

Abstract—Standard TCP (Reno TCP) does not per form well

on fast long distance networks, due to its AIMD congestion
control algorithm. In this paper we consider the effectiveness of
var ious alternatives, in particular with respect to their
applicability to a production environment. We then
character ize and evaluate the achievable throughput, stability
and intra-protocol fairness of different TCP stacks (Scalable,
HSTCP, HTCP, Fast TCP, Reno, BICTCP, HSTCP-LP and
LTCP) and a UDP based application level transpor t protocol
(UDTv2) on both production and testbed networks. The
character ization is made with respect to both the transient
traffic (entry and exit of different streams) and the steady state
traffic on production Academic and Research networks, using
paths with RTTs differ ing by a factor of 10. We also repor t on
measurements made with 10Gbits/sec NICs with and without
TCP Offload Engines, on 10Gbits/s dedicated paths set up for
SC2004.

Index Terms—TCP, throughput, high-per formance
networking, UDT, TCP Offload Engine

I. INTRODUCTION

IGH Energy Physics (HEP) and other data intensive
sciences have a growing need to share large volumes of

data between computers and data centers distributed
worldwide. Currently most bulk-data is transferred using
applications based on TCP. The limitations of the standard
(New-Reno based [1]) TCP Additive Increase Multiplicative
Decrease (AIMD) algorithm for fast long distance networks
have resulted in users by-passing the limitations by the use
of multiple parallel TCP streams. Simultaneously optimizing
the window size and number of streams is time consuming
and complex and for some paths the optimum can vary
within a few hours.

We have therefore installed and evaluated several new
advanced TCP stacks to see how they compare with New-
Reno based TCP stacks on production Academic and
Research (A&R) networks with Gbits/s capacity paths. All

Manuscript received January 21, 2004. This work was supported in part

by the U.S. DOE Contract No. DE-AC03-76SF00515.
R. L. Cottrell, P. Khandpur and Ruchi Gupta are with the Stanford

Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA
94025 (phone: +1-926-2523; fax: +1-650-926-3329, email: { cottrell,
parakram, ruchig}@slac.stanford.edu).

S. Ansari was with SLAC. He is now with Microsoft.
R. Hughes-Jones is with The Department of Physics and Astronomy,

The University of Manchester, Manchester, England (email: r.hughes-
jones@man.ac.uk).

M. Chen is with Chelsio, 370 San Aleso Avenue, Sunnyvale, CA 94085
(email: mike.chen@chelsio.com)

L. McIntosh and F. Leers are with Sun Microsystems Inc., 9515 Towne
Center Drive, San Diego CA 92121 (email: { larry.mcintosh,
frank.leers} @sun.com).

these stacks require only the sender to be modified. We
excluded using Dynamic Right Sizing [2] since it requires
modifying the receiver hosts which were not under our
control.

For us the important performance features are the
achievable throughput, the support for the protocol (is it easy
to install, is it kept up to date with the latest operating
system releases/patches, is the author responsive etc.), the
stability (i.e. how stable is the throughput as the network
load changes), and the fairness.

The support issues for a production data-intensive science
environment are critical, and may have little to do with the
technical implementation. For example, at SLAC, the
production operating system for most of the data movers is
Solaris while most of today’s advanced TCP protocol stacks
have only been developed for Linux and so are not
applicable. Further it is unclear that the production system
administrators or the security people will want a modified
non-vendor supported TCP stack on a production Internet
connected host. Even if they do, they will probably require
that the TCP stack patches keep pace with the operating
system patches in place at the production site which may not
be a goal for the protocol developer.

Therefore, we are also highly interested in bulk-data
transfer mechanisms that do not require modifying the TCP
stack. This is a major reason why the use of standard TCP
with multiple parallel streams persists. An attractive
alternative that we explore in this paper is to use a UDP
based Data Transfer application such as UDT [3] which
requires no system level changes as it runs entirely in user
space.

Another approach of using large Maximum Transfer Units
(MTUs) of over 1500Bytes has limited applicability except
in testbeds in our case, since it is not an Ethernet standard,
may interfere with some UDP based applications and is thus
not supported on the SLAC Local Area Network (LAN).

