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ABSTRACT 

SLAC has been studying end-to-end WAN bandwidth availability and achievability for 2.5 years 
via IEPM-BW1. IEPM-BW performs network intensive tests every 90 minutes. Based on that 
experience we have also developed a light weight available bandwidth (ABWE2) measurement tool 
which can make a measurement within a second. We are now extending this to a WAN 
measurement and detection system (IEPM-LITE) aimed at troubleshooting network performance 
problems. IEPM-LITE uses ping, forward and reverse traceroutes, and ABWE sensors to monitor, 
in real-time, changes in available bandwidth and routes to and from target hosts. This paper 
discusses the experiences, techniques and algorithms used to detect and report on significant 
traceroute and available bandwidth changes. The ultimate aim is to develop a lightweight WAN 
network performance monitoring system that can detect in real time significant changes and 
generate alerts. 
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INTRODUCTION 
 
Modern day High Energy Nuclear Physics (HENP) 
research and analysis requires that large volumes of 
data be effectively distributed to collaborators around 
the world.  In September 2001, SLAC embarked on a 
WAN performance testing and analysis project 
known as IEPM-BW[1], to evaluate and monitor the 
performance of the paths to its collaborators.  The 
IEPM-BW system is network intensive in its 
measurements.  This was necessary in order to 
measure the performance in a way that mimicked the 
large volume data transfers.   Concurrently, a 
lightweight, non-intensive bandwidth measurement 
tool (ABwE[2]) was being developed. The intent is 
that we be able to perform the same testing and 
analysis using non-network intensive tools, and on a 
more frequent basis to present real-time feedback on 
critical network links. 
 
SLAC has been active in WAN monitoring for 
several years. One of the drawbacks of all this 
monitoring is that there are thousands of reports and 
graphs generated daily, which no one has time to 
look at. Critical performance changes often go 
unnoticed. For example, in August 2003[3], we did 
not notice until about a month later that IPERF 
throughput from SLAC to CALTECH had dropped 
dramatically. Once this drop was noticed and 
investigated, it was fixed  in about 4 hours.  If we had  
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 been alerted to this change, it could have been 
detected much faster, and fixed in a timely fashion. 
 
The system we are now testing is referred to as 
IEPM-LITE. It performs pings, forward and reverse 
traceroutes, and frequent light-weight available 
bandwidth measurements using ABwE [2]. This 
paper discusses the techniques for bandwidth change 
detection and traceroute analysis which we are 
currently developing to generate alerts, and when 
possible, correlate available bandwidth changes to 
route changes.  Ping and traceroute information is 
gathered every 10 minutes. Available bandwidth 
measurements are made every minute. 
 
AVAILABLE BANDWIDTH CHANGE 
DETECTION 
 
The principle behind this algorithm is evolved from 
work by NLANR [4]. It involves buffering the time 
sequence ABwE data into two buffers: a history 
buffer (HISTBUF) for base-lining, and when a datum 
meets specific requirements, into a trigger buffer 
(TRIGBUF). Each buffer has a maximum number of 
entries parameter, HISTMAX and TRIGDUR 
respectively.  TRIGDUR determines how long the 
bandwidth change must exist before an analysis of its 
data is performed to see if we have encountered an 
alert condition. Note that since the ABwE data is 
taken once a minute, TRIGDUR is the number of 



minutes (assuming no data is lost) that a drop must 
exist before an alert is raised. The history buffer also 
has a HISTMIN parameter, which is only used at 
startup to “prime” the history buffer. HISTMIN is the 
number of data points which are added to the history 
buffer when the analysis starts up. 
 
Once HISTBUF is primed with HISTMIN data 
points, we are ready to enter the data processing loop. 
The mean (HISTMEAN) and standard deviation 
(HISTSD) of the HISTBUF data are calculated, and 
used as a reference in the analysis. 
 
There are several critical parameters which are used 
in the analysis and alert generation.  Currently these 
must be manually tuned, as they are dependent on the 
size of change and length of time a bandwidth 
depression is to be present before an alert is 
generated.  At some point in the future, we hope to be 
able to auto-configure some of these parameters by 
pre-examining the data. Others such as the buffer 
lengths will probably depend on the users’ 
requirements.  For example how long must a change 
be sustained (TRIGDUR) before it is considered 
significant depends on how long the user wants a 
drop to be sustained before he is notified.  
• Sensitivity (SENS) – the number of standard 

deviations beyond the HISTBUF mean which a 
datum must lie to be considered a trigger value. 
The default at this time is 2, however we are 
evaluating how to dynamically set this as a 
function of HISTMEAN and HISTSD. 

