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Abstract—We describe and compare the use of two different 

algorithms to detect persistent anomalous events in end -to-end 
Internet performance measurements. The measurements are 
based on active probes running from two production network 
monitoring sites and the algorithms are embedded into the 
measurement infrastructure. The measurements include multiple 
metrics and are made at widely different intervals (1 -3 minutes 
and 90-120 minutes).  
 

Index Terms—anomalous event detection, network monitoring, 
network performance, performance analysis, persistent 
anomalies, trouble shooting.  

I. INTRODUCTION 

anagement of wide area networking from an end 
user/administrator point of view is increasingly hard as 

the complexity of the paths, the diversity of the performance, 
and the dependency on the network increase. Several 
monitoring infrastructures have been built [1], [2], [3], [4], [5], 
[6], [7] to assist by addressing the measurement, archiving, 
analysis, and presentation aspects of end-to-end performance 
monitoring. Each of these infrastructures consists of tens to 
hundreds of monitoring hosts. Each of these monitoring hosts, 
can make measurements of multiple metrics e.g. delays (both 
Round Trip Time (RTT) and one way delay), loss, jitter, TCP 
achievable throughput, available bandwidth, and applications 
performance (e.g. file transfers or web requests) to hundreds of 
monitored (remote) hosts. Typically for every pair of hosts 
(monitor and remote host) there will be a time series plot for 
each metric, amounting to hundreds to thousands of plots that 
need to be reviewed to look for anomalous changes in 
performance.  The network administrator can, at best, review 
some of these reports reactively upon being presented with a 
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problem by a user. What is needed is to enable the network 
administrator to be pro-active and spot the problem before the 
user. This in turn needs a way to automatically and reliably 
(few false positives and most events detected) detect 
persistent, anomalous (unusual and significant) changes 
(events) in performance and report them in an efficient way to 
the network administrator.  

In this paper we currently report on two approaches (by the 
time it is published we expect to report on four) to the problem 
of automatically detecting persistent anomalies in two different 
end-to-end network performance metrics using active end-to-
end network performance measurements from two 
instantiations of the IEPM-BW [2] measurement infrastructure 
at two sites. The requirements for both cases are to detect 
decreases in performance that are sufficiently large and persist 
for sufficient time to be able to review the change and report 
the problem to the up stream provider’s Network Operations 
Center.  

The rest of the paper is organized as follows. Section II 
describes how the measurements were made, section III 
describes the analysis used to extract anomalous events,  
section IV describes the results, section V describes work in 
progress that will be reported in the final paper, and section VI 
presents the conclusions. 

Figure 1: Topology of the remote hosts measured from 
SLAC. 

II.  MEASUREMENTS 

We use measurements from the ABwE [8] lightweight 
bandwidth estimation tool that uses the packet pair dispersion 
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technique. Twenty packet pairs are used per direction for each 
measurement. The frequency of the measurements is one to 
three minute intervals.  For each interval, three metrics are 
measured: dynamic bottleneck capacity (Cap) by analyzing the 
minimum packet pair separation; Cross Traffic ( Xtr) by 
analyzing the packet pair dispersion; and the Available 
Bandwidth (Abw) = Cap – Xtr.  

Measurements are also used from 10 -15 second multi -
stream iperf [9] tests, ping probes, BBFTP [10] and GridFTP 
[11] real file transfers every 90 minutes from SLAC and every 
2 hours from Fermilab to each monitored host [12] for the 
monitoring site. All tests are run in both directions. The iperf 
measurements are considered the most accurate indicator of 
the TCP achievable throughput.  

 Upon completion of the analysis the list of alerts is 
combined and notification messages are sent to Network 
admins (Fermilab) or developers (SLAC).  

