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Abstract—In this paper, we propose an algorithm that detects
significant events on an Internet path by monitoring the available
bandwidth. Evaluating a comprehensive dataset of diverse band-
width measurements reveals that significant noisy traffic spikes
are generally observed on Internet paths. To extract normal
path characteristics from these noisy real-time measurements,
we low-pass filter the bandwidth estimates and show that the
distribution of normal path bandwidths approaches Gaussianity
irrespective of the path being monitored. This Gaussian baseline
model is then leveraged in a decision-theoretic framework to
detect path events. We show that the proposed detector provides
highly accurate performance and easily surpasses the accuracy
of existing techniques.

I. INTRODUCTION

Over the last decade, enterprise, academic and research net-
works have scaled dramatically in terms of their capacities,
sizes, supported applications and services. Identification of
anomalous events in these networks is becoming increasingly
challenging for network operators as the anomalies have now
become quite diverse. While anomaly detection in aggre-
gate enterprise-level network traffic has received significant
research attention in the last decade [1]–[5], detection of
anomalous events on an end-to-end Internet path is largely
unexplored. Detection of anomalous events on Internet con-
nectivity paths between networks and regions is important
because such event detection: 1) facilitates network operations
[6] as it helps identify and quantify network path changes
and provides alerts and diagnosis about whether the faults
lie with the path or the applications; 2) allows network
planning [7] by providing achievable performance and by
maintaining historical information on network growth; and 3)
provides better insight into the impact network performance
on applications1 and protocols.

To accurately classify interesting events, a path anomaly
detection algorithm should gather sufficient statistical infor-
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of Pakistan under the project Network Monitoring for PERN (44-DDWP-2007)
and the Mathematical and Computational Sciences Division under the U.S.
Department of Energy. SLAC is operated by Stanford University for the U.S.
Department of Energy under contract DE-AC02-76SF00515.

1These applications may vary from sophisticated software providing remote
access to scientific instrumentation [8], [9] to adaptive protocols [10] and
applications [11].

mation before classifying an event as an anomaly. Such a
strategy, however, results in undesirable detection, diagnosis
and reaction delays. Thus an inherent tradeoff exists between
detection delay and classification accuracy. In this paper, we
first evaluate three existing path anomaly detectors: 1) the
plateau algorithm by Logg et al. [12]; 2) the Kalman filter
(KF) based detector by Augustin et al. [13]; and 3) the adaptive
fault detector by Hajji [14]. Here we concern ourselves with
end-to-end anomaly detection in terms of non-malicious events
such as equipment failures (e.g., end-host failure, link outage),
and uncharacteristic usage (e.g., flash crowds, high volume
flows) and behavior (e.g., misconfigurations, fluttering in traf-
fic routes). We use a comprehensive dataset [6] of bandwidth
measurements collected over several geographically diverse
paths using different tools (iperf [15], pathChirp [16], and
thrulay [17]) for a period of up to three years. We label this
dataset using a simple and unbiased labeling algorithm and
show that the performances (in terms of accuracy of change
detection and detection delay) of existing anomaly detectors
have significant room for improvement. From the performance
results of existing detectors, we note that a path anomaly
detector should incorporate and leverage the inherent statistical
characteristics of normal bandwidth measurements observed
on Internet paths.

To extract normal path characteristics from aggregate real-
time data, we remove the noisy bandwidth spikes by applying a
low-pass median filter to the observed measurements. We show
that the distribution of normal path bandwidths approaches
Gaussianity when the bandwidth is measured using packet-
pair dispersion. We leverage this baseline Gaussianity model
of normal bandwidth measurements in a decision-theoretic
framework to detect anomalous events on an end-to-end In-
ternet path. Receiver operating characteristics (ROC) curves2

and detection delay are used to evaluate the accuracy and
timeliness of the proposed detector. We show that the proposed
detector provides high accuracy of change detection with
low detection delay and easily surpasses the performance of
existing techniques.

2The data sets, the source codes and the methods of obtaining the
results are documented at https://confluence.slac.stanford.edu/display/IEPM/
Decision+Theoretic+Approach
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The rest of this paper is structured as follows. Section
II describes the Internet datasets used to test, validate and
compare anomaly detectors. Section III provides comparative
analysis of existing anomaly detectors. Section IV outlines the
proposed decision-theoretic detection method and compares its
performance with existing methods. Section V summarizes key
findings of this paper.

II. DATA COLLECTION AND LABELING

To evaluate different Internet path anomaly detection algo-
rithms, we use real world performance measurements collected
by the Internet End-to-end Performance Monitoring Band-
width (IEPM-BW) project [6]. The purpose of the IEPM-
BW project is to develop an infrastructure based on standard
open technologies to make active end-to-end application and
network performance measurements and predictions. The mea-
surements and predictions are targeted at high performance
network links, such as those used worldwide by Grid ap-
plications and other A&R applications deployed over high
performance networks such as ESnet, Internet2 and other A&R
networks in the developed world. However, it does provide low
impact network performance measurements to most of the In-
ternet connected world providing delays, loss and connectivity
information over long (several years) durations. In this section,
we describe the IEPM measurement setup and then discuss
preliminary statistics and labeling of the data.

