
Experiences in Traceroute and Available Bandwidth Change Analysis1
Connie Logg and Les Cottrell

Stanford Linear Accelerator Center

ABSTRACT

SLAC has been studying end-to-end WAN bandwidth availability and achievability for 2.5 years
via IEPM-BW1. IEPM-BW performs network intensive tests every 90 minutes. Based on that
experience we have also developed a light weight available bandwidth (ABWE2) measurement tool
which can make a measurement within a second. We are now extending this to a WAN
measurement and detection system (IEPM-LITE) aimed at troubleshooting network performance
problems. IEPM-LITE uses ping, forward and reverse traceroutes, and ABWE sensors to monitor,
in real-time, changes in available bandwidth and routes to and from target hosts. This paper
discusses the experiences, techniques and algorithms used to detect and report on significant
traceroute and available bandwidth changes. The ultimate aim is to develop a lightweight WAN
network performance monitoring system that can detect in real time significant changes and
generate alerts.

 keywords: bandwidth, availability, problem detection, traceroutes, real-time alerts, WAN, network
monitoring

INTRODUCTION

Modern day High Energy Nuclear Physics (HENP)
research and analysis requires that large volumes of
data be effectively distributed to collaborators around
the world. In September 2001, SLAC embarked on a
WAN performance testing and analysis project
known as IEPM-BW[1], to evaluate and monitor the
performance of the paths to its collaborators. The
IEPM-BW system is network intensive in its
measurements. This was necessary in order to
measure the performance in a way that mimicked the
large volume data transfers. Concurrently, a
lightweight, non-intensive bandwidth measurement
tool (ABwE[2]) was being developed. The intent is
that we be able to perform the same testing and
analysis using non-network intensive tools, and on a
more frequent basis to present real-time feedback on
critical network links.

SLAC has been active in WAN monitoring for
several years. One of the drawbacks of all this
monitoring is that there are thousands of reports and
graphs generated daily, which no one has time to
look at. Critical performance changes often go
unnoticed. For example, in August 2003[3], we did
not notice until about a month later that IPERF
throughput from SLAC to CALTECH had dropped
dramatically. Once this drop was noticed and
investigated, it was fixed in about 4 hours. If we had

1 This work is supported by U.S. DOE Contract No.
DE-AC03-76SF00515

 been alerted to this change, it could have been
detected much faster, and fixed in a timely fashion.

The system we are now testing is referred to as
IEPM-LITE. It performs pings, forward and reverse
traceroutes, and frequent light-weight available
bandwidth measurements using ABwE [2]. This
paper discusses the techniques for bandwidth change
detection and traceroute analysis which we are
currently developing to generate alerts, and when
possible, correlate available bandwidth changes to
route changes. Ping and traceroute information is
gathered every 10 minutes. Available bandwidth
measurements are made every minute.

AVAILABLE BANDWIDTH CHANGE
DETECTION

The principle behind this algorithm is evolved from
work by NLANR [4]. It involves buffering the time
sequence ABwE data into two buffers: a history
buffer (HISTBUF) for base-lining, and when a datum
meets specific requirements, into a trigger buffer
(TRIGBUF). Each buffer has a maximum number of
entries parameter, HISTMAX and TRIGDUR
respectively. TRIGDUR determines how long the
bandwidth change must exist before an analysis of its
data is performed to see if we have encountered an
alert condition. Note that since the ABwE data is
taken once a minute, TRIGDUR is the number of

minutes (assuming no data is lost) that a drop must
exist before an alert is raised. The history buffer also
has a HISTMIN parameter, which is only used at
startup to “prime” the history buffer. HISTMIN is the
number of data points which are added to the history
buffer when the analysis starts up.

Once HISTBUF is primed with HISTMIN data
points, we are ready to enter the data processing loop.
The mean (HISTMEAN) and standard deviation
(HISTSD) of the HISTBUF data are calculated, and
used as a reference in the analysis.

There are several critical parameters which are used
in the analysis and alert generation. Currently these
must be manually tuned, as they are dependent on the
size of change and length of time a bandwidth
depression is to be present before an alert is
generated. At some point in the future, we hope to be
able to auto-configure some of these parameters by
pre-examining the data. Others such as the buffer
lengths will probably depend on the users’
requirements. For example how long must a change
be sustained (TRIGDUR) before it is considered
significant depends on how long the user wants a
drop to be sustained before he is notified.
• Sensitivity (SENS) – the number of standard

deviations beyond the HISTBUF mean which a
datum must lie to be considered a trigger value.
The default at this time is 2, however we are
evaluating how to dynamically set this as a
function of HISTMEAN and HISTSD.