The measurements made from SLAC are to about 40 hosts 
in 13 countries and the paths traverse about 50 Autonomous 
Systems (ASs) and over 15 major Internet Service Providers 
(ISPs). The topology of the remote hosts is seen in Fig. 1. The 
main ISPs that the paths cross are identified as shaded boxes. 
For Abilene and ESnet the major Points of Presence (PoPs) are 
also identified. The remote host sites are also noted, as well as 
the capacity bottlenecks (Cap) for the paths. Five of the 
remote hosts (identified in Fig. 1 by “I2” and “host”) are at 
ISP PoPs, the remainder are at end user sites. 

The Fermilab measurements are to about 14 hosts in 5 
countries, 6 of the remote sites are different from the SLAC 
sites. See Fig. 2 for the topology of remote hosts, monitored 
from Fermilab.   

III.  ANALYSIS 

A. Plateau Algorithm 

The bandwidth change detection algorithm is described in 
[13]. It is a modification of the “plateau” algorithm [14] to 
detect step changes in a time series set of measurements.  We 
analyze both the Abw and Cap measurements. The Abw 

measurements are probably of most interest to a user, however 
they are more sensitive to cross-traffic over which we have 
little control. Changes in Cap on  the other hand are more 
likely to reflect route changes or operator errors etc. and thus 
may be easier to address. Cap estimates are thus generally 
preferred for our work.  Since only 20 packet pairs are used for 
each bandwidth estimate, the statistical v ariability of the 
estimates is quite high.  Estimates can thus vary dramatically 
from minute to minute and have large outliers. Therefore, 
ABwE also provides smoothed data using an Exponential 
Weighted Moving Average (EWMA) [15]. Currently, missing 
measurements (e.g. because there is no functioning path 
between the monitor and monitoring host) are ignored 
compressing time so the gap is covered over. 

The plateau algorithm basically divides the measurements 
into two buffers: a history buffer (h) for base-lining, or into a 
trigger buffer ( t), when a measurement meets a specific 
requirement. The specific requirement is that the current 
measurement is less than ββββ standard deviations (oh) below the 
current mean of the history buffer mh. If the  measurement is 
placed in h then the oldest entry is removed from t. The 
buffers have maximum lengths of λλλλ (history) and ττττ (trigger).  
Given a requested buffer duration, the number of items in a 
buffer (length) is calculated using the median time separation 
of the data points. When ττττ is reached the mean of the trigger 
buffer mt is compared with mh and if the relative difference ∆∆∆∆ 
= (mh – mt) / mh is greater than the threshold δδδδ then an event is 
deemed to have occurred.  
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Figure 3: ABwE bandwidth estimates from SLAC to U 
Florida  with a history buffer duration (λλλλ) of 10 hours. 

We have experimented with the user settable parameters. 
We used the default setting of β β β β = 2.    Το minimize the effects 
of diurnal changes we used λ λ λ λ = 1 day. Longer values flatten 
the time series behavior of mh, shorter values result in the sine-
wave like curve of mh being out of synchronization with the 
diurnal changes (see for example Fig. 2 where mh = 10 hours 
and is seen to trail the EWMA(Abw) by several hours).  Since 
we were only interested in long term changes we used τ τ τ τ = 3 
hours. We currently use δδδδ = 33%. Larger values of δδδδ are likely 
to miss more real events, lower values are likely to lead to 
more false positives. 

B. Holt-Winters (HW) Algorithm 

After researching publications on statistical network 
Figure 2: Sites monitored from Fermilab 
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analysis and forecasting techniques [14], [16], [18], the tri -
exponential approximation (additive HW forecasting) with a 
moving time frame of the measurements with special rules was 
developed. It is based on combining the forecasting technique, 
employing the triple-exponential smoothing as described by 
[16], [17] with the ΧΧΧΧ2 error estimation method, and currently 
applied to iperf measurements normalized to the range 0-100. 
See Fig. 4 for a visualization of the bandwidth analysis, from 
Fermilab to McGill University, Canada. The triangles 
indicated detected “drops” in performance. The asterisks 
indicate lost measurements. Every forecasted value is a 
superposition of the seasonal trend (e.g. diurnal changes), 
trend over time (for example the increase in throughput 
demand) and the baseline. All parameters in the forecasting 
equations are chosen to give more weight to the most recent 
measurements. The initial set of par ameters is chosen 
according to [16], to adequately present mild trend and 
average seasonal variations.  In the case of missing (lost) 
measurements the same forecasting technique is used to fill in 
gaps. It may be noted, that additional calculations would be 
required to choose the most correct forecasting parameters set.  

