130
Asia	54	292	56
S. America	81	32	53
Australasia	50	15	
Africa	171	178	265

Median	ESnet	Edu	Com
ESnet	2	6	
Edu	2	1	
Com			5

ETSI: DTR/TIPHON-05001 V1.2.5 (1998-09)

75ms=Good 125ms=Med 225ms=Poor

Passive site border monitoring

- Use SNMP to get utilization etc.
- Used to use OC3Mon with CoralReef for flows etc. but now have GigE interfaces
- Use **Cisco Netflow** in Catalyst 6509 with MSFC, only on border at the moment
- Gather about 200MBytes/day of flow data
- Date recorded in binary every 10 minutes into RRD
- The raw data records include source and destination addresses and ports, the protocol, packet, octet and flow counts, and start and end times of the flows
 - Much less detailed than OC3Mon, but good compromise
 - Top talkers history and daily (from & to), tlds, vlans, protocol and application utilization, flow times, time series, distributions
- Use for network & security

Simplified SLAC DMZ Network, 2001

SLAC Traffic profile

NNTP-OUT(-)

OTHER-OUT(-) By CAL: Mon Mar 19 16:05:01 PST 2001

BBFTP-OUT(-)

IPERF-OUT(-)

OBTY-OUT(-)

REAL-OUT(-)

50-300Gbytes/day

Ames IXP: approximately 60-65% was HTTP, about 13% was NNTP Uwisc: 34% HTTP, 24% FTP, 13% Napster

Heavy tailed, in ~ out, UDP flows shorter than TCP, packet~bytes 75% TCP-in < 5kBytes, 75% TCP-out < 1.5kBytes (<10pkts) UDP 80% < 600Bytes (75% < 3 pkts), ~10 * more TCP than UDP Top UDP = AFS (>55%), Real(~25%), SNMP(~1.4%)

Power law fit parameters by time

Slope of power law fit to Flow frequencies

App: High Speed Bulk Throughput

• Driven by:

- Data intensive science, e.g. data grids
- HENP data rates, e.g. BaBar 300TB/year, collection doubling yearly, i.e. PBytes in couple of years
- Data rate from experiment ~ 20MBytes/s ~ 200GBytes/d
- Multiple regional computer centers (e.g. Lyon-FR, RAL-UK, INFN-IT, LBNL-CA, LLNL-CA, Caltech-CA) need copies of data
- Boeing 747 high throughput, BUT poor latency (~ 2 weeks) & very people intensive
- So need high-speed networks and ability to utilize
 - High speed today = few hundred GBytes/day

Measuring TCP throughput

- Selected about a dozen major collaborator sites in CA, CO, IL, FR, UK over last 9 months
 - Of interest to SLAC
 - Can get logon accounts

• Use iperf

- Choose window size and # parallel streams
- Run for 10 seconds together with ping (loaded)
- Stop iperf, run ping (unloaded) for 10 seconds
- Change window or number of streams & repeat
- Record streams, window, throughput (Mbits/s), loaded & unloaded ping responses

SC2000 WAN Challenge

- SC2000, Dallas to SLAC RTT ~ 48msec
 - SLAC/FNAL booth: Dell PowerEdge PIII 2 * 550MHz with 64bit PCI + Dell 850MHz both running Linux, each with GigE, connected to Cat 6009 with 2GigE bonded to Extreme SC2000 floor switch
 - NTON: OC48 to GSR to Cat 5500 Gig E to Sun E4500
 4*460MHz and Sun E4500 6*336MHz
- Internet 2: 300 Mbits/s
- NTON 960Mbits/s Dallas to SLAC mem-to-mem
- Details:
 - <u>www-iepm.slac.stanford.edu/monitoring/bulk/sc2k.html</u>

Impact of cross-traffic on Iperf between SLAC & W. Europe

Impact on Others

- Make ping measurements with & without iperf loading
 - Loss loaded(unloaded)
 - RTT

Improvements for major International BaBar sites

Throughput improvements of 2 to 16 times in a year

Iperf throughput conclusions 1/2

- Can saturate bottleneck links
- For a given **iperf** measurement, streams share throughput equally.
- For small window sizes throughput increases linearly with number of streams
- Predicted optimum window sizes can be large (> Mbyte)
- Need > 1 stream to get optimum performance
- Can get close to max thruput with small (<=32Mbyte) with sufficient (5-10) streams
- Improvements of 5 to 60 in thruput by using multiple streams & larger windows
- Loss not sensitive to throughput

Iperf thruput conclusions 2/2

• For fixed *streams*window* product, streams are more effective than window size:

Site	Window	Streams	Throughput
CERN	256kB	2	9.45Mbits/
CERN	64kB	8	26.8Mbits/s
Caltech	256kB	2	1.7Mbits/s
Caltech	64kB	8	4.6Mbits/s

- There is an optimum number of streams above which performance flattens out
- See www-iepm.slac.stanford.edu/monitoring/bulk/

Network Simulator (ns-2)

- From UCB, simulates network
 - Choice of stack (Reno, Tahoe, Vegas, SACK...)
 - RTT, bandwidth, flows, windows, queue lengths ...
- Compare with measured results
 - Agrees well
 - Confirms observations (e.g. linear growth in throughput for small window sizes as increase number of flows)

BW=10Mbps, RTT=162ms, Q=80, BF=2 Packet loss

•Indicates on unloaded link can get 70% of available bandwidth without causing noticeable packet loss

•Can get over 80-90% of available bandwidth

•Can overdrive: no extra throughput BUT extra loss ³²

Simulator benefits

- No traffic on network (nb throughput can use 90%)
- Can do what if experiments
- No need to install iperf servers or have accounts
- No need to configure host to allow large windows
- BUT
 - Need to estimate simulator parameters, e.g.
 - RTT use ping or synack
 - Bandwidth, use pchar, pipechar etc., moderately accurate
- AND its not the real thing
 - Need to validate vs. observed dat
 - Need to simulate cross-traffic etc

WAN thruput conclusions

- High FTP performance across WAN links is possible –Even with 20-30Mbps bottleneck can do > 100Gbytes/day
- OS must support **big windows** selectable by application
- Need multiple parallel streams
- Loss is important in particular interval between losses
- Compression looks promising, but needs cpu power
- •Can get close to max thruput with small (<=32Mbyte) with sufficient (5-10) streams
- Improvements of 5 to 60 in thruput by using multiple streams & larger windows
- Impacts others users, need Less than Best Effort QoS service

More Information

- This talk:
 - www.slac.stanford.edu/grp/scs/net/talk/slac-wan-perf-apr01.htm
- IEPM/PingER home site
 - www-iepm.slac.stanford.edu/
- Transfer tools:
 - <u>http://hepwww.rl.ac.uk/Adye/talks/010402-ftp/html/sld015.htm</u>
- TCP Tuning:
 - <u>www.ncne.nlanr.net/training/presentations/tcp-tutorial.ppt</u>