
  

  
Abstract—Standard TCP (Reno TCP) does not per form well 

on fast long distance networks, due to its AIMD congestion 
control algorithm. In this paper we consider the effectiveness of 
var ious alternatives, in particular with respect to their  
applicability to a production environment. We then 
character ize and evaluate the achievable throughput, stability 
and intra-protocol fairness of different TCP stacks (Scalable, 
HSTCP, HTCP, Fast TCP, Reno, BICTCP, HSTCP-LP and 
LTCP) and a UDP based application level transpor t protocol 
(UDTv2) on both production and testbed networks. The 
character ization is made with respect to both the transient 
traffic (entry and exit of different streams) and the steady state 
traffic on production Academic and Research networks, using 
paths with RTTs differ ing by a factor  of 10. We also repor t on 
measurements made with 10Gbits/sec NICs with and without 
TCP Offload Engines, on 10Gbits/s dedicated paths set up for  
SC2004. 

Index Terms—TCP, throughput, high-per formance 
networking, UDT, TCP Offload Engine 

I. INTRODUCTION 

IGH Energy Physics (HEP) and other data intensive 
sciences have a growing need to share large volumes of 

data between computers and data centers distributed 
worldwide. Currently most bulk-data is transferred using 
applications based on TCP. The limitations of the standard 
(New-Reno based [1]) TCP Additive Increase Multiplicative 
Decrease (AIMD) algorithm for fast long distance networks 
have resulted in users by-passing the limitations by the use 
of multiple parallel TCP streams. Simultaneously optimizing 
the window size and number of streams is time consuming 
and complex and for some paths the optimum can vary 
within a few hours.   

We have therefore installed and evaluated several new 
advanced TCP stacks to see how they compare with New-
Reno based TCP stacks on production Academic and 
Research (A&R) networks with Gbits/s capacity paths. All 
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these stacks require only the sender to be modified. We 
excluded using Dynamic Right Sizing [2] since it requires 
modifying the receiver hosts which were not under our 
control.  

For us the important performance features are the 
achievable throughput, the support for the protocol (is it easy 
to install, is it kept up to date with the latest operating 
system releases/patches, is the author responsive etc.), the 
stability (i.e. how stable is the throughput as the network 
load changes), and the fairness.  

The support issues for a production data-intensive science 
environment are critical, and may have little to do with the 
technical implementation. For example, at SLAC, the 
production operating system for most of the data movers is 
Solaris while most of today’s advanced TCP protocol stacks 
have only been developed for Linux and so are not 
applicable. Further it is unclear that the production system 
administrators or the security people will want a modified 
non-vendor supported TCP stack on a production Internet 
connected host. Even if they do, they will probably require 
that the TCP stack patches keep pace with the operating 
system patches in place at the production site which may not 
be a goal for the protocol developer. 

Therefore, we are also highly interested in bulk-data 
transfer mechanisms that do not require modifying the TCP 
stack. This is a major reason why the use of standard TCP 
with multiple parallel streams persists. An attractive 
alternative that we explore in this paper is to use a UDP 
based Data Transfer application such as UDT [3] which 
requires no system level changes as it runs entirely in user 
space. 

Another approach of using large Maximum Transfer Units 
(MTUs) of over 1500Bytes has limited applicability except 
in testbeds in our case, since it is not an Ethernet standard,  
may interfere with some UDP based applications and is thus 
not supported on the SLAC Local Area Network (LAN).  

Other practical considerations in achieving high 
throughput, on 10 Gbits/s testbeds and LANs, include 
system limitations such as bus bandwidth and cpu speed. 
These become critical as one tries to achieve throughputs of 
over 6-7 Gbits/s.  Besides configuring to optimize the 
interrupt coalescence, the buffer sizes between the Network 
Interface Card (NIC) and the kernel, and procuring the 
fastest cpus and buses commonly available off the shelf; we 
are also interested in evaluating emerging techniques such as 
TCP Offload Engines (TOE). This promises to reduce the 
cpu utilization for a given transfer rate. However, it currently 
restricts one to using the NIC vendor’s distributed TCP stack 
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(usually New-Reno) which may lack the maturity of a host 
TCP stack, and also does not have the flexibility of a 
modifiable stack such as in Linux.  