• Threshold (THRESH) – is the % difference 
between the HISTBUF mean and the TRIGBUF 
mean which must be passed for an alert to be 
generated. Once we are in an alert state, this 
threshold must again be met before another alert 
is generated. We are in an alert state when an 
alert has been issued and we have not seen data 
that is not trigger data. As soon as non-trigger 
data is encountered, the alert state variable 
ALMEAN is zeroed.  

 
The SENS parameter is used in 2 tests which are 
applied to the data.  Note although the algorithm is 
symmetric for bandwidth rises as well as drops, we 
only consider drops at this point. 
• QTRIGGER – selects whether a data point 

should be put into the history buffer or the 
trigger buffer. 
QTRIGGER = TRUE if: 
Datum <= HISTMEAN – SENS*HISTSD 
Otherwise QTRIGGER = FALSE 

• QOUTLIER – evaluates the datum to see if it is 
so far off the rest of the data that is should be 
considered an anomaly and not included in the 
mean and standard deviation calculations. 
 

QOUTLIER = TRUE if: 
DATUM>=HISTMEAN+2*SENS*HISTSD  
Otherwise QOUTLIER = FALSE.  
 

HISTBUF is primed and HISTMEAN and HISTSD 
are calculated. The analysis loop uses the following 
logic to process the remainder of the data. 
1. TOP OF LOOP – Read in the next data point 
2. If it is <= 0 (invalid data check), skip it and go to 

TOP OF LOOP 
3. Is it a TRIGGER value? NO:  

• Is it an OUTLIER? – NO: Add it to 
HISTBUF and recalculate HISTMEAN and 
HISTSD 

• Is it an OUTLIER? – YES: ignore the data 
point 

• In either case, drop the oldest value from 
TRIGBUF so that we age out the trigger 
buffer data in case the bandwidth drop under 
examination terminates. 

• If TRIGBUF is empty, ALMEAN=0. That 
is, terminate any existing alert state. 

• Go to TOP OF LOOP 
4. Is it a TRIGGER value? – YES 

• Add it to TRIGBUF 
• Is TRIGBUF full? NO: go to TOP OF 

LOOP 
5. TRIGBUF is full: Check for an  ALERT  

• Calculate the mean (TRMEAN) of the data 
in TRIGBUF 

• Calculate the percent change from 
HISTMEAN:  

• %change =  
            (HISTMEAN-TRMEAN) /HISTMEAN 
• If %change < THRESH, remove the oldest 

value from TRIGBUF (This is not put into 
HISTBUF, because if the drop is gradual, 
we may not detect the drop). Go to TOP OF 
LOOP. 

• If %change > THRESH, and we are NOT in 
an alert state (ALMEAN=0), issue the alert, 
load TRIGBUF into HISTBUF, and 
recalculate HISTMEAN and HISTSD. Save 
TRMEAN into ALMEAN so that we know 
we are in an alert state. Go to TOP OF 
LOOP. 

• If  %change > THRESH, and we ARE in an 
alert state, calculate  

               %trchange= 
       (ALMEAN-TRMEAN)/ALMEAN 
If %trchange > THRESH (we have dropped 
more than the major threshold again), issue 
another alert, load TRIGBUF into 
HISTBUF, and recalculate HISTMEAN and 
HISTSD. Save the TRMEAN in ALMEAN 
so we know the new alert state. Go to TOP 
OF LOOP. 



COMMENTARY AND EXAMPLES 
 
If there are breaks in the data, they are ignored, and 
the analysis continues.   
 
Let’s look at how the sensitivity, threshold, and 
trigger buffer affect the algorithm. 
 
Given reasonable values for the sensitivity and 
threshold, the trigger buffer length has the most 
dramatic effect on the frequency of alerts.  It 
determines the amount of time bandwidth must be 
depressed in order to check for an alert.  In Figures 1 
& 2, we can see the effect of trigger buffer length. In 
the figures, the asterisks on the top axis indicate that 
an alert occurred at that point in time.  
 