Other practical considerations in achieving high
throughput, on 10 Gbits/s testbeds and LANs, include
system limitations such as bus bandwidth and cpu speed.
These become critical as one tries to achieve throughputs of
over 6-7 Gbits/s. Besides configuring to optimize the
interrupt coalescence, the buffer sizes between the Network
Interface Card (NIC) and the kernel, and procuring the
fastest cpus and buses commonly available off the shelf; we
are also interested in evaluating emerging techniques such as
TCP Offload Engines (TOE). This promises to reduce the
cpu utilization for a given transfer rate. However, it currently
restricts one to using the NIC vendor’s distributed TCP stack

Characterization and Evaluation of TCP and
UDP-based Transport on Real Networks

R. Les Cottrell, Saad Ansari, Parakram Khandpur, Ruchi Gupta, Richard Hughes-Jones, Michael
Chen, Larry McIntosh, Frank Leers

H

(usually New-Reno) which may lack the maturity of a host
TCP stack, and also does not have the flexibility of a
modifiable stack such as in Linux.

Finally we are also interested in the new TCP stacks that
are or will be soon be available in standard distributions (in
particular Solaris 10 and Linux 2.6), especially as they
pertain to 10Gbits/s paths.

Section II describes the experimental setups for the A&R
production network measurements and the SC20041
10Gbits/s testbed paths. Section III describes the
methodologies, Section IV gives the results, and Section V
gives the conclusions.

II. EXPERIMENTAL SETUPS

A. Transport code

The advanced TCP stacks for Linux that we chose to
evaluate included: standard Linux New-Reno (Reno),
HSTCP [4], HTCP [5], Scalable [6], Fast-TCP [7], LTCP
[8], HSTCP-LP [9], and BICTCP [10]. Descriptions of the
algorithms employed by these TCP stacks can be found in
the original papers and in most cases in [11]. We
downloaded the latest available versions of the stacks as of
April 2004 and installed them on a host at SLAC. In some
cases this required compiling from source, in others we
simply obtained the binaries.

We downloaded the UDTv2 sources from SourceForge.
UDT is a UDP based transport protocol, developed to
achieve the single-stream throughput, efficiency and fairness
of the existing TCP stacks while being implemented in user
space so it requires no kernel modifications.

We obtained a pre-release copy of Solaris 10 from Sun’s
Solaris Development Engineers at Build Level 69. This was
installed on both a Sun Fire V40z and a Sun Fire V20z. The
Sun Fire V40z was a quad 2.4 GHz cpu AMD Opteron
system. The Sun Fire V20z was a dual 2.4 GHz cpu AMD
Opteron system.

B. A&R Network Measurements

The experimental setup on the sender side for the
production A&R networks used two hosts (Intel Xeon
3.06GHz) each with a 1GE NIC. The hosts ran Linux 2.4.19
through Linux 2.4.25 kernels, patched with the advanced
TCP stacks. On the receiver’s side various Intel x86 hosts
with > 1.4GHz cpus and 1GE NICs were used with a
standard Linux kernel without any patch. On the sender side
one host runs ping and the other runs iperf2 with the
advanced TCP stack. We run iperf with a report interval of
1 second. With iperf we specify the maximum window size
the congestion window can reach as 16384KBytes.
Moreover, the size of the NIC’s transmit queue length was
fixed at 1000 except for FAST tcp for which it was kept at
100. For the receiver side we have chosen hosts at three sites
depending on the Round Trip Time (RTT) seen from SLAC,
small (Caltech – RTT 10ms), medium (University of Florida
(UFL) – RTT 80ms) and large (CERN – RTT 180 ms). The
Caltech route was 9 hops via Stanford, CENIC (Stanford,
Sunnyvale, LA), and LosNettos. The UFL route was 13 hops

1 http://www.sc-conference.org/sc2004/
2 http://dast.nlanr.net/Projects/Iperf/

via Stanford, CENIC (Stanford, Sunnyvale, LA) and Abilene
(LA, Houston, Atlanta). The CERN route was 10 hops via
ESnet (Sunnyvale, Chicago) and CERN.

All hosts except that at UFL were set to have maximum
send and receive TCP buffer/window sizes of 33.5 Mbytes.
UFL was set to 8.4Mbytes.

C. SC2004

For SC2004, we had dedicated access to two dedicated
10Gbits/s circuits from the SLAC/FNAL booth at SC2004 in
Pittsburgh to the Level(3) and QWest PoPs at Sunnyvale (in
the San Francisco Bay Area, California). In addition we had
10 Sun Fire V20z’s 2.4 GHz dual cpu AMD Opteron based
systems and one Sun Fire V40z quad 2.4 GHz AMD
Opteron 850 based systems. All these Sun Fire systems ran
Solaris 10 or Red Hat Enterprise Level 3 (RHEL3) based
Linux 2.6. Six of these hosts were at Pittsburgh and five at
Sunnyvale. The above hosts had a mix of 10Gbits/s T110
NICs from Chelsio3 (with TOE), and S2IO4 (Xframe
including TCP Checksum Offload and TCP Large Send
Offload (LSO)). The NICs were installed in the 64 bit
133MHz PCI-X bus slots. The Chelsio NIC provided access
to its configuration parameters via SNMP.