A. IEPM Bandwidth Measurement Dataset

The first step towards Internet path anomaly detection is the
identification of an end-to-end performance metric that is
expected to exhibit sustained fluctuations during the course
of an anomalous event. We note that among the available per-
formance metrics (e.g., latency, jitter, packet-loss, number of
connections per host, etc.,) available path bandwidth satisfies
this requirement and hence is being used for event detection
on Internet paths [12]3. In this section, we describe and label
the IEPM bandwidth measurement dataset used in this study.

1) IEPM Topology: The test sites of the IEPM-BW project
include geographically diverse Academic and Research (A&R)
institutes situated in Canada, Czech Republic, United King-
dom, France, Germany, Italy, Japan, Netherlands, Pakistan,
Russia, Switzerland, Taiwan and USA. Details of the network
topology can be obtained from [6].

For the purpose of this study, we selected six Internet paths
which are between SLAC and a) San Diego Supercomputing
Center (SDSC) USA, b) European Organization for Nuclear
Research (CERN) Geneva, Switzerland, c) Forschungszen-
trum Karlsruhe (FZK) Germany, d) Deutsches Elektronen-
Synchrotron (DESY) Germany, e) Oak Ridge National Labora-
tory (ORNL) USA and f) University of Toronto (UTORONTO)
Canada. The reasons behind selecting these sites are three-fold:

3With reference to the discussion in Section IV-A and [18], [19] we
acknowledge that bandwidth measurements are not always accurate. Nev-
ertheless, as long as the measurements exhibit sustained fluctuations during
anomalous periods, measurement accuracy is not fundamentally important for
the present problem.

TABLE I
PERFORMANCE MEASUREMENT TOOLS.

Tool Metric(s)
Ping [20] Delay and loss
OWAMP [21] One-way delay and one-way loss
Traceroute [20] Path
IPerf [15] Achievable throughput
pathChirp [16] Available bandwidth
Thrulay [17] Achievable throughput
Pathload [22] Available bandwidth

a) These sites use all the three performance measurements
tools (iperf, pathChirp and thrulay) unlike others which deploy
one or two of the three tools of our interest; b) They feature
minimum downtime and hence do not suffer from large
durations of missing data; and c) They span international
boundaries.

2) IEPM Measurements: Table I lists the performance
metrics observed and the tools used by the IEPM-BW project.
Measurements are calculated in terms of minimum, average
and maximum estimates from a series of tests scheduled every
30-45 minutes resulting in approximately 50 observations per
day. From the available metrics, and based on the metrics used
by prior studies [6], we chose the average available bandwidth
estimate as input for the event detection algorithm because
it is perturbed throughout the course of an anomaly. These
features are outlined in Fig. 1. These variations are either
significantly different from the normal behavior and/or persist
for a noticeable duration.

B. Data Labeling Algorithm

The accuracy of an Internet path anomaly detector can only be
evaluated on labeled data with clearly demarcated anomalous
time periods. Since such labeling is not available for known
end-to-end performance measurement datasets. Therefore, in
this section we develop a simple and unbiased labeling algo-
rithm.

Before we describe the data labeling algorithm, we observe
that an accurate labeling algorithm for the present problem
should cater for the baseline or normal behavior of the
bandwidth measurements. Moreover, this baseline behavior,
whether it represents normal or anomalous behavior, should
tend to sustain itself over (at least) a minimum defined
duration. Based on these observations, we define an interesting
Internet path event, in short an event, as:

Definition 1. A set of anomalous observations is called an
event if the deviant observations persist for a period greater
than or equal to a defined epoch δ.

The minimum event duration that was observed in the
datasets under consideration was δ = 3 hours.

Since a set of given bandwidth measurements contains
both normal and anomalous observations, data labeling in
the present context can be sub-divided into two steps: 1)
Extraction of baseline or normal bandwidth values from a
given set of noisy bandwidth measurements; 2) Identifying and
demarcating anomalous bandwidth measurements that deviate
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(a) Deutsches Elektronen-Synchrotron, Germany

0 100 200 300 400 500
100

150

200

250

Time series (May 15, June 13 2008)

A
v.

 b
an

dw
id

th
  (

M
bp

s) SLAC − CERN

 

 

thrulay

(b) CERN, Geneva Switzerland
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(c) San Diego Supercomputing Center

Fig. 1. Samples of available bandwidth measurements as seen from SLAC
with annotated anomalies.
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Fig. 2. Low-pass median filtering of bandwidth measurements to extract
baseline behavior; the time series is annotated to show how median filtering
results in removal of sustained anomalies and spurious measurements.

significantly from the baseline values. The following two
sections elaborate on these steps.

