Extended Abstract for PFLDnet 2005

TCP Fairness Characterization and Evaluation – Comparison of different variant of TCP with respect to transient and steady state traffic and cross-traffic
R. Les Cottrell, Ruchi Gupta

SLAC

2575 Sand Hill Road
Menlo Park, CA 94025

{Cottrell, ruchig} (at) slac.stanford.edu
Introduction:

The existing TCP protocol (Reno TCP) does not perform well in different type of scenarios due to its AIMD congestion control algorithm. Through this paper we intend to characterize and evaluate the Fairness of different TCP stacks (Scalable, HSTCP, HTCP, Fast TCP, Reno, BICTCP, HSTCP-LP and LTCP) and different transport protocol namely UDT, with respect to both the transient traffic (entry and leaving of different streams) and the steady state traffic on production Academic and Research networks.
Experimental Setup:
The experimental setup on the sender side was with machines running GNU/Linux 2.4.22 through GNU/Linux 2.4.25 kernels, patched with advanced TCP stacks
. On the receiver’s side a standard Linux kernel without any patch was used. On the sender side we had 2 machines one running ping and the other machine ran iperf with the advanced TCP stack. We ran iperf with a report interval of 1 second. With iperf we specify the maximum window size the congestion window can reach as 16384k. For the receiver side we have chosen 3 different nodes depending on the Round Trip Time (RTT) seen from SLAC, small (Caltech
), medium (UFL) and large (CERN
).
Result and Analysis:

We ran four TCP flows, one after the other each separated by an interval of 2 minutes. The flows leave in a LIFO (Last In First Out order). As shown below in Figure 1
, we divided the experiment into seven regions, and statistics are collected for each of the seven regions as well as per individual flows. Aggregate throughput values are also collected for each of the regions as well as for the overall test.
[image: image1.png]Regon 1 Fegiond. Region7.

Figure 1: Seven Flow regions in the Experiment
Some parameters in the /etc/sysctl.conf file for the sender and receiver
. These values are used as default unless specified otherwise.
Reno: TCP Reno implements the AIMD (Additive Increase Multiplicative Decrease) for congestion avoidance. It halves the cwnd for every window of data containing a packet drop and increases cwnd by one packet per packet of data acknowledged.
HSTCP: This is also an extension to Reno TCP. It reduces cwnd by a factor less than 0.5
on a packet loss. Its behavior is similar to Reno for small values of cwnd and it is more aggressive in increasing the packets for a larger value of cwnd indicated by a table [1].
HTCP: This also similar to HSTCP but it uses a heterogeneous AMID algorithm instead of using a table [2].
Scalable TCP: This is based on Reno TCP by changing the additive increase to exponential increase and the multiplicative decrease factor is reduced to 0.125 [3].
Fast TCP: This is based on Vegas TCP instead of Reno TCP. It uses both queuing delay and packet loss as congestion measure [4].
LTCP: This employs a layering technique of congestion control at the sender side and it increases the window size after the congestion faster than Reno also it also implements a less aggressive decrease in cwnd after a packet drop [5].
HSTCP-LP: This is based on TCP-LP and aims to utilize only the excess network bandwidth left unused by other flows, by giving priority to non-HSTCP-LP traffic [6].
BICTCP: In this protocol for small cwnd values a binary search increase is used and for larger congestion window additive increase with large increments is used. This is done to ensure linear RTT fairness and scalability [7].
UDT: This is the UDP based transport protocol, developed to overcome the efficiency and fairness of the existing TCP [8]. It is implemented in user space so it works with the standard production installed TCP stack
Table 1, shows aggregate (for all seven flows) values for average throughput, standard deviation, stability, minimum and maximum fairness index, % CPU utilization and MHz/Mbps for the path to CERN
. Detailed Stability and fairness indices for each of the 7 regions is shown in Table 2.

In Figure 2, the graph of achievable throughput per flow for Reno TCP is shown. The flows are colored according to the Figure 1 color scheme and they enter and leave the experiment at an interval of 2 minutes each. We see that whenever a flow enters or leaves the network the average bandwidth changes due to bandwidth distribution among different flows. For a stable and fair protocol we would want that whenever a flow leaves the network the remaining flows get back to almost their original bandwidth. Similarly whenever a new flow enters the network the bandwidth should be fairly distributed among all the flows.
Average = µ, Standard Deviation = σ, Stability = σ / µ, Fairness (F) = [image: image2.png]

	TCP Stack
	Average (
	SD (σ)
	Stability

(σ/µ)
	Fairness

Min-Max

	CPU %

utilization

	MHz/
Mbps

	Reno
	248.40
	163.25
	0.66
	0.59-1.0
	0.02
	0.63

	HSTCP
	255.06
	187.99
	0.74
	0.79-1.0
	0.03
	0.90

	HTCP
	402.08
	113.10
	0.28
	0.99-1.0
	0.03
	0.65

	Scalable
	423.90
	115.88
	0.27
	0.82-1.0
	0.03
	0.64

	Fast-TCP
	335.29
	110.30
	0.33
	0.58-1.0
	0.03
	0.67

	LTCP
	350.52
	120.47
	0.34
	0.56-1.0
	0.02
	0.67

	HSTCP-LP
	228.87
	114.62
	0.50
	0.64-1.0
	0.02
	0.65

	BICTCP
	412.34
	117.50
	0.28
	0.98-1.0
	0.03
	0.71

	UDT
	474.79
	100.28
	0.48
	0.78-1.0
	1.00
	37.4

Table 1: Aggregate Values for all the 7 Regions
[image: image3.png]throughput CHeps)