Most of the hosts were connected to one of two (one at
Pittsburgh, the other at the Level(3) PoP in Sunnyvale)
Cisco 650x router/switches. Two hosts were connected to a
Juniper T320 router at the QWest PoP in Sunnyvale.

III. METHODOLOGY

A. A&R Network Methodology

We run four TCP flows using iperf, one after the other,
each separated by an interval of 2 minutes, and the complete
test ran for approximately 16 minutes. Simultaneously we
ran pings from the second host at SLAC to the remote host at
one second intervals. The incremental throughputs were
recorded each second. The flows leave in a LIFO (Last In
First Out order). As shown below in Figure 1, we divide the
experiment into seven regions (regions 1, 2, 3, 5, 6 & 7 for 2
minutes and region 4 for 4 minutes) and statistics are
collected for each of the seven regions as well as per
individual flows. Aggregate throughput values are also
collected for each of the regions as well as for the overall
test.

The 2 minute interval is chosen so that the regions are
long enough that usually over 95% of the measurement is
made after a flow has completed its initial slow start [12]
and is in the more stable AIMD state. The intent is to
observe whether the competing flows equally share the
bandwidth (fairness) as flows are added/subtracted, and how
quickly (if at all) they get to a stable state after a new flow is
added/subtracted (stability).

Figure 1: Seven flow regions

3 http://www.chelsio.com/
4 http://www.s2io.com/

���������Simultaneoulsy

For each remote host (Caltech, UFL, CERN) and for each
protocol, we typically made three to five 16 minute
measurements at different times to reduce the impact of
anomalous measurements. Most of the measurements were
made at off-peak hours in order to minimize our impact on
other network users. The host configurations, measurements
and the cpu utilization were recorded (using the Unix time
command). The data was analyzed to extract the
throughputs, stability and fairness. Time-series of the data
were plotted and made available together with the data via a
web site5.

B. SC2004 Methodology

We made a master system disk starting from RHEL3
patched to Linux 2.6.6, including the various TCP stacks,
support for the Chelsio and S2io 10GE NICs, and a common
set of testing utilities (e.g. iperf, udpmon) and support
scripts. The system disk was replicated to the system disks
for all hosts. To simplify matters we did not have a network
file system (such as NFS) but relied on manually keeping the
host configurations adequately in step. For security we used
the Linux iptables facility and due to lack of time we
used /etc/hosts instead of domain name services.

IV. RESULTS

A. A&R Results

To assist in characterizing the stability and fairness
quantitatively we use the definitions given in [11] and [14].
That is if we define the average throughput as µ, its standard
deviation as s, and then the stability S = s/µ, and the intra-
protocol fairness index F is:

��
==

�
�

�
�
�

� n

i
i

n

i
i n

1

2
2

1

µµ

 In general, all the protocols work well in terms of
stability and fairness for the shortest RTT (13.6 ms for
Caltech). As the RTT extends to 80 ms (UFL) and 164 ms
(CERN), the differences in the performance of the protocols
increasingly manifest themselves, e.g. if we take the average
S (smaller values of S are better) for all tests, then for
Caltech: S=0.21; for UFL: S=0.29; and for CERN: S=0.42;
similarly for F (larger values indicate increased fairness), F=
0.9 (Caltech), 0.83 (UFL) and 0.77 (CERN). We will thus
focus most of our discussion on examples from the longest
RTT.

In Figure 2, a stacked graph of iperf achievable
throughput per flow for Reno TCP is shown for SLAC to
CERN. The measured throughputs are smoothed over 5
second intervals to remove large fluctuations seen in the one
second data reports. We observe that the aggregate
throughput is not able to recover back to near its initial value
even after the flows 2, 3, and 4 have departed the network
(due to the slow recovery behavior of AIMD), i.e. Reno is
not very stable. Further it can be seen that the throughputs
are often not shared equally by different flows (unfair).
When a new flow joins congestion may occur (e.g. during
the impact of the new flow’s initial slow start) and the

5

http://www.slac.stanford.edu/grp/scs/net/papers/pfld05/ruchig/Fairness/

existing flow may be throttled and take a long time to
recover. For a stable and fair protocol we would want that
whenever a flow joins or leaves the network, the aggregate
remains stable utilizing all the available bandwidth, and the
throughputs should be fairly distributed among all the flows.