• Threshold (THRESH) – is the % difference
between the HISTBUF mean and the TRIGBUF
mean which must be passed for an alert to be
generated. Once we are in an alert state, this
threshold must again be met before another alert
is generated. We are in an alert state when an
alert has been issued and we have not seen data
that is not trigger data. As soon as non-trigger
data is encountered, the alert state variable
ALMEAN is zeroed.

The SENS parameter is used in 2 tests which are
applied to the data. Note although the algorithm is
symmetric for bandwidth rises as well as drops, we
only consider drops at this point.
• QTRIGGER – selects whether a data point

should be put into the history buffer or the
trigger buffer.
QTRIGGER = TRUE if:
Datum <= HISTMEAN – SENS*HISTSD
Otherwise QTRIGGER = FALSE

• QOUTLIER – evaluates the datum to see if it is
so far off the rest of the data that is should be
considered an anomaly and not included in the
mean and standard deviation calculations.

QOUTLIER = TRUE if:
DATUM>=HISTMEAN+2*SENS*HISTSD
Otherwise QOUTLIER = FALSE.

HISTBUF is primed and HISTMEAN and HISTSD
are calculated. The analysis loop uses the following
logic to process the remainder of the data.
1. TOP OF LOOP – Read in the next data point
2. If it is <= 0 (invalid data check), skip it and go to

TOP OF LOOP
3. Is it a TRIGGER value? NO:

• Is it an OUTLIER? – NO: Add it to
HISTBUF and recalculate HISTMEAN and
HISTSD

• Is it an OUTLIER? – YES: ignore the data
point

• In either case, drop the oldest value from
TRIGBUF so that we age out the trigger
buffer data in case the bandwidth drop under
examination terminates.

• If TRIGBUF is empty, ALMEAN=0. That
is, terminate any existing alert state.

• Go to TOP OF LOOP
4. Is it a TRIGGER value? – YES

• Add it to TRIGBUF
• Is TRIGBUF full? NO: go to TOP OF

LOOP
5. TRIGBUF is full: Check for an ALERT

• Calculate the mean (TRMEAN) of the data
in TRIGBUF

• Calculate the percent change from
HISTMEAN:

• %change =
 (HISTMEAN-TRMEAN) /HISTMEAN
• If %change < THRESH, remove the oldest

value from TRIGBUF (This is not put into
HISTBUF, because if the drop is gradual,
we may not detect the drop). Go to TOP OF
LOOP.

• If %change > THRESH, and we are NOT in
an alert state (ALMEAN=0), issue the alert,
load TRIGBUF into HISTBUF, and
recalculate HISTMEAN and HISTSD. Save
TRMEAN into ALMEAN so that we know
we are in an alert state. Go to TOP OF
LOOP.

• If %change > THRESH, and we ARE in an
alert state, calculate

 %trchange=
 (ALMEAN-TRMEAN)/ALMEAN
If %trchange > THRESH (we have dropped
more than the major threshold again), issue
another alert, load TRIGBUF into
HISTBUF, and recalculate HISTMEAN and
HISTSD. Save the TRMEAN in ALMEAN
so we know the new alert state. Go to TOP
OF LOOP.

COMMENTARY AND EXAMPLES

If there are breaks in the data, they are ignored, and
the analysis continues.

Let’s look at how the sensitivity, threshold, and
trigger buffer affect the algorithm.

Given reasonable values for the sensitivity and
threshold, the trigger buffer length has the most
dramatic effect on the frequency of alerts. It
determines the amount of time bandwidth must be
depressed in order to check for an alert. In Figures 1
& 2, we can see the effect of trigger buffer length. In
the figures, the asterisks on the top axis indicate that
an alert occurred at that point in time.

In Figure 1, the TRIGDUR = 30, that is, since the
data points are 1 minute apart, the bandwidth must be
depressed for 30 minutes before an alert is issued.

Figure 1: Trigger buffer length is 30 – one alert

In Figure 2, the trigger buffer length is 10, and so we
have more alerts since the amount of time that the
bandwidth must be depressed is less.

Figure 2: Trigger buffer length is 10 – nine alerts

The sensitivity controls how far off the mean a data
value must be to be entered into the trigger buffer.
Although the sensitivity is mitigated by the trigger
buffer length, as the sensitivity increases, the number
of alerts often increases, as only the values
representing the more dramatic drops are put in the
trigger buffer, and hence the threshold of change is
reached more often.