Finally we are also interested in the new TCP stacks that 
are or will be soon be available in standard distributions (in 
particular Solaris 10 and Linux 2.6), especially as they 
pertain to 10Gbits/s paths. 

Section II describes the experimental setups for the A&R 
production network measurements and the SC20041 
10Gbits/s testbed paths. Section III describes the 
methodologies, Section IV gives the results, and Section V 
gives the conclusions. 

II. EXPERIMENTAL SETUPS 

A. Transport code 

The advanced TCP stacks for Linux that we chose to 
evaluate included:  standard Linux New-Reno (Reno), 
HSTCP [4], HTCP [5], Scalable [6], Fast-TCP [7], LTCP 
[8], HSTCP-LP [9], and BICTCP [10].  Descriptions of the 
algorithms employed by these TCP stacks can be found in 
the original papers and in most cases in [11]. We 
downloaded the latest available versions of the stacks as of 
April 2004 and installed them on a host at SLAC. In some 
cases this required compiling from source, in others we 
simply obtained the binaries.  

We downloaded the UDTv2 sources from SourceForge. 
UDT is a UDP based transport protocol, developed to 
achieve the single-stream throughput, efficiency and fairness 
of the existing TCP stacks while being implemented in user 
space so it requires no kernel modifications. 

We obtained a pre-release copy of Solaris 10 from Sun’s 
Solaris Development Engineers at Build Level 69. This was 
installed on both a Sun Fire V40z and a Sun Fire V20z. The 
Sun Fire V40z was a quad 2.4 GHz cpu AMD Opteron 
system. The Sun Fire V20z was a dual 2.4 GHz cpu AMD 
Opteron system. 

B. A&R Network Measurements 

The experimental setup on the sender side for the 
production A&R networks used two hosts (Intel Xeon 
3.06GHz) each with a 1GE NIC. The hosts ran Linux 2.4.19 
through Linux 2.4.25 kernels, patched with the advanced 
TCP stacks. On the receiver’s side various Intel x86 hosts 
with > 1.4GHz cpus and 1GE NICs were used with a 
standard Linux kernel without any patch. On the sender side 
one host runs ping and the other runs iperf2 with the 
advanced TCP stack. We run iperf with a report interval of 
1 second. With iperf we specify the maximum window size 
the congestion window can reach as 16384KBytes. 
Moreover, the size of the NIC’s transmit queue length was 
fixed at 1000 except for FAST tcp for which it was kept at 
100. For the receiver side we have chosen hosts at three sites 
depending on the Round Trip Time (RTT) seen from SLAC, 
small (Caltech – RTT 10ms), medium (University of Florida 
(UFL) – RTT 80ms) and large (CERN – RTT 180 ms). The 
Caltech route was 9 hops via Stanford, CENIC (Stanford, 
Sunnyvale, LA), and LosNettos. The UFL route was 13 hops 

 
1 http://www.sc-conference.org/sc2004/ 
2 http://dast.nlanr.net/Projects/Iperf/ 

via Stanford, CENIC (Stanford, Sunnyvale, LA) and Abilene 
(LA, Houston, Atlanta). The CERN route was 10 hops via 
ESnet (Sunnyvale, Chicago) and CERN. 

All hosts except that at UFL were set to have maximum 
send and receive TCP buffer/window sizes of 33.5 Mbytes. 
UFL was set to 8.4Mbytes. 