Figure 2: Iperf achievable TCP throughputs and RTT for Reno TCP flows
joining and leaving the network between SLAC and CERN.

These results appear to confirm the theoretical and
simulation results seen by the Hamilton Institute team [13]
where packets being sent in bursts lead to lockout, gross
unfairness, relatively long convergence times following the
bursts, and the new flow often grabbing more than its fair
share.

It is also seen that when the aggregate throughput is close
to the maximum, the RTT is also extended (in this case by
up to 25%). The increases in RTT around the 60 seconds
mark are seen to correlate with throttling back the
throughput as the protocol detects the congestion.

A second example is seen in Figure 3 for HTCP flows
from SLAC to CERN. It is seen that the aggregate
bandwidth is more stable, with the exception of when the
next to last flow leaves the network at around 840 seconds.
It is also observed that the individual flows do a better job of
fairly sharing the available bandwidth as new flows are
added. Also > 2 flows appears to achieve more throughput
and two flows appear to be more stable than > 2 flows. On
the other hand the RTT (marked as plus (+) signs) increases
when there are multiple flows and is much more variable for
the case of more than two flows (varies from 160 to
350msec).

Figure 3: Iperf achievable TCP throughputs and RTT for HTCP flows
joining and leaving the network between SLAC and CERN.

Fig.4 shows an example of Fast-TCP flows from SLAC to
CERN, The aggregate throughput is around 400 Mbits/s with
occasional large drops, and the RTTs are much more
consistent (standard deviation(RTT) ~ 9ms compared to
HTCP’s 57 ms and Reno’s 22ms). However, the second flow

never appears to achieve close to the throughputs of the
other flows so the fairness is poor.

Figure 4: Iperf achievable TCP throughputs and RTT for Fast-TCP flows
joining and leaving the network between SLAC and CERN.

Fig. 5 shows an example of UDTv2 flows from SLAC to
CERN. The aggregate throughputs fluctuate around
390±136Mbits/s. The stability and intra-protocol fairness is
comparable to the better TCP implementations. The RTTs
(marked as crosses) fluctuate similarly to those seen in Fig. 3
for HTCP.

Figure 5: Iperf achievable throughput and RTT for UDTv2 flows joining
and leaving the network between SLAC and CERN.

To summarize all the protocols for the SLAC to CERN
flows, Table 1 shows aggregate (for all seven regions) values
for average throughput (�) in Mbits/s, standard deviation (s),
stability (S) = s/� , minimum and maximum (excluding
regions 1 and 7) fairness indices (F), the sender percentage
cpu utilization (average over the flows), MHz/Mbps and the
standard deviation of the RTTs..

On the CERN link, the best performers in terms of
throughput are Scalable, BICTCP and HTCP; the poorest
are Reno, HSTCP-LP (as expected since it deliberately
backs off in the face of other traffic) and HSTCP. Reno,
HSTCP and HSTCP-LP (since it is based on HSTCP this is
not surprising) appear to have difficulties recovering
aggregate throughput as flows are removed. The most stable
protocols appear to be HTCP and BICTCP, the least stable
are Reno and HSTCP. HTCP and BICTCP are also the
fairest protocols. Reno, Fast-TCP, HSTCP and HSTCP-LP
are the least fair with this definition of fair.

As might be expected, Fast-TCP, which uses RTT of the
TCP acknowledgement packets for its congestion control, is
seen to be the best performer in terms of minimal impact to
the ping RTT and presumably the queue congestion.

Table 1: Aggregate statistics for all seven flow regions for SLAC to CERN.
TCP
Stack

Avg
(µ�)
Mbps

Std
dev
(s)

Stab
-ility
(S=
s/µ)

Fairn-
ess
Min-
Max

cpu %
util

MH
z /
Mbp
s

Std
dev
(RTT)
ms.

