Basic setup
Network and operation model
As mentioned before, because of the disadvantages in building a dedicated connection-oriented (CO) network, we implement our CO services over an existing connection-less (CL) network (e.g., Internet2). Our approach to handling the bandwidth sharing between CO traffic and the co-resident CL traffic is to divide the bandwidth of the bottleneck links into two, one for CL traffic and the other for CO traffic. It is then the task of the network manager to specify the appropriate shares for CL and CO traffic. They may vary from one link to another, and from one time epoch to another. The network manager allocates the bandwidth share between the CL and CO traffic based on measurements of the CL and CO traffic over time.
As pointed out elsewhere in this proposal, our approach, assuming we can successfully identify the bottleneck locations, is to do our bandwidth management only on the network bottlenecks, rather than on every link in the end-to-end route. Typically, these are access links (ingress and egress links). Our bandwidth allocation will be driven by measurements to determine which links are the bottlenecks.

The bottleneck links are shared between CO and CL services as follows. Before a user starts a CO-service call, the user sends a request to the network. The network either accepts or denies the request depending on the availability of network bandwidth, based on a threshold policy: the request is accepted if and only if at each shared link the bandwidth already used for CO services does not exceed a threshold at any time during the duration of the requested call. This call-admission control is implemented in a distributed way, as described in detail elsewhere in this proposal. Basically, a call request is considered at one switch at a time, with each switch making an acceptance or denial decision based on the threshold parameter and the accepted calls on the appropriate link in the end-to-end route. 
A switch that accepts a call forwards the request to the next downstream bottleneck switch for consideration. The call request is accepted if all relevant switches accept the call.

For simplicity, we consider only fixed bandwidth requests. Each request has a request priority and a holding priority (which could be equal). A request is allowed to preempt any ongoing service with lower holding priority than the request priority of the request. 
Here, we focus on the key issue of setting an appropriate threshold value at each link—this is the main parameter that controls the performance of the threshold policy. We discuss our approach to this problem below. Our proposed research builds on our extensive previous work on related resource management [1],  [2],  [5],  [6],  [9],  [11],  [12],  [15],  [18],  [23],  [10], [13], [16], [24], [25], [19], [26], [27], [20], [21], [22], [3], [4]. 

Service types

E-science applications that will be supported by our service network are expected to vary greatly, including large file transfers for multi-site high-energy experiments, long-distance interferometry, and remote medical diagnostics involving high-definition video communication. We propose to consider two types of network services, which we expect will encompass virtually all application needs: data and sessions. Data-type service involves transmitting a fixed amount of data, and is aimed at delay- and bandwidth-flexible applications like bulk-file transfers. Session-type service involves a fixed bandwidth allocated over some prespecified time interval, and is aimed at bandwidth- and jitter-sensitive applications. These include realtime instrument control and 
high-definition video sessions for telemedicine and multi-site interferometry. The specifics of these two types of service will be explained in detail below.

Problem Formulation
Service Specification
We assume that the available bandwidth at the bottleneck links available to the CO services is provided to the network manager, which has to determine and update (over time) the threshold settings for these links. We further assume for the present discussion that there are two bottlenecks
: the ingress and egress links in the end-to-end path connected to the backbone network. (In general, there may be more than two bottlenecks in the route associated with a call.) The data- and session-type services are then provided as follows. A data-type service request from a user specifies the following parameters: ingress link
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). Based on these request parameters a data-type request may be denied if the latest transmission end time (deadline) cannot be met.
A session-type service request specifies the following parameters: ingress link
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). Based on these parameters, a request may be denied because of a lack of available bandwidth over the desired service time interval.
For the sake of completeness we have listed all parameters that may be relevant to data-type and session-type requests. In practice, for simplicity, we may incorporate only a subset of these parameters. Note that requests requiring immediate service are possible in this framework: in this case, the latest starting time is simply equal to the current time.

As described before, each request is handled in a distributed way by comparing the requested bandwidth with the remaining bandwidth allocated to CO requests, determined by the threshold parameters at the bottleneck links. We begin our efforts by using the simplest approach to handling connection requests. Specifically, in the case of data-type requests, we first assume for simplicity that the requested bandwidth is simply the minimum bandwidth 
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. More sophisticated handling of data-type requests is possible and will be considered later in our project. For example, we could attempt to allocate the largest feasible fixed bandwidth to the data-type request, resulting in earliest completion time. Similarly, for session-type requests, we first assume for simplicity that the requested bandwidth is the minimum bandwidth. A more sophisticated handling of session requests would involve determining the largest among its requested bandwidth parameters that can be accommodated. These more sophisticated request-handling mechanisms of course incur additional burden on the admission control process, requiring more messaging among switches.
The key control parameter in our system is the threshold parameter value 
at each link, which may depend on time-of-day. The problem of selecting and updating these thresholds based on measurements is the key problem to be addressed here. Our approach is based on partially observable Markov decision theory and utility functions, as described below.