C. SC2004 

For SC2004, we had dedicated access to two dedicated 
10Gbits/s circuits from the SLAC/FNAL booth at SC2004 in 
Pittsburgh to the Level(3) and QWest PoPs at Sunnyvale (in 
the San Francisco Bay Area, California). In addition we had 
10 Sun Fire V20z’s 2.4 GHz dual cpu AMD Opteron based 
systems and one Sun Fire V40z quad 2.4 GHz AMD 
Opteron 850 based systems. All these Sun Fire systems ran 
Solaris 10 or Red Hat Enterprise Level 3 (RHEL3) based 
Linux 2.6. Six of these hosts were at Pittsburgh and five at 
Sunnyvale. The above hosts had a mix of 10Gbits/s T110 
NICs from Chelsio3 (with TOE), and S2IO4 (Xframe 
including TCP Checksum Offload and TCP Large Send 
Offload (LSO)). The NICs were installed in the 64 bit 
133MHz PCI-X bus slots. The Chelsio NIC provided access 
to its configuration parameters via SNMP. 

Most of the hosts were connected to one of two (one at 
Pittsburgh, the other at the Level(3) PoP in Sunnyvale) 
Cisco 650x router/switches. Two hosts were connected to a 
Juniper T320 router at the QWest PoP in Sunnyvale. 

III. METHODOLOGY 

A. A&R Network Methodology 

We run four TCP flows using iperf, one after the other, 
each separated by an interval of 2 minutes, and the complete 
test ran for approximately 16 minutes. Simultaneously we 
ran pings from the second host at SLAC to the remote host at 
one second intervals. The incremental throughputs were 
recorded each second. The flows leave in a LIFO (Last In 
First Out order). As shown below in Figure 1, we divide the 
experiment into seven regions (regions 1, 2, 3, 5, 6 & 7 for 2 
minutes and region 4 for 4 minutes)  and statistics are 
collected for each of the seven regions as well as per 
individual flows. Aggregate throughput values are also 
collected for each of the regions as well as for the overall 
test.  

The 2 minute interval is chosen so that the regions are 
long enough that usually over 95% of the measurement is 
made after a flow has completed its initial slow start [12] 
and is in the more stable AIMD state. The intent is to 
observe whether the competing flows equally share the 
bandwidth (fairness) as flows are added/subtracted, and how 
quickly (if at all) they get to a stable state after a new flow is 
added/subtracted (stability). 

 
Figure 1: Seven flow regions 
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For each remote host (Caltech, UFL, CERN) and for each 
protocol, we typically made three to five 16 minute 
measurements at different times to reduce the impact of 
anomalous measurements. Most of the measurements were 
made at off-peak hours in order to minimize our impact on 
other network users. The host configurations, measurements 
and the cpu utilization were recorded (using the Unix time 
command). The data was analyzed to extract the 
throughputs, stability and fairness. Time-series of the data 
were plotted and made available together with the data via a 
web site5. 

B. SC2004 Methodology 

We made a master system disk starting from RHEL3 
patched to Linux 2.6.6, including the various TCP stacks, 
support for the Chelsio and S2io 10GE NICs, and a common 
set of testing utilities (e.g. iperf, udpmon) and support 
scripts. The system disk was replicated to the system disks 
for all hosts. To simplify matters we did not have a network 
file system (such as NFS) but relied on manually keeping the 
host configurations adequately in step. For security we used 
the Linux iptables facility and due to lack of time we 
used /etc/hosts instead of domain name services.  

IV. RESULTS 

A. A&R Results 

To assist in characterizing the stability and fairness 
quantitatively we use the definitions given in [11] and [14].  
That is if we define the average throughput as µ, its standard 
deviation as s, and then the stability S = s/µ, and the intra-
protocol fairness index F is: 
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 In general, all the protocols work well in terms of 
stability and fairness for the shortest RTT (13.6 ms for 
Caltech). As the RTT extends to 80 ms (UFL) and 164 ms 
(CERN), the differences in the performance of the protocols 
increasingly manifest themselves, e.g. if we take the average 
S (smaller values of S are better) for all tests, then for 
Caltech: S=0.21; for UFL: S=0.29; and for CERN: S=0.42; 
similarly for F (larger values indicate increased fairness), F= 
0.9 (Caltech), 0.83 (UFL) and 0.77 (CERN). We will thus 
focus most of our discussion on examples from the longest 
RTT. 