Reno 248 163 0.66 0.60-
0.99

0.02 0.63 22

HSTCP 255 187 0.73 0.79-
0.99

0.028 0.90 25

HTCP 402 113 0.28 0.99-
1.0

0.03 0.65 57

Scalable 423 115 0.27 0.82-
0.99

0.033 0.64 22

Fast-
TCP

335 110 0.33 0.58-
0.8

0.028 0.66 9

LTCP 376 137 0.36 0.56-
1.0

0.035 0.67 41

HSTCP-
LP

228 114 0.50 0.64-
0.99

0.01 0.65 33

BICTCP 412 117 0.28 0.98-
99

0.033 0.71 55

UDTv2 390 136 0.35 0.95-
1.0

0.075 1.2 49

 UDTv2 is seen to perform similarly to the TCP
implementations. The current version of UDT uses mixed
window and rate control and is seen to be about twice as cpu
intensive/throughput as the TCP protocols. This is an area
the UDT authors are working on, and may be expected to
improve. Earlier UDT versions that used a cpu spin loop to
rate limit the emitting of packets were more cpu intensive by
greater than an order of magnitude.

The TCP protocols’ cpu utilizations do not differ
significantly between protocols. The standard deviations for
the MHz/Mbits/s taken across all the flows for a given
protocol and site is in the range 0.006-0.02. The higher
value of the cpu utilization/throughput for HSTCP (0.9
compared to 0.69 ± 0.08 MHz/Mbits/s) is caused by its poor
throughput performance. The current cpu
utilization/throughput values are at the low end of those seen
in [15]. This is at least partially due to the current A&R
measurements being made with a single parallel stream
while those in [15] were made with multiple streams which
(see later in the current paper) tend to increase the
cpu/throughput ratio.

 Detailed stability and fairness indices for each of the 7
regions for SLAC to CERN are shown in Table 2 In regions
1 and 7 since there is only one flow, the fairness is naturally
going to be 1 as the single flow gets all the available
bandwidth.

Table 2: Stability / Fairness for each of the seven flow regions for SLAC to
CERN.
TCP
stack

Reg.
1

Reg.
2

Reg.
3

Reg.
4

Reg.
5

Reg.
6

Reg.
7

Reno 0.70
/ 1.0

0.46 /
0.7

0.24 /
0.6

0.49 /
0.85

0.46 /
0.98

0.23 /
0.99

0.40 /
1.0

HSTCP 0.13
/1.0

0.30 /
0.95

0.24 /
0.97

0.55 /
0.79

1.02 /
0.99

0.63 /
1.0

0.40 /
1.0

HTCP 0.33
/ 1.0

0.26/
1.0

0.30/
0.99

0.24/
0.99

0.20 /
1.0

0.12/
1.0

0.40/
1.0

Scalable 0.13
/ 1.0

0.36/
0.99

0.35/
0.82

0.17/
0.99

0.21 /
1.0

0.36/
0.99

0.18 /
1.0

Fast-
TCP

0.61
/ 1.0

0.36/
0.62

0.28/
0.74

0.16/
0.8

0.30
/0.73

0.23/
0.58

0.38/
1.0

LTCP 0.67
/ 1.0

0.18/
0.99

0.33/
0.82

0.31/
0.76

0.25 /
0.56

0.19/
0.97

0.15/
1.0

HSTCP-
LP

0.12
/ 1.0

0.28 /
0.64

0.23/
0.70

0.26/
0.75

0.21 /
0.71

0.69/
0.99

0.35/
1.0

BICTCP 0.35
/ 1.0

0.30/
0.98

0.14/
0.98

0.17/
0.98

0.12 /
0.99

0.19/
0.98

0.34 /
1.0

UDTv2 0.39
/ 1.0

0.25/
1.0

0.50/
0.95

0.25/
1.0

0.24/
1.0

0.26/
0.99

0.43/
1.0

B. SC2004 Results

Since the main goal of the SC2004 activities was to
demonstrate high bandwidth utilization for the SC2004
Bandwidth Challenge [16], and since we had only access to
the two 10Gbits/s paths for three days, we were unable to
make completely exhaustive tests. However, we feel there is
useful information to impart.

1) S2io NIC with no TOE
We set the maximum TCP window sizes to 20Mbytes, and

the NIC-kernel buffer size (txqueuelen) to 1000. To
validate the performance of the hosts and NICs we first
directly connected two hosts back to back via a multimode
fiber pair. Then we connected through a Cisco 6509 switch.
With one 2.4GHz V20z running Solaris 10 using one S2io
10 GE NIC installed in the host we were able to sustain
sending 7.46 ± 0.07 Gbits/s to a 2.2GHz Linux 2.6.5 host
with an S2io 10GE NIC. This was using 40 – 50 parallel
streams and the default Solaris maximum TCP
buffer/window size of 350Kbytes and Linux TCP
buffer/window size of 104KBytes. Besides recording the
aggregate and incremental throughputs at 5 second intervals,
we also recorded the cpu utilization for each flow.