Utility functions

A host or application completing service on the network receives a certain degree of “satisfaction” —usually called utility. Typically, the utility depends on the amount of resources consumed. Our basic goal is to maximize the aggregate utility over time
. The heterogeneous requirements of the data and session requests, as well as the CL flows, can all be specified implicitly using utility functions.

For example, a data request may have a linear utility function (per unit time) of the “effective” bandwidth
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For a session request, its utility function (per unit time) may be a piecewise-constant function of the bandwidth allocated to it:
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 are the minimum acceptable bandwidth, medium-quality bandwidth, and high-quality bandwidth associated with the session request. Note that utility is gained only if the call completes as desired and is not preempted.
To trade off CL bandwidth for CO bandwidth, we will also use utility functions for the CL traffic.  We expect CL flows to be “elastic” (in the sense that they can tolerate a variety of bandwidths), yielding to analysis based on utility functions. Indeed, dominant traffic types on the Internet—web traffic, email, and file transfers—are all elastic in this sense. We assume for simplicity that all the CL flows have the same utility function (denoted
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, making it necessary to measure (or estimate) the number of ongoing CL flows
. This makes the problem interesting in the context of DDDAS—the dynamic call handling is based on measurement data.
We assume henceforth that the utility functions for all the request types, including CL flows, are given. In general, the formulation of utility functions has to be carried out with careful consideration. In return, we benefit from the significant flexibility and modeling power that it affords.
.
Markov decision theoretic formulation

If our goal is to maximize the instantaneous aggregate utility at each time, then the problem of selecting threshold values can be posed as a static optimization problem. Depending on the nature of the utility functions (linearity, concavity, etc.), we may use an optimization algorithm (e.g., [8]) or a heuristic approach.
It is often the case that our goal involves maximizing aggregate (or average) utility over a large time horizon, taking into account the random variations in system behavior over time.  This is the case in dynamic situations, where requests arrive continually over time.  Such resource allocation problems can be posed in great generality under the framework of Markov decision theory [17], [7], [14].  The particularities of our problem here actually yields to a formulation based on a special case called a partially observable Markov reward process (POMRP).
For convenience of presentation, we focus on a single link. We first identify times at which we wish to update the threshold values. To be specific, let us say that these times are uniformly separated once every hour. Next, we specify the factors based on which we set the threshold value:
· Time of day;

· Prior history of requests (from request logs and network measurements).

Finally, we specify the criterion that drives our optimization of the threshold value: the expected aggregate utility over one hour. The expectation here depends on how the probabilistic features of the system evolve over time, which is captured by a hidden Markov model. Specifically, the evolution of the system over time is due to the random nature of the calls in the system (request arrivals, duration of ongoing calls, etc.). We describe this model next.
Hidden Markov model for CO requests and CL traffic
A hidden Markov model comprises the following ingredients:
· A discrete-time Markov chain Xk specified by a finite state space and a transition probability matrix P on this state space.
· An observation model, which specifies the observation space and, at each state, a probability distribution over this observation space.

In our problem, a hidden Markov model is used to model the following probabilistic components of the system: the arrivals of CO requests over one hour, including all call-specification parameters (start time, bandwidth, etc.), and the starts/completions of CL flows over the hour. The underlying Markov state captures random changes in the behavior of the requests and flows over time. We specifically include the time-of-day as a component of the state, because we expect that call requests and flows are modulated naturally by the time-of-day (e.g., fewer call requests at 1am than at 9am).
The observation model captures the factors that are available to us for decision making. As pointed out above, the time-of-day is one these. Because we can always ascertain the actual time-of-day, we have “direct observation” of this part of the underlying state. The other factor available to us is the data collected over the previous hour, which provides us with details of all the CO requests, and the evolution of CL flows (including the number of flows over the hour), obtained using our request monitoring and traffic-measurement system.

This model is called a hidden Markov model because the underlying Markov state is not directly available to us. We can only access the observations over time, and from this we can infer something about the state. It turns out that all relevant information about the underlying state is captured in the posterior distribution of the state given the observation history, a quantity often called the belief state. We can keep track of the belief state over time by updating it (every hour in our context) using a standard procedure called Bayes’ rule. If the state and observation space are sufficiently complex to prohibit analytic update of the belief state, we could use recent nonlinear filtering methods, such as particle filtering.
How do we get a hidden Markov model for our system? There are a variety of methods to “train” (or “learn”) a model from empirical data (see, e.g., [30]), including the well-known EM algorithm. So, to train a model for our system, we need to collect data (request arrivals and CL traffic over time) and apply a training algorithm. We can even update the model from time to time to adapt the model to changing conditions over time.
To simplify the training process, we could impose some approximating assumptions to the model. First, we could limit the size of the state space. Second, we could assume some structure on the form of the observation model. For example, the request arrival distribution given an underlying state could be modeled as Poisson, so that the training involves only the fitting of a single parameter, the Poisson rate. Similarly, we could model the call duration as a truncated Pareto, again with one parameter to train. Finally, the simplifying assumption that the arrival process is conditionally independent given the state allows us to factor the arrival and duration distributions. The training and updating of the hidden Markov model from empirical data is a nontrivial task, and constitutes one component of our efforts.
Expected aggregate utility