 
Figure 4: Bandwidth analysis for McGill University path 
from Fermilab 

The ΧΧΧΧ2 criterion is applied to every measurement from the 
moving window of the last N measurements (2xN hours with 
the current iperf measurement frequency). To raise an 
anomalous event condition, a set of special rules and 
procedures was developed. First of all, the system checks for 
the lost measurements and reports them, then for every new 
measurement the set of forecasted values for Ntotal – Ntime-window 
is built and for each measurement from Ntime-window   the ΧΧΧΧ2   
estimate is calculated.  

The zero deviation of the current measurement from the 
forecasted estimate is chosen as the null hypothesis. An 
anomalous event is generated if the ΧΧΧΧ2 sum for the whole 
window (Ntime-window – 1 degrees of freedom) lies outside of a 
5% confidence interval. If there are Ntime-window – 1 consecutive 
anomalous events (exact number defines the total sensitivity), 
then the system generates an alert and sends a message to the 
sysadmin, notifying about a significant and consistent drop in 
the network performance  

IV.  RESULTS 

A. Plateau Algorithm 

We analyzed Cap measurements from SLAC to all 40 
remote hosts for ~100 days from June through September 
2004. With δδδδ set to 0 (i.e. we detect all events that fill the 
trigger buffer) and the other user parameters set as described 
above, about 50% of the hosts manifested one or more events 
in this period. We carefully reviewed each of these events and 

created a library of interesting events.  We observe three 
general types of events triggered by our plateau algorithm.  
• Step down changes in bandwidth (“step”) 
• Diurnal changes (“diurnal”) 
• Changes caused by known events causing congestion, 

e.g. a regularly scheduled cron j ob, or network 
bandwidth test (“host”) 

Three hosts out of 40 exhibited 11 marked diurnal changes 
that triggered “diurnal” events. These are false positives that 
need to be eliminated. Sixteen hosts with less marked diurnal 
changes exhibited 16 “step” change events. One host (ANL) 
exhibited regular “host” type events that were tracked down to 
a cron job running on the host soon after midnight each night 
that used (via NFS) the network heavily. Events for a given 
host typically have a small range for ∆∆∆∆ (standard deviation (∆∆∆∆) 
/ mean (∆∆∆∆) ~ 0.11± 0.1) indicating that the backup routes or 
diurnal behavior is consistent. This manifests itself in a multi-
modal Distribution Function for ∆∆∆∆. 

By careful examination of candidate events detected with 
δ δ δ δ = 0 (and ignoring whether the events are diurnal) we classify 
all candidates as to whether they are events we are interested 
in or not  (i.e. exhibit sharp drop in bandwidth, persist for a 
long term (>> 3 hours) and are large enough). With δ δ δ δ = 10% 
and restricting the duration of 90% of the trigger buffer to 220 
minutes, we miss 8% of the events and see 16% false positives. 
Increasing δδδδ to 33% we get 32% misses and 2% false 
positives. In this case 15% of the hits are diurnals.  

If one eliminates the hosts with large diurnal variations in 
their bandwidth, then the plateau algorithm is quite successful 
in detecting step changes in bandwidth.  However, this is a big 
“if”, and our next step (to be reported on at the workshop) will 
be to incorporate filtering of the diurnal effects. 