Using two S2io 10GE NICs in the V40z to send through a
Cisco 650x switch to two 2.2GHz V20zs each with a 10GE
S2io NIC, we were able to achieve 11.5 ± 0.2Gbits/s from
the single host.

2) Chelsio TOE NIC
Similar LAN tests were made with the Chelsio TOE NICs

with similar aggregate performances. For the WAN tests, the
host at Pittsburgh was a V20z with dual 2.4GHz AMD
Opteron 64 bit cpus, and the host at Sunnyvale was a similar
V20z but with dual 1.6 GHz cpus. Both hosts were running
Linux 2.6.6. Since the TOE NIC only implemented the New-
Reno TCP stack we used multiple parallel streams on the
WAN links between Pittsburgh and Sunnyvale. We set the
MTU to the standard 1500Bytes, the txqueuelen to
1000, and tuned the TCP send window size and numbers of
streams to optimize the iperf throughputs. The eventual
settings were a 2 MByte window and 16 streams. We also
set the iperf read/write buffers (-l option) to 128 KBytes.
We recorded throughputs, sender side cpu utilization, NIC

and kernel interface configurations (ifconfig) before and
after each run.

The Chelsio NICs performed very predictably over a
period of three weeks. We were able to achieve 7.42 ± 0.009
Gbits/s for two hours. The stream average was 463.3 ± 0.8
Mbits/s. The cpu utilization was 148 ± 20%. The critical
limitation was the 64 bit 133 MHz PCI-X bus. The raw
bandwidth for a 133MHz PCI-X bus is 8.53 Gbit/s, but the
PCI-X specification [17] states that data transfers are broken
into PCI-X Segments with a length determined by the
maximum memory read byte count (mmrbc). This allows
interleaving of concurrent data transfers by allowing re-
arbitration for the PCI-X bus. The arbitration and DMA
resumption suspend data transfer for a time, that is
dependent on the chipset and interface involved, leading to a
reduction in the effective throughput of the bus. Previous
experience [11] and measurements with the Intel Pro/10GbE
LR NIC [18] indicated that the effective bus throughput was
~ 6.83Gbit/s with the mmrbc of 4096 bytes..

With two pairs of V20z hosts on each end of the path
from Pittsburgh to the CENIC PoP in Sunnyvale we
achieved sending 9.07Gbits/s recorded by iperf (equivalent
to 9.43 Gbits/s with headers etc.) in the forward direction
and simultaneously sending 5.44 Gbits/s reported by iperf
(equivalent to 5.6 Gbits/s) in the reverse direction for a total
of ~ 15 Gbits/s.

We measured the cpu utilization as a function of
throughput and number of parallel streams as seen in Fig. 6.
The curves are to guide the eye and have no deep
significance. It is seen that cpu utilization is not very linear
in achievable throughput.

Figure 6: CPU utilization of a single Opteron 2.4 GHz cpu versus the
achievable iperf TCP throughput.

Plotting the sender side GHz utilized / Gbits/s versus the
number of streams results in Fig. 7 where we have also
added in the S2io NIC results. It is apparent that using the
Chelsio TOE NIC with Linux 2.6.6 sender, one utilizes
roughly three times less cpu cycles compared to an S2io
(non-TOE) NIC on Solaris 10. Some of this could be
attributed to the lack of LSO support in the version of
Solaris 10 that we used. Unfortunately we had insufficient
time to repeat these tests with identical operating systems.
From studies elsewhere [15] it does not appear there are
significant differences between earlier versions of Solaris
and Linux in the cpu utilization/achieved throughput. Further

industry claims6 of large reductions in cpu utilization would
seem to indicate the main effect was from the TOE rather
than the operating system difference. There are also
competing industry claims and third-party tests indicating
that a NIC with stateless offloads - like LSO (a default
feature on many Operating Systems) and Large Receive
Offload - achieve reductions in cpu utilization that is
comparable to a TOE.

Figure 7: CPU utilization as GHz used for a given TCP achievable
throughput versus the number of parallel TCP streams.

Finally we made measurements with UDT, however, due
to lack of time these were only local (i.e. within the booth at
SC2004). We were able to achieve 4.45 Gbits/s between two
V20Zs with 2.4GHz cpus and Chelsio NICs. From
discussions with the UDT authors7, we believe this is partly
due to implementation efficiency as it runs out of cpu
performance.