Given the hidden Markov model, we can now calculate (at least in principle) the expected aggregate utility resulting from any threshold-value setting applied over the next hour. This calculation is the basis for selecting the best threshold value to apply at the link. Here, we explain briefly how the aggregate utility is calculated for any given threshold value. We first compute the conditional expected utility given the underlying state. To do this, we use the observation law to characterize the distribution of the random CO call arrivals and CL traffic over one hour. Then, with the given threshold value and the utility functions given above, we can compute the aggregate utility of all the CL flows and all the CO requests that complete during the hour (recall that utility is gained only if a call completes and is not preempted). To be precise, this calculation needs to take into account all the links jointly, because the denial or acceptance of calls depends on end-to-end considerations, including the threshold settings in all relevant links. To simplify our calculations, we will also consider distributed calculations that consider only one link at a time—of course, this is only an approximation but may yield satisfactory results.
Once we know how to calculate the conditional expected aggregate utility given the state, we can now calculate the expected aggregate utility (given the observations) by taking expectation with respect to the belief state. In complex situations, this calculation might be difficult to do analytically. In this case, we would use Monte Carlo sampling methods. If the belief states are updated using a particle filter, which is a Monte Carlo method, then a Monte Carlo approach to computing the expected aggregate utility is natural.
Utility maximization
Having described how to compute expected aggregate utility values for any given threshold setting, we are now in a position to optimize the thresholds. A variety of algorithms are available (e.g., [8]). Because of the relatively infrequent updates of threshold values (something like once an hour), we expect to have ample computation time to perform this optimization, including calculation of belief states and expected aggregate utility values (even using Monte Carlo sampling). 
The main reason our formulation here yields to the special case of a Markov reward process (rather than the more general Markov decision process) is that we have implicitly assumed that the service durations are short relative to the time between threshold updates. In the more general situation where many calls will span multiple update epochs, we will need to consider a more full-blown partially observable Markov decision process (POMDP). It turns out that the threshold optimization procedure in this case is similar to what we have described so far for the simpler POMRP formulation, with some modification to the objective function being optimized at each decision epoch. To elaborate briefly, we would need to augment our expected aggregate utility over one hour to include an expectation of utility over some horizon into the future (the extent of this horizon depends on the duration of calls). This augmentation forms what is called a Q-function. Other than this modification, the procedure described in this section applies. We have had great success recently in developing and applying approximation methods to Markov decision problems under reasonable constraints on computational burden  [5],  [6],  [23],  [10],  [13],  [16],  [17],  [24],  [25],  [26],  [27],  [7],  [14],  [28].
Of particular interest to NSF's DDDAS thrust is that our approach dynamically incorporates additional data into the online bandwidth management process, and, conversely, dynamically steers the measurement process as part of the decision-making process. We propose to build on our previous work on Markov decision approximation methods by developing techniques that directly exploit traces of traffic history to drive decision making. Indeed, our prior work naturally lends itself to this possibility.
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�It seems this assumes we are not certain of which switch encompasses the bottleneck, is this correct (I believe it will be the case in many cases even given our best efforts with pipechar etc., so I think this should be made clear in the write up somewhere). Also be aware that techniques such as pipechar only look at routers, not at switches so with pipechar (or traceroute for example) we cannot ID the switches along the paths, let alone request the switch to reserve bandwidth for us.  It is possible we may be able to ID  a switch as being a bottleneck (but even then we probably do not know the name/IP address etc of the switch, unless we get cooperation from the ISP, which will not always be the case) rather than a router. So to first order from the point of an end user and pipechar/traceroute techniques  I think we should be talking about routers and NOT switches, or we need to spell out carefully when we mean one and not the other and how we will get access to and knowledge about the switches.


�Or are we excluding this type of application?


�Not sure what is meant here. At any given moment there is a single bottleneck size, maybe you are saying that both the ingress and egress have an identical bottleneck at some time. Bottlenecks can move spatially as loads on links change. Maybe you are saying that there are two most likely places for the bottleneck to be located.


�I believe I am confused. I was thinking the threshold value would be set by the ISP based on capacity, and the economics of what she feels they can sell guaranteed bandwidth for. Or are we trying to provide guidance to the ISP.


�This sounds like our goal is to maximize the resources consumed, which sounds slightly wrong. One can consume resources by deliberately wasting them on useless activities. Not sure how to change things, maybe something like ‘Typically increased utility is achieved by effectively using improved “quality” of bandwidth, where “quality” may be decreased jitter, delay or increased bandwidth.’ Maybe this is well understood by the experts in your domain, but it stopped me when I read this.


�Did I miss something, I have no way of estimating n.  
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