In Figure 2, a stacked graph of iperf achievable 
throughput per flow for Reno TCP is shown for SLAC to 
CERN. The measured throughputs are smoothed over 5 
second intervals to remove large fluctuations seen in the one 
second data reports. We observe that the aggregate 
throughput is not able to recover back to near its initial value 
even after the flows 2, 3, and 4 have departed the network 
(due to the slow recovery behavior of AIMD), i.e. Reno is 
not very stable. Further it can be seen that the throughputs 
are often not shared equally by different flows (unfair). 
When a new flow joins congestion may occur (e.g. during 
the impact of the new flow’s initial slow start) and the 
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existing flow may be throttled and take a long time to 
recover. For a stable and fair protocol we would want that 
whenever a flow joins or leaves the network, the aggregate 
remains stable utilizing all the available bandwidth, and the 
throughputs should be fairly distributed among all the flows.  

 
Figure 2: Iperf achievable TCP throughputs and RTT for Reno TCP flows 
joining and leaving the network between SLAC and CERN. 

These results appear to confirm the theoretical and 
simulation results seen by the Hamilton Institute team [13] 
where packets being sent in bursts lead to lockout, gross 
unfairness, relatively long convergence times following the 
bursts, and the new flow often grabbing more than its fair 
share. 

It is also seen that when the aggregate throughput is close 
to the maximum, the RTT is also extended (in this case by 
up to 25%). The increases in RTT around the 60 seconds 
mark are seen to correlate with throttling back the 
throughput as the protocol detects the congestion. 

A second example is seen in Figure 3 for HTCP flows 
from SLAC to CERN. It is seen that the aggregate 
bandwidth is more stable, with the exception of when the 
next to last flow leaves the network at around 840 seconds. 
It is also observed that the individual flows do a better job of 
fairly sharing the available bandwidth as new flows are 
added. Also > 2 flows appears to achieve more throughput 
and two flows appear to be more stable than  > 2 flows. On 
the other hand the RTT (marked as plus (+) signs) increases 
when there are multiple flows and is much more variable for 
the case of more than two flows (varies from 160 to 
350msec).  

 
Figure 3: Iperf achievable TCP throughputs and RTT for HTCP flows 
joining and leaving the network between SLAC and CERN.  

Fig.4 shows an example of Fast-TCP flows from SLAC to 
CERN, The aggregate throughput is around 400 Mbits/s with 
occasional large drops, and the RTTs are much more 
consistent (standard deviation(RTT) ~ 9ms compared to 
HTCP’s 57 ms and Reno’s 22ms). However, the second flow 



  

never appears to achieve close to the throughputs of the 
other flows so the fairness is poor. 

 
Figure 4: Iperf achievable TCP throughputs and RTT for Fast-TCP flows 
joining and leaving the network between SLAC and CERN. 

Fig. 5 shows an example of UDTv2 flows from SLAC to 
CERN. The aggregate throughputs fluctuate around 
390±136Mbits/s. The stability and intra-protocol fairness is 
comparable to the better TCP implementations. The RTTs 
(marked as crosses) fluctuate similarly to those seen in Fig. 3 
for HTCP. 

 
Figure 5: Iperf achievable throughput and RTT for UDTv2 flows joining 
and leaving the network between SLAC and CERN. 

To summarize all the protocols for the SLAC to CERN 
flows, Table 1 shows aggregate (for all seven regions) values 
for average throughput (� ) in Mbits/s, standard deviation (s), 
stability (S) = s/� , minimum and maximum (excluding 
regions 1 and 7) fairness indices (F), the sender percentage 
cpu utilization (average over the flows), MHz/Mbps and the 
standard deviation of the RTTs.. 