V. CONCLUSION

A. A&R Network Conclusions

From our experiments on the A&R Network testbed, we
observe that from the point of view of throughput, Scalable,
BICTCP and HTCP are the best performers while Reno,
HSTCP-LP and HSTCP are the poorest ones. As far as the
stability goes, HTCP and BICTCP are the most stable TCP
protocol implementations while Reno and HSTCP are the
least stable. Moreover, HTCP and BICTCP also have the
best intra-protocol fairness while Reno, Fast-TCP, HSTCP
and HSTCP-LP are less fair.

In terms of minimizing the impact on the RTT Fast-TCP
has the best performance among the various TCP stacks that
we tested.
Our evaluation of UDT on 1Gbits/s paths reveals that UDT
is closing the performance gap between itself and the
advanced TCP stacks implementations. However, UDT is
much more cpu intensive than the advanced TCP
implementations for the same throughput.

6 See for example:

http://www.broadcom.com/products/product.php?product_id=BCM5706
and http://www.veritest.com/clients/reports/chelsio/default.asp

7 Currently on Opterons we can only reach about 5.2Gb/s at most. This
is partly due to the implementation efficiency as the CPU will be used up.
We found that even with iperf/UDP the performance is still less than
iperf/TCP (6Gb/s vs. 7.xGb/s). We are stil l investigating this problem, but
I suspect it is because that many of TCP functionalities have been off
loaded to hardware (e.g., NIC) and since TCP is much more often used
than UDP, its implementation is highly optimized (while UDP is not).
Yunhong Gu, UIC UDT developer, private communication

B. SC2004 Conclusions

In our experiments on the SC2004 testbed, we achieved
almost identical performance on the WAN as the LAN with
the use of Chelsio NICs. This was evident as we were able to
saturate over 99% of a 10Gbits/s cross-country link with two
pairs of hosts each with a 10GE Chelsio NIC. Moreover, we
observed that the Chelsio TOE NIC’s performance was very
stable on uncongested paths.

Measurements of cpu utilization helped us gain insight
into the performance speed-up resulting due to the use of
TOE. The sender cpu utilization for a V20z running Linux
2.6.6 with a Chelsio TOE NIC was roughly a factor 3 less
than that for a V20z running Solaris 10 with a S2io 10GE
NIC. This is believed to be mainly due to the effects of the
TOE. Also, some of this could be possibly attributed to the
lack of LSO support in the version of Solaris 10 that we
used.

We also studied the performance of S2io NICs and were
able to send ~ 11.5 Gbits/s from a single V40z Solaris 10
host (with two 10GE NICs) to two V20z’s connected via a
single switch.

Among other things, we were able to demonstrate the
smooth inter-working of Chelsio and S2io 10GE NICS as
well as Cisco 650x switch/routers and a Juniper T320. We
also observed that on a 2.4GHz Opteron throughput is
limited by the PCI-X 64 bit 133MHz bus. Finally, UDTv2
was unable to achieve as much throughput as multi-stream
Reno on 10Gbits/s paths.

C. Future Work

A criticism of the current work is the lack of inter-
protocol comparisons such as made in [11]. In particular
comparisons against the most prevalent transport protocol
(Reno with a single and multiple streams) are needed. This
needs to be addressed for both the production A&R
networks and 10Gbits/s testbeds.

The TOE vs. non-TOE comparisons are very important
especially for multi-Gbits/s achievable throughputs where
cpu utilization may be a limiting factor as bus speeds
increase. We believe further work is needed to understand
the relations between operating systems, buses, and levels of
off-loading. To this end we would also like to make new
measurements with Solaris 10 when they have support for
LSO support and also with newer advanced NICs.

In terms of achievable throughput, newer buses such as
PCI-X 2.0 and PCI-Express promise to remove one of the
bottlenecks and so will need evaluating.

Both the TCP stacks and UDT are evolving and so newer
versions need to be evaluated as well as other TCP stacks
such as TCP-Africa and TCP-Westwood.