1000

s00

con

400

200

E

and b us

Tine using RENO SLAC =5 cern

100

200

300

Pt measured by ping (ns)

400 ses oo
Time (seconds)

iperil
iperiz
iperis
iperid
sgaregate

s00

o0

con

son

400

300

200

100

o0

soa son

1000

RTT (ns>

Figure 2: Bandwidth and RTT vs. time for Reno TCP (SLAC-CERN)
Flow 1 is represented by RED, Flow 2 by GREEN, Flow 3 by BLUE & Flow 4 by PINK
	TCP stack
	Region1
	Region 2
	Region 3
	Region 4
	Region 5
	Region 6
	Region 7

	Reno
	0.70/1.0
	0.46/0.67
	0.24/0.59
	0.49/0.85
	0.46/0.98
	0.23/0.99
	0.40/1.0

	HSTCP
	0.13/1.0
	0.30/0.95
	0.24/0.97
	0.55/0.79
	1.02/0.99
	0.63/1.0
	0.40/1.0

	HTCP
	0.33/1.0
	0.26/1.0
	0.30/0.99
	0.24/0.99
	0.20/1.0
	0.12/1.0
	0.40/1.0

	Scalable
	0.13/1.0
	0.36/0.99
	0.35/0.82
	0.17/0.99
	0.21/1.0
	0.36/0.99
	0.18/1.0

	Fast-TCP
	0.61/1.0
	0.36/0.62
	0.28/0.74
	0.16/0.80
	0.30/0.73
	0.23/0.58
	0.38/1.0

	LTCP
	0.67/1.0
	0.18/0.99
	0.33/0.82
	0.31/0.76
	0.25/0.56
	0.19/0.97
	0.15/1.0

	HSTCP-LP
	0.12/1.0
	0.28/0.64
	0.23/0.70
	0.26/0.75
	0.21/0.71
	0.69/0.99
	0.35/1.0

	BICTCP
	0.35/1.0
	0.30/0.98
	0.14/0.98
	0.17/0.98
	0.12/0.99
	0.19/0.98
	0.34/1.0

	UDT
	0.25/1.0
	0.30/0.95
	0.36/0.99
	0.71/0.84
	0.61/0.78
	0.28/0.98
	0.21/1.0

Table 2: Stability / Fairness for all the seven regions for (SLAC-CERN) experiment.
Future Work:
For the final paper the next set of experiment will entail the analysis of cross-traffic measurement. In this setup we will have a third machine on the sender side which will run the Advanced TCP stack for cross-traffic. We will do some detail analysis on the effect of cross-traffic on bandwidth and RTT in particular. We will also make in-depth analysis of UDTv2.0, which supports user defined congestion control algorithms and compare its performance with respect to the Advanced TCP stacks. Results from the other two nodes namely Caltech and UFL will also be presented in the final paper
.
References:
[1] S. Floyd. HighSpeed TCP for large congestion windows. IETF Internet Draft, draft-.oydhighspeed-02.txt, February 2003.

[2] R. Shorten, D. Leith, J. Foy, and R. Kildu. Analysis and design of congestion control in synchronized communication networks, 2003.
[3] T. Kelly. Scalable TCP. Improving performance in highspeed wide area networks, 2002.

[4] C. Jin, D. Wei, S.H. Low, G. Bushmaster, J. Bunn, D.H. Choe, R. L. Cottrell, J.C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, and S. Singh. Fast TCP – from theory to experiments. PFLDnet 2003, Geneva, February 2003.

[5] S. Bhandarkar, S. Jain and A.L.N. Reddy. LTCP: A Layering Technique for Improving the Performance on TCP in Highspeed Networks. (**?? IETF draft expired)
[6] A. Kuzmanovic and E.W. Knightly. TCP-LP: A distributed algorithm for low priority data transfer. In IEEE INFOCOM, San Francisco, April 2003.
[7] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control (BIC) for Fast, Long-Distance Networks, INFOCOM 2004.

[8] Y. Gu and R.L. Grossman. UDT: A UDP based Transport Protocol. (**?? Where)
[9] H. Bullot, R. L. Cottrell, and R. H. Jones. Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks, PFLDnet 2004
.
Appendix A:

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�Is this the recommended format for the extended abstract?

�Did you apply the Linux patches recommended by the Hamilton folks?

�Might be good to include the rough RTTs here.

�You may need to schematically show or describe the routes and AS’s involved for all three paths.

�Needs discussion of other evaluations, both by simulation, emulation, production and test networks.

�Can we add the durations of each region?

�Looks like you still intend to add something here.

�What is the factor is it 18% when the window is large (>n packets)

�What about the other paths, are they to come later or what?

�I think one needs a feel for the confidence you have in these numbers, i.e. something like an error expressed as +-.

�For this to have any meaning you need to define whether ist is the source or receiver utiloization and also what the cpu type and GHz was.

�What is new/added to our understanding in this paper compared to previous papers?

�I do not see a reference to this.