On the CERN link, the best performers in terms of 
throughput are Scalable, BICTCP and HTCP; the poorest 
are Reno, HSTCP-LP (as expected since it deliberately 
backs off in the face of other traffic) and HSTCP. Reno, 
HSTCP and HSTCP-LP (since it is based on HSTCP this is 
not surprising) appear to have difficulties recovering 
aggregate throughput as flows are removed. The most stable 
protocols appear to be HTCP and BICTCP, the least stable 
are Reno and HSTCP. HTCP and BICTCP are also the 
fairest protocols. Reno, Fast-TCP, HSTCP and HSTCP-LP 
are the least fair with this definition of fair. 

As might be expected, Fast-TCP, which uses RTT of the 
TCP acknowledgement packets for its congestion control, is 
seen to be the best performer in terms of minimal impact to 
the ping RTT and presumably the queue congestion. 

Table 1: Aggregate statistics for all seven flow regions for SLAC to CERN. 
TCP 
Stack 

Avg 
(µ� ) 
Mbps 

Std 
dev 
(s) 

Stab
-ility 
(S= 
s/µ) 

Fairn- 
ess 
Min- 
Max 

cpu % 
util 

MH
z / 
Mbp
s 

Std 
dev 
(RTT) 
ms. 

Reno 248 163 0.66 0.60-
0.99 

0.02 0.63 22 
 

HSTCP 255 187 0.73 0.79-
0.99 

0.028 0.90 25 
 

HTCP 402 113 0.28 0.99-
1.0 

0.03 0.65 57 

Scalable 423 115 0.27 0.82-
0.99 

0.033 0.64 22 

Fast-
TCP 

335 110 0.33 0.58-
0.8 

0.028 0.66 9 

LTCP 376 137 0.36 0.56-
1.0 

0.035 0.67 41 
 

HSTCP-
LP 

228 114 0.50 0.64-
0.99 

0.01 0.65 33 

BICTCP 412 117 0.28 0.98-
99 

0.033 0.71 55 

UDTv2 390 136 0.35 0.95-
1.0 

0.075 1.2 49 

 UDTv2 is seen to perform similarly to the TCP 
implementations. The current version of UDT uses mixed 
window and rate control and is seen to be about twice as cpu 
intensive/throughput as the TCP protocols. This is an area 
the UDT authors are working on, and may be expected to 
improve. Earlier UDT versions that used a cpu spin loop to 
rate limit the emitting of packets were more cpu intensive by 
greater than an order of magnitude.  

The TCP protocols’  cpu utilizations do not differ 
significantly between protocols. The standard deviations for 
the MHz/Mbits/s taken across all the flows for a given 
protocol and site is in the range 0.006-0.02. The higher 
value of the cpu utilization/throughput for HSTCP (0.9 
compared to 0.69 ± 0.08 MHz/Mbits/s) is caused by its poor 
throughput performance. The current cpu 
utilization/throughput values are at the low end of those seen 
in [15]. This is at least partially due to the current A&R 
measurements being made with a single parallel stream 
while those in [15] were made with multiple streams which 
(see later in the current paper) tend to increase the 
cpu/throughput ratio.  

 Detailed stability and fairness indices for each of the 7 
regions for SLAC to CERN are shown in Table 2 In regions 
1 and 7 since there is only one flow, the fairness is naturally 
going to be 1 as the single flow gets all the available 
bandwidth.  