In Figure 1, the TRIGDUR = 30, that is, since the 
data points are 1 minute apart, the bandwidth must be 
depressed for 30 minutes before an alert is issued. 
 
 

 
 
Figure 1: Trigger buffer length is 30 – one alert 
 
In Figure 2, the trigger buffer length is 10, and so we 
have more alerts since the amount of time that the 
bandwidth must be depressed is less. 
 

 
 
Figure 2: Trigger buffer length is 10 – nine alerts 

The sensitivity controls how far off the mean a data 
value must be to be entered into the trigger buffer. 
Although the sensitivity is mitigated by the trigger 
buffer length, as the sensitivity increases, the number 
of alerts often increases, as only the values 
representing the more dramatic drops are put in the 
trigger buffer, and hence the threshold of change is 
reached more often.   

 The threshold is the percent change from the norm or 
previous alert that is required before an alert is 
issued.  40% has been chosen here for the threshold.  
The larger the threshold, the fewer the alerts, 
however it needs to be set to represent a point of 

reasonable concern over a range of bandwidth values. 
A threshold of 10% for a gigabit link, or a hundred 
megabit link might be passed simply because of an 
increase of the cross traffic.  This can  happen 
frequently. We are only concerned about being 
alerted  for dramatic bandwidth changes that indicate 
the possibility of potential throughput problems on a 
link. We would like to know before the throughput 
drops 50%-60%, and thus chose 40% as the 
threshold. 

While initially implementing the algorithm of [4] 
(which was applied to ping RTTs) to analyze our 
available bandwidth drops, we discovered that 
various characteristics in our available bandwidth 
data required many changes to account for the wide 
variability in the data.  The algorithm described in 
[4], uses the variance to separate “trigger” and 
“outliers”.  The large variability in our data made use 
of the variance impractical.   

Another change we made was a result of our 
observations that bandwidth can drop gradually over 
a long period of time. Data that may be flushed from 
the trigger buffer when a full trigger buffer is not an 
alert can gradually lower the mean of the history 
buffer, if it is added to the history buffer. Therefore, 
data dropped from the trigger buffer as an 
examination shows that no alert is warranted, is 
discarded.  
 
TRACEROUTE ANALYSIS 
 
We currently utilize the standard Linux traceroute 
with a 2 second timeout, 1 probe per hop, a 
maximum hop count of 30 hops, and start the 
traceroute after leaving the SLAC border. For each 
destination host we study the performance of 
traceroute with UDP and ICMP probes and choose 
the most appropriate probe protocol (i.e. resolves the 
route before the 30 hop maximum and/or minimizes 
the number of non-responding routers). By default 
we use UDP probes. 
 
The goal of the traceroute analysis is to categorize the 
traceroute information and detect “significant route 
changes” between the current traceroute and one 
taken previously. The algorithm for categorizing the 
traceroutes is conceptually as follows. For each hop 
of a traceroute we compare the router information (IP 
address) against the router information for the same 
hop for the previous traceroute measurement for a 
given path. If the router for this hop did “not 
respond” (i.e. the traceroute reported an asterisk (*)) 
for either this or the previous traceroute then the Hop 
Change Information (HCI) for this hop is noted as 
“unknown”. If the router responded (i.e. provided an 



IP address) for this hop, for both this and the previous 
traceroute, then the IP addresses reported for this hop 
are compared:  
• If they are identical then the HCI is marked as 

“no change”.  
• If the addresses are not identical then: 

o if they only differ in the last octet then 
the HCI is marked as “minor change 
same 3rd octet”. 

o if the addresses are in the same 
Autonomous System (AS) then the HCI 
is marked as “minor change same AS”.   

• If neither “minor change same 3rdx octet” nor 
“minor change same AS” are identified then the 
HCI is marked as a “significant route change”. 
We also sub-classify the “significant route 
change” into whether or not the change involves 
one (“minor significant route change”) or more 
hops (“major significant route change”). 

When all the hops have been compared between the 
current and previous traceroutes, then precedence is 
given to any “significant route change”, followed by 
“minor change same AS”, “minor change same 
subnet”, “unknown”, and “no change” in that order.  