B. HW Algorithm 

The current implementation of the bandwidth analysis 
system is undergoing continuous tests. The sensitivity of the 
applied algorithm is closely related to the ΧΧΧΧ2 threshold value 
and to the completeness of the measurements. As can be seen 
in Fig. 4 there are 5 significant shifts in performance and all 
were identified. Also there are 4 lost observation events and 
correlated with them “drop” events. Only 2 false positive alerts 
could be eliminated by a higher ΧΧΧΧ2 threshold.  For very noisy 
data an additional criterion as Average( Ntime-window) < 
(Average(Ntime-window for “good” ΧΧΧΧ2)*0.95) could be applied to 
avoid false positive alerts.  Also, wavelet [18] decomposition 
with appropriate threshold ( 5% variations) is possible to 
generate “cleaner” statistics. There is no additional algorithm 
involved to separate anomalies by type of event, all anomalies 
are treated equally from the end -user point of v iew. The 
presented results are currently based only on one-way iperf 
tests. Due to the usage of normalized values the whole analysis 
could be applied to any type of monitoring statistics. 

V. WORK  IN PROGRESS 

The following studies are in progress and we plan to report 
on them in the final paper. 
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• We will extend the library of events and use it to 
quantify false positives and misses for the various 
algorithms; 

• We will apply the plateau algorithm to iperf TCP 
achievable throughput measurements made at 90 minute 
intervals; 

• We will extend the plateau technique to account for 
diurnal changes; 

• We will apply the HW algorithm to the Cap 
measurements; 

• We will apply the HW algorithm to the bi-directional 
iperf tests; 

• We will research existing algorithms to choose  optimal 
forecasting parameters for HW algorithm; 

• We are developing a subspace Principal Components 
Analysis technique (PCA) [19] and will explore its use 
for our end-to-end metrics and paths; 

• We are in contact with the developers of a neural 
network technique [20] for detecting events and if 
successful will compare that technique with the others; 

• We will extend the implementations to also detect step 
up increases so we can apply to metrics such as RTT 
and also determine the anomaly duration. 

The above studies will enable us to make an extensive 
comparison of three (possibly four) anomalous event detection 
techniques on a wide range of real end -to-end Internet 
performance metric measurements with a wide range of paths 
and frequency of measurements (minutes to hours). 

VI.  CONCLUSIONS 

For measurements with limited diurnal (or other seasonal) 
changes the plateau algorithm technique works well, is easily 
understood by people with a non-statistical background and 
has easy to interpret user settable parameters. The effect of 
diurnal changes for our paths is sufficient, however, to make it 
necessary to incorporate the effect. The work of [14] indicates 
that the plateau algorithm also works well for RTT type ping 
measurements.  

The HW technique explicitly incorporates seasonal changes 
and so should work better on paths with significant diurnal 
changes. It is sensitive to the choice of the forecasting 
parameters and the size of the moving time window. The 
choice of the initial parameters can be tricky. Additional study 
is needed to simplify this by applying a minimization 
algorithm, combined with ideal measurements for every node. 

Both the plateau and HW algorithms are implemented on 
Linux systems as Perl scripts and so should be relatively easy 
to port. Currently no attempt has been made to optimize the 
speed of execution. Our implementation of HW takes about 7 
minutes on a ~ 1GHz Intel Xeon host to analyze about 43K 
Cap measurements (measurements are at ~ 3 minute intervals) 
while plateau takes about twice as long. 

The subspace PCA analysis has been reported [20] to work 
well when applied to measurements from core routers. It is 
unclear how well it will work on less correlated end-to-end 
active Internet performance measurements.  It has the 

advantage of being able to simultaneous ly look at 
measurements of multiple metrics (e.g. RTT, iperf throughput, 
Cap, Xtr) and paths simultaneously. On the other hand it is less 
intelligible to someone without a statistical background. 

Once we have a robust, reliable anomalous event detection 
technique we will use it generate alerts. These will be filtered 
relevant information gathered from network devices, analyzed 
and reported to network administrators.  
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