 



  

Table 2: Stability / Fairness for each of the seven flow regions for SLAC to 
CERN. 
TCP 
stack 

Reg. 
1  

Reg.  
2 

Reg. 
3  

Reg. 
4 

Reg. 
5 

Reg. 
6 

Reg. 
7 

Reno 0.70 
/ 1.0 

0.46 / 
0.7 

0.24 / 
0.6 

0.49 / 
0.85 

0.46 / 
0.98 

0.23 / 
0.99 

0.40 / 
1.0 

HSTCP 0.13 
/1.0 

0.30 / 
0.95 

0.24 / 
0.97 

0.55 / 
0.79 

1.02 / 
0.99 

0.63 / 
1.0 

0.40 / 
1.0 

HTCP 0.33
/ 1.0 

0.26/ 
1.0 

0.30/ 
0.99 

0.24/ 
0.99 

0.20 / 
1.0 

0.12/ 
1.0 

0.40/ 
1.0 

Scalable 0.13
/ 1.0 

0.36/ 
0.99 

0.35/ 
0.82 

0.17/ 
0.99 

0.21 / 
1.0 

0.36/ 
0.99 

0.18 / 
1.0 

Fast-
TCP 

0.61 
/ 1.0 

0.36/ 
0.62 

0.28/ 
0.74 

0.16/ 
0.8 

0.30 
/0.73 

0.23/ 
0.58 

0.38/ 
1.0 

LTCP 0.67
/ 1.0 

0.18/ 
0.99 

0.33/ 
0.82 

0.31/ 
0.76 

0.25 / 
0.56 

0.19/ 
0.97 

0.15/ 
1.0 

HSTCP-
LP 

0.12 
/ 1.0 

0.28 / 
0.64 

0.23/ 
0.70 

0.26/ 
0.75 

0.21 / 
0.71 

0.69/ 
0.99 

0.35/ 
1.0 

BICTCP 0.35
/ 1.0 

0.30/ 
0.98 

0.14/ 
0.98 

0.17/ 
0.98 

0.12 / 
0.99 

0.19/ 
0.98 

0.34 / 
1.0 

UDTv2 0.39 
/ 1.0 

0.25/ 
1.0 

0.50/ 
0.95 

0.25/ 
1.0 

0.24/ 
1.0 

0.26/ 
0.99 

0.43/ 
1.0 

B. SC2004 Results 

Since the main goal of the SC2004 activities was to 
demonstrate high bandwidth utilization for the SC2004 
Bandwidth Challenge [16], and since we had only access to 
the two 10Gbits/s paths for three days, we were unable to 
make completely exhaustive tests.  However, we feel there is 
useful information to impart. 

1) S2io NIC with no TOE 
We set the maximum TCP window sizes to 20Mbytes, and 

the NIC-kernel buffer size (txqueuelen) to 1000. To 
validate the performance of the hosts and NICs we first 
directly connected two hosts back to back via a multimode 
fiber pair. Then we connected through a Cisco 6509 switch. 
With one 2.4GHz V20z running Solaris 10 using one S2io 
10 GE NIC installed in the host we were able to sustain 
sending 7.46 ± 0.07 Gbits/s to a 2.2GHz Linux 2.6.5 host 
with an S2io 10GE NIC. This was using 40 – 50 parallel 
streams and the default Solaris maximum TCP 
buffer/window size of 350Kbytes and Linux TCP 
buffer/window size of 104KBytes. Besides recording the 
aggregate and incremental throughputs at 5 second intervals, 
we also recorded the cpu utilization for each flow. 

Using two S2io 10GE NICs in the V40z to send through a 
Cisco 650x switch to two 2.2GHz V20zs each with a 10GE 
S2io NIC, we were able to achieve 11.5 ± 0.2Gbits/s from 
the single host. 

2) Chelsio TOE NIC 
Similar LAN tests were made with the Chelsio TOE NICs 

with similar aggregate performances. For the WAN tests, the 
host at Pittsburgh was a V20z with dual 2.4GHz AMD 
Opteron 64 bit cpus, and the host at Sunnyvale was a similar 
V20z but with dual 1.6 GHz cpus. Both hosts were running 
Linux 2.6.6. Since the TOE NIC only implemented the New-
Reno TCP stack we used multiple parallel streams on the 
WAN links between Pittsburgh and Sunnyvale. We set the 
MTU to the standard 1500Bytes, the txqueuelen to 
1000, and tuned the TCP send window size and numbers of 
streams to optimize the iperf throughputs. The eventual 
settings were a 2 MByte window and 16 streams. We also 
set the iperf read/write buffers (-l option) to 128 KBytes. 
We recorded throughputs, sender side cpu utilization, NIC 

and kernel interface configurations (ifconfig) before and 
after each run. 