In addition, unless the HCI is set to “no change” we 
also note whether the current traceroute did not 
terminate until the “30 hop” limit was reached and/or 
whether the destination is pingable. Since the 
destination hosts are chosen to be normally pingable, 
a non pingable destination usually means the 
destination host or site is not reachable, whereas a 
“30 hop” pingable destination is probably hidden 
behind a firewall that blocks traceroute probes or 
responses.   

In all cases except “significant route changes” we 
also note whether an ICMP checksum error was 
reported in a current traceroute.  

One other case that is noted is the traceroute 
reporting “host unknown” which probably means the 
host name is currently not resolvable. 

DISPLAYING TRACEROUTE 
INFORMATION 
 
The information is displayed in a table representing 
the routes for a single day (Figure 3). The table 
columns represent the hour of the day and each row 
represents a remote destination host. The rows are 
labeled  with anonymized  host names and URL links  

 

Figure 3: Section of a Traceroute Summary Table  

are provided to: an HTML table of the day’s routes, a 
text table of the routes, route number information (i.e. 
the route number, the associated route and the time 
last seen), the raw traceroute data, plots of the 
available bandwidth alert analysis information and 
the ABwE dynamic bandwidth capacity, cross traffic 
and available bandwidth. The columns are labeled 
with the hour of the day. 

For each non “significant route change” the cells of 
the table contain a single colored character for each 
traceroute measured in that hour. The single character 
represents the HCI or “30 hop” route categorization 
(i.e. period = “no change”, asterisk = “not respond”, 
colon = “minor change same 3rd octet”, a=”minor 
change same AS”, vertical bar = “30 hop”, 
exclamation mark = “host unknown”) and the 
characters are colored orange if an ICMP checksum 
is noted, red if the destination host is not pingable, 
and black otherwise. The use of a single character to 
display the route categories allows a very dense table 
to be displayed which in turn facilitates visually 
scanning for correlated route changes occurring at 
particular times for multiple hosts and/or hosts that 
are experiencing multiple route changes in a day. 

For each “significant route change” the route number 
is displayed colored red if changes were noted in 
more than one hop, and orange otherwise. 

 If an available bandwidth alert was noted for a 
destination in an hour then that cell’s background is 
colored to indicate the existence of the alert. 

Each row and each column also contains a check box 
(Figure 4) that can be selected to submit requests for 
either a topology map for the selected hosts and 
times, or the routes together with their router AS 
information.  
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Figure 4: Traceroute display selected by check 
boxes on Traceroute Summary Table 

When the “Submit topology request” is clicked, the 
traceroute information is turned into a graphical 
display.  

The web page also includes documentation and 
provides access to the reverse traceroutes, and 
historical data.  

IN SUMMARY 

We have described analysis techniques for examining 
bandwidth and traceroute changes independently. 
Our intent however, is to marry the two into displays 
which integrate the information available from both 

of them. One such display is Figure 5 in which solid 
vertical lines indicate when traceroute changes occur, 
and the graphic displays the available bandwidth and 
alerts due to significant changes in the available 
bandwidth. Another is shown is Figure 6, where the 
primary display is the traceroute summary page, and 
the bandwidth changes are indicated by coloring the 
hour boxes for a node where changes have been 
detected. Note the “node1.cacr.caltech.edu” line, and, 
look again at Figure 2. 

FUTURE WORK 
 
Areas for future exploration include further study and 
development of the bandwidth change algorithm 
(including accommodating diurnal and other periodic 
changes), and providing a better understanding of 
how to set the algorithm’s parameters to meet 
required needs. We intend to apply the bandwidth 
change algorithm to other data including ABwE RTT 
and ping RTT estimates, and extend the tools to 
analyze AMP [5] data. We are also exploring a more 
efficient traceroute that does the probing in parallel.  

Other work will include implementing the bandwidth 
change detection algorithm in a symmetric fashion so 
that we can detect rises in throughput and thus be 
able to quantify the time span of varying throughput 
levels. 

 

 
 
Figure 5: Traceroute changes Integrated with Available Bandwidth Analysis and Display 
 

 
 
Figure 6: Bandwidth Changes integrated with the Traceroute Summary Display 
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