 The threshold is the percent change from the norm or
previous alert that is required before an alert is
issued. 40% has been chosen here for the threshold.
The larger the threshold, the fewer the alerts,
however it needs to be set to represent a point of

reasonable concern over a range of bandwidth values.
A threshold of 10% for a gigabit link, or a hundred
megabit link might be passed simply because of an
increase of the cross traffic. This can happen
frequently. We are only concerned about being
alerted for dramatic bandwidth changes that indicate
the possibility of potential throughput problems on a
link. We would like to know before the throughput
drops 50%-60%, and thus chose 40% as the
threshold.

While initially implementing the algorithm of [4]
(which was applied to ping RTTs) to analyze our
available bandwidth drops, we discovered that
various characteristics in our available bandwidth
data required many changes to account for the wide
variability in the data. The algorithm described in
[4], uses the variance to separate “trigger” and
“outliers”. The large variability in our data made use
of the variance impractical.

Another change we made was a result of our
observations that bandwidth can drop gradually over
a long period of time. Data that may be flushed from
the trigger buffer when a full trigger buffer is not an
alert can gradually lower the mean of the history
buffer, if it is added to the history buffer. Therefore,
data dropped from the trigger buffer as an
examination shows that no alert is warranted, is
discarded.

TRACEROUTE ANALYSIS

We currently utilize the standard Linux traceroute
with a 2 second timeout, 1 probe per hop, a
maximum hop count of 30 hops, and start the
traceroute after leaving the SLAC border. For each
destination host we study the performance of
traceroute with UDP and ICMP probes and choose
the most appropriate probe protocol (i.e. resolves the
route before the 30 hop maximum and/or minimizes
the number of non-responding routers). By default
we use UDP probes.

The goal of the traceroute analysis is to categorize the
traceroute information and detect “significant route
changes” between the current traceroute and one
taken previously. The algorithm for categorizing the
traceroutes is conceptually as follows. For each hop
of a traceroute we compare the router information (IP
address) against the router information for the same
hop for the previous traceroute measurement for a
given path. If the router for this hop did “not
respond” (i.e. the traceroute reported an asterisk (*))
for either this or the previous traceroute then the Hop
Change Information (HCI) for this hop is noted as
“unknown”. If the router responded (i.e. provided an

IP address) for this hop, for both this and the previous
traceroute, then the IP addresses reported for this hop
are compared:
• If they are identical then the HCI is marked as

“no change”.
• If the addresses are not identical then:

o if they only differ in the last octet then
the HCI is marked as “minor change
same 3rd octet”.

o if the addresses are in the same
Autonomous System (AS) then the HCI
is marked as “minor change same AS”.

• If neither “minor change same 3rdx octet” nor
“minor change same AS” are identified then the
HCI is marked as a “significant route change”.
We also sub-classify the “significant route
change” into whether or not the change involves
one (“minor significant route change”) or more
hops (“major significant route change”).

When all the hops have been compared between the
current and previous traceroutes, then precedence is
given to any “significant route change”, followed by
“minor change same AS”, “minor change same
subnet”, “unknown”, and “no change” in that order.

In addition, unless the HCI is set to “no change” we
also note whether the current traceroute did not
terminate until the “30 hop” limit was reached and/or
whether the destination is pingable. Since the
destination hosts are chosen to be normally pingable,
a non pingable destination usually means the
destination host or site is not reachable, whereas a
“30 hop” pingable destination is probably hidden
behind a firewall that blocks traceroute probes or
responses.

In all cases except “significant route changes” we
also note whether an ICMP checksum error was
reported in a current traceroute.

One other case that is noted is the traceroute
reporting “host unknown” which probably means the
host name is currently not resolvable.

DISPLAYING TRACEROUTE
INFORMATION

The information is displayed in a table representing
the routes for a single day (Figure 3). The table
columns represent the hour of the day and each row
represents a remote destination host. The rows are
labeled with anonymized host names and URL links

Figure 3: Section of a Traceroute Summary Table

are provided to: an HTML table of the day’s routes, a
text table of the routes, route number information (i.e.
the route number, the associated route and the time
last seen), the raw traceroute data, plots of the
available bandwidth alert analysis information and
the ABwE dynamic bandwidth capacity, cross traffic
and available bandwidth. The columns are labeled
with the hour of the day.