ACKNOWLEDGMENT

We gratefully acknowledge Sun Microsystems for the
loan of the V20zs and V40z, Chelsio for the loan of TOE
NICs, Cisco for 10Gbits/s switch/router equipment, NLR for
loan of 10Gbits/s circuit from Sunnyvale to Pittsburgh,
ESnet for dedicated access to 10Gbits/s circuit from
Sunnyvale to Pittsburgh, ESnet and CENIC for collocation
space in their Sunnyvale PoPs, John Goebel for help with
Linux 2.6. building, installation, patching etc., S2io for help
with using their NICs. Yunhong Gu and Robert Grossman
for help with UDT. We acknowledge useful discussions with

Douglas Leith of the Hamilton Institute. Also we must not
forget Olivier Martin, Sylvan Ravot for help with the CERN
setup, Harvey Newman and Suresh Singh for help with the
Caltech setup, and Chris Griffin for help with the UFL setup,
and Gary Buhrmaster and Phil DeMar for assistance in
setting up in the SC2004 booth and copious advice.

REFERENCES
[1] S. Floyd, T. Henderson and T. Gurtov, “RFC 3782 - The NewReno

Modification to TCP's Fast Recovery Algorithm” , available at
http://www.faqs.org/rfcs/rfc3782.html

[2] W. Feng, M. Fisk, M. Gardner and E. Weigle, “Dynamic Right
Sizing: An automated lightweight, and scalable technique for
enhancing grid performance” , in 7th IFIP/IEEE International
Workshop, PfHSN 2002, Berlin, April 2002.

[3] Y. Gu and R. L. Grossman, “UDT: An Application Level Transport
Protocol for Grid Computing” , Second International Workshop on
Protocols for Long Distance Protocols, 2005.

[4] S. Floyd. “RFC 3649: HighSpeed TCP for large congestion
windows” , available at http://www.faqs.org/rfcs/rfc3782.html, Dec
2003.

[5] R. Shorten, D. Leith, J. Foy, and R. Kildu. “Analysis and Design of
Congestion Control in Synchronized Communication Networks” ,
2003.

[6] T. Kelly. “Scalable TCP. Improving Performance in Highspeed Wide
Area Networks” , 2002.

[7] C. Jin, D. Wei, S.H. Low, G. Bushmaster, J. Bunn, D.H. Choe, R. L.
Cottrell, J.C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S.
Ravot, and S. Singh. “Fast TCP – from Theory to Experiments” ,
PFLDnet 2003.

[8] S. Bhandarkar, S. Jain and A.L.N. Reddy. “LTCP: A Layering
Technique for Improving the Performance on TCP in Highspeed
Networks” , available http://ee.tamu.edu/~reddy/papers/jogc2003.pdf

[9] A. Kuzmanovic and E.W. Knightly. TCP-LP: A Distributed
Algorithm for Low Priority Data Transfer. In IEEE INFOCOM, San
Francisco, April 2003. Also see A. Kuzmanovic, E.W. Knightly and
R. L. Cottrell, “HSTCP-LP: A Protocol for Low-Priority Bulk Data
Transfer in High-Speed High-RTT Networks” , PFLDnet 2004.

[10] L. Xu, K. Harfoush, and I. Rhee. “Binary Increase Congestion
Control (BIC) for Fast, Long-Distance Networks” , INFOCOM 2004.

[11] H. Bullot, R. L. Cottrell, and R. Hughes-Jones. “Evaluation of
Advanced TCP Stacks on Fast Long-Distance Production Networks” ,
PFLDnet 2004.

[12] A. Tirumala, R. L. Cottrell, T. Dunigan, “Measuring end-to-end
bandwidth with Iperf using Web100” , SLAC-PUB-9733, published at
PAM2003, April 2003.

[13] D. Leith, R. Shorten. “H-TCP Protocol for High-Speed Long Distance
Networks” , PFLDnet 2004.

[14] D. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks” , In
Computer Networks and ISDN systems, pages 1-14, June 1989.

[15] R. L. Cottrell, C. Logg, and I-Heng Mei, “Experiences and Results
from a New High Performance Network and Application Monitoring
Toolkit” , PAM 2003, April, also SLAC-PUB-9641.

[16] R. L. Cottrell, “High Speed Terabyte Data Transfers for Physics -
SC2004 Bandwidth Challenge Proposal” , available http://www-
iepm.slac.stanford.edu/monitoring/bulk/sc2004/hiperf.html

[17] PCI Special Interest Group, “PCI-X Addendum to the PCI Local Bus
Specification, Revision 1.0a” , July 2000.

[18] R. Hughes-Jones, P. Clarke, S. Dallison, "Performance of 1 and 10
Gigabit Ethernet Cards with Server Quality Motherboards," Future
Generation Computer Systems Special issue, 2004