The Chelsio NICs performed very predictably over a 
period of three weeks. We were able to achieve 7.42 ± 0.009 
Gbits/s for two hours. The stream average was 463.3 ± 0.8 
Mbits/s. The cpu utilization was 148 ± 20%.  The critical 
limitation was the 64 bit 133 MHz PCI-X bus. The raw 
bandwidth for a 133MHz PCI-X bus is 8.53 Gbit/s, but the 
PCI-X specification [17] states that data transfers are broken 
into PCI-X Segments with a length determined by the 
maximum memory read byte count (mmrbc). This allows 
interleaving of concurrent data transfers by allowing re-
arbitration for the PCI-X bus. The arbitration and DMA 
resumption suspend data transfer for a time, that is 
dependent on the chipset and interface involved, leading to a 
reduction in the effective throughput of the bus. Previous 
experience [11] and measurements with the Intel Pro/10GbE 
LR NIC [18] indicated that the effective bus throughput was 
~ 6.83Gbit/s with the mmrbc of 4096 bytes.. 

With two pairs of V20z hosts on each end of the path 
from Pittsburgh to the CENIC PoP in Sunnyvale we 
achieved sending 9.07Gbits/s recorded by iperf (equivalent 
to 9.43 Gbits/s with headers etc.) in the forward direction 
and simultaneously sending 5.44 Gbits/s reported by iperf 
(equivalent to 5.6 Gbits/s) in the reverse direction for a total 
of ~ 15 Gbits/s. 

We measured the cpu utilization as a function of 
throughput and number of parallel streams as seen in Fig. 6. 
The curves are to guide the eye and have no deep 
significance. It is seen that cpu utilization is not very linear 
in achievable throughput. 

 
Figure 6: CPU utilization of a single Opteron 2.4 GHz cpu versus the 
achievable iperf TCP throughput. 

Plotting the sender side GHz utilized / Gbits/s versus the 
number of streams results in Fig. 7 where we have also 
added in the S2io NIC results.  It is apparent that using the 
Chelsio TOE NIC with Linux 2.6.6 sender, one utilizes 
roughly three times less cpu cycles compared to an S2io 
(non-TOE) NIC on Solaris 10. Some of this could be 
attributed to the lack of LSO support in the version of 
Solaris 10 that we used. Unfortunately we had insufficient 
time to repeat these tests with identical operating systems. 
From studies elsewhere [15] it does not appear there are 
significant differences between earlier versions of Solaris 
and Linux in the cpu utilization/achieved throughput. Further 



  

industry claims6 of large reductions in cpu utilization would 
seem to indicate the main effect was from the TOE rather 
than the operating system difference. There are also 
competing industry claims and third-party tests indicating 
that a NIC with stateless offloads - like LSO (a default 
feature on many Operating Systems) and Large Receive 
Offload - achieve reductions in cpu utilization  that is 
comparable to a TOE. 

 
Figure 7: CPU utilization as GHz used for a given TCP achievable 
throughput versus the number of parallel TCP streams. 

Finally we made measurements with UDT, however, due 
to lack of time these were only local (i.e. within the booth at 
SC2004). We were able to achieve 4.45 Gbits/s between two 
V20Zs with 2.4GHz cpus and Chelsio NICs. From 
discussions with the UDT authors7, we believe this is partly 
due to implementation efficiency as it runs out of cpu 
performance.   