For each non “significant route change” the cells of
the table contain a single colored character for each
traceroute measured in that hour. The single character
represents the HCI or “30 hop” route categorization
(i.e. period = “no change”, asterisk = “not respond”,
colon = “minor change same 3rd octet”, a=”minor
change same AS”, vertical bar = “30 hop”,
exclamation mark = “host unknown”) and the
characters are colored orange if an ICMP checksum
is noted, red if the destination host is not pingable,
and black otherwise. The use of a single character to
display the route categories allows a very dense table
to be displayed which in turn facilitates visually
scanning for correlated route changes occurring at
particular times for multiple hosts and/or hosts that
are experiencing multiple route changes in a day.

For each “significant route change” the route number
is displayed colored red if changes were noted in
more than one hop, and orange otherwise.

 If an available bandwidth alert was noted for a
destination in an hour then that cell’s background is
colored to indicate the existence of the alert.

Each row and each column also contains a check box
(Figure 4) that can be selected to submit requests for
either a topology map for the selected hosts and
times, or the routes together with their router AS
information.

History navigation

 Multiple route
changes
 (due to GEANT),
later restored to
original route

Available bandwidth
Raw traceroute logs for debugging

Textual summary of traceroutes for email to ISP
Description of route numbers with date last seen

User readable (web table) routes for this host for this day

Route # at start of day,
gives idea of root stability

Mouseover for hops & RTT

Figure 4: Traceroute display selected by check
boxes on Traceroute Summary Table

When the “Submit topology request” is clicked, the
traceroute information is turned into a graphical
display.

The web page also includes documentation and
provides access to the reverse traceroutes, and
historical data.

IN SUMMARY

We have described analysis techniques for examining
bandwidth and traceroute changes independently.
Our intent however, is to marry the two into displays
which integrate the information available from both

of them. One such display is Figure 5 in which solid
vertical lines indicate when traceroute changes occur,
and the graphic displays the available bandwidth and
alerts due to significant changes in the available
bandwidth. Another is shown is Figure 6, where the
primary display is the traceroute summary page, and
the bandwidth changes are indicated by coloring the
hour boxes for a node where changes have been
detected. Note the “node1.cacr.caltech.edu” line, and,
look again at Figure 2.

FUTURE WORK

Areas for future exploration include further study and
development of the bandwidth change algorithm
(including accommodating diurnal and other periodic
changes), and providing a better understanding of
how to set the algorithm’s parameters to meet
required needs. We intend to apply the bandwidth
change algorithm to other data including ABwE RTT
and ping RTT estimates, and extend the tools to
analyze AMP [5] data. We are also exploring a more
efficient traceroute that does the probing in parallel.

Other work will include implementing the bandwidth
change detection algorithm in a symmetric fashion so
that we can detect rises in throughput and thus be
able to quantify the time span of varying throughput
levels.

Figure 5: Traceroute changes Integrated with Available Bandwidth Analysis and Display

Figure 6: Bandwidth Changes integrated with the Traceroute Summary Display

DL C
L
R
C

CLRC

IN2P3

CESnet

ESnet

JAnet

GEANT

Nodes colored by ISP
Mouseover shows node names
Click on node to see subroutes
Click on end node to see its path back
Also can get raw traceroutes with AS’

Alternate rt

SLAC

Alternate route

Choose nodes and times and “submit”

REFERENCES:

[1] Experiences and Results from a New High
Performance Network and Application Monitoring
Toolkit, Les Cottrell, Connie Logg and I-Heng Mei,
SLAC-PUB-9641, presented at PAM 2003.
[2] ABwE: A practical Approach to Available
Bandwidth Estimation, Jiri Navratil and Les Cottrell,
SLAC-PUB-9622, presented at PAM 2003.
[3] Case study of August 2003 bandwidth drop
between SLAC and CALTECH:
http://www.slac.stanford.edu/grp/scs/net/case/caltech
[4] Automated Event Detection for Active
Measurement Systems, A. J. McGregor and H-W.
Braun, Passive and Active Measurements 2001.
http://byerley.cs.waikato.ac.nz/~tonym/papers/event.
pdf
[5] The NLANR NAI Network Analysis Infrastructure,
McGregor A., Braun H-W. and Brown J. IEEE
Communication Magazine special issue on network
measurement, pp122-128, May 2000.

http://www.slac.stanford.edu/grp/scs/net/case/caltech
http://byerley.cs.waikato.ac.nz/~tonym/papers/event.pdf
http://byerley.cs.waikato.ac.nz/~tonym/papers/event.pdf