V. CONCLUSION 

A. A&R Network Conclusions 

From our experiments on the A&R Network testbed, we 
observe that from the point of view of throughput, Scalable, 
BICTCP and HTCP are the best performers while Reno, 
HSTCP-LP and HSTCP are the poorest ones.  As far as the 
stability goes, HTCP and BICTCP are the most stable TCP 
protocol implementations while Reno and HSTCP are the 
least stable. Moreover, HTCP and BICTCP also have the 
best intra-protocol fairness while Reno, Fast-TCP, HSTCP 
and HSTCP-LP are less fair.  

In terms of minimizing the impact on the RTT Fast-TCP 
has the best performance among the various TCP stacks that 
we tested.   
Our evaluation of UDT on 1Gbits/s paths reveals that UDT 
is closing the performance gap between itself and the 
advanced TCP stacks implementations.  However, UDT is 
much more cpu intensive than the advanced TCP 
implementations for the same throughput. 

 
6  See for example: 

http://www.broadcom.com/products/product.php?product_id=BCM5706 
and http://www.veritest.com/clients/reports/chelsio/default.asp 
 

7 Currently on Opterons we can only reach about 5.2Gb/s at most. This 
is partly due to the implementation efficiency as the CPU will be used up. 
We found that even with iperf/UDP the performance is still less than 
iperf/TCP (6Gb/s vs. 7.xGb/s). We are stil l investigating this problem, but 
I suspect it is because that many of TCP functionalities have been off 
loaded to hardware (e.g., NIC) and since TCP is much more often used 
than UDP, its implementation is highly optimized (while UDP is not). 
Yunhong Gu, UIC UDT developer, private communication 

B. SC2004 Conclusions 

In our experiments on the SC2004 testbed, we achieved 
almost identical performance on the WAN as the LAN with 
the use of Chelsio NICs. This was evident as we were able to 
saturate over 99% of a 10Gbits/s cross-country link with two 
pairs of hosts each with a 10GE Chelsio NIC. Moreover, we 
observed that the Chelsio TOE NIC’s performance was very 
stable on uncongested paths.  

Measurements of cpu utilization helped us gain insight 
into the performance speed-up resulting due to the use of 
TOE. The sender cpu utilization for a V20z running Linux 
2.6.6 with a Chelsio TOE NIC was roughly a factor 3 less 
than that for a V20z running Solaris 10 with a S2io 10GE 
NIC. This is believed to be mainly due to the effects of the 
TOE. Also, some of this could be possibly attributed to the 
lack of LSO support in the version of Solaris 10 that we 
used. 

We also studied the performance of S2io NICs and were 
able to send ~ 11.5 Gbits/s from a single V40z Solaris 10 
host (with two 10GE NICs) to two V20z’s connected via a 
single switch.  

Among other things, we were able to demonstrate the 
smooth inter-working of Chelsio and S2io 10GE NICS as 
well as Cisco 650x switch/routers and a Juniper T320. We 
also observed that on a 2.4GHz Opteron throughput is 
limited by the PCI-X 64 bit 133MHz bus. Finally, UDTv2 
was unable to achieve as much throughput as multi-stream 
Reno on 10Gbits/s paths. 

C. Future Work 

A criticism of the current work is the lack of inter-
protocol comparisons such as made in [11]. In particular 
comparisons against the most prevalent transport protocol 
(Reno with a single and multiple streams) are needed. This 
needs to be addressed for both the production A&R 
networks and 10Gbits/s testbeds. 

The TOE vs. non-TOE comparisons are very important 
especially for multi-Gbits/s achievable throughputs where 
cpu utilization may be a limiting factor as bus speeds 
increase. We believe further work is needed to understand 
the relations between operating systems, buses, and levels of 
off-loading. To this end we would also like to make new 
measurements with Solaris 10 when they have support for 
LSO support and also with newer advanced NICs. 

In terms of achievable throughput, newer buses such as 
PCI-X 2.0 and PCI-Express promise to remove one of the 
bottlenecks and so will need evaluating.  

Both the TCP stacks and UDT are evolving and so newer 
versions need to be evaluated as well as other TCP stacks 
such as TCP-Africa and TCP-Westwood.  
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