1) Extracting Baseline (Normal) Behavior of Bandwidth
Measurements: Given a set of bandwidth measurements, ex-
traction of the baseline behavior essentially entails removing
all anomalous observations (and the corresponding bandwidth
values) from the set. The remaining measurements can then
be used to characterize the baseline behavior. Anomalous
bandwidth values always cause significant fluctuations in the
measurements, albeit these fluctuations may be sustained or
spurious in nature. These two types of anomalies are shown
in Fig. 1. Both of these anomalies should be removed from

the dataset before baseline behavior is characterized.
To remove the anomalous bandwidth measurements from

the dataset, we apply an n-tap median filter to the dataset. A
median filter is a sliding window low-pass filter that stores
n previous values of the input and at each step outputs the
median of the stored values. Consequently, high frequency
spikes are removed from the input data. Note that the value
of n is a crude upper bound on the maximum duration for
an anomaly. If a bandwidth change sustains itself beyond n

observations then it is treated as a change in the underlying
baseline behavior. Therefore, care should be exercised in
choosing the value of n for a given bandwidth measurement
dataset. We define an empirical lower bound on n as:

n ≥ 2δυ,

where υ is the average number of IEPM performance measure-
ments made in one hour. In the present dataset, we observed
that a maximum value of n = 15 is sufficient to remove
sustained and spurious bandwidth fluctuations. An example
of the baseline (normal) bandwidth values extracted through
median filtering is shown in Fig. 2.

2) Event Identification, Labeling and Demarcation: The
median filtered dataset are treated as normal bandwidth values
of an Internet path. The baseline behavior is then characterized
by computing the mean of the filtered measurements. Then as
per Definition 1, an event is flagged when an anomaly deviates
significantly from this baseline behavior and sustains itself for
more than δ = 3 hours.

To flag significant deviations, we first compute the mean
µf of the baseline. We then analyze the measurements in sub-
sets (windows) of length δ. The mean µ∆ of the window is
computed and a test is performed such that:

0.5 ≤ µ∆

µf

≤ 1.5. (1)

We opt for such thresholds in light of Definition 1; empirical
observation suggests that nearly 6% of the observations show
a difference of greater than or equal to 50% from the mean
observation4 Also, such deviant observations tend to maintain
their state and feature small variation (irrespective of the
duration of the event) as shown in Figs. 1 and 2, thereby
endorsing the fact that significant change is primarily observed
in the mean observations (i.e. µ∆ and µf ) and not in the
variance.

Once all observations are scrutinized, windows marked
as anomalous are analyzed and coalesced5 to identify the
demarcations of unique events. The detailed data labeling
procedure is described in Algorithm 1.

3) Discussion: The events labeled using Algorithm 1 were
subsequently verified manually to ensure the correctness of
the labeling. Using the labeled datasets, we evaluate the

4Details are available at https://confluence.slac.stanford.edu/display/IEPM/
Decision+Theoretic+Approach

5Note that each unique event must be of a duration greater than δ. Also
the separation between events must be greater than δ to classify the events as
unique.
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Algorithm 1: Labeling data with anomalies.
Data: a) Array of performance measurements Ω, length of

sliding window ∆, the duration δ for which an abnormal
activity needs to persist before it is considered an event
and the average number υ of performance measurements
per hour available in the dataset

Result: τ : Array of time brackets defining all independent
events

Compute n = 2δυ;1
Apply n-tap median filter to Ω to obtain Ωf and consequently2
µf ;
for {ωi ∈ Ω|1 ≤ i ≤ N} do3

Compute µ∆ ;4

if
(

0.5 ≤
µ∆

µf

≤ 1.5

)

then
5

Mark as normal observation;6
else Mark as an anomalous window and add to τ ;7

end8
for {all alerts in τ}; do9

If required coalesce alert-windows considering δ to identify10
unique observations with adjusted boundaries;

end11

performance of existing anomaly detectors in the next section.
Before proceeding, we highlight that while the above data
labeling algorithm is quite accurate, it cannot be used as an
effective anomaly detector because it requires all bandwidth
measurements to be available before the algorithm can start
event classification. Consequently, while this algorithm can be
used for offline data processing and labeling, it cannot be used
for real-time event detection.

III. COMPARISON OF EXISTING PATH ANOMALY
DETECTORS

Performance of an Internet path event detector is defined by
its accuracy (detection and false alarm rates) and the speed
of event detection. More specifically, network traffic typically
shows three types of variations [23]: 1) daily periodic behavior
or diurnal patterns, 2) random and sporadic fluctuations, and
3) occasional bursts of high or low network activity. Since the
first two types of variations do not warrant remedial measures,
they are not interesting for network operators. The third type of
traffic variation satisfies our definition of an event (Definition
1) as it causes prolonged perturbations in an end-to-end path
and therefore requires immediate attention. The problem then
is: When does an event being treated as uninteresting (diurnal
or sporadic) become interesting? An inherent tradeoff between
accuracy and delay can be observed here. If we wait long
enough for more measurements to arrive before flagging the
current measurements as anomalous, the accuracy in detecting
interesting events will improve. However, such a procedure
will lead to significant detection delays which are highly
undesirable in the present problem. A good path anomaly
detector should balance this accuracy-delay tradeoff.

Based on the above discussion, in this section we compare
the accuracies and detection delays of the following three
existing detectors: 1) the plateau algorithm by Logg et al.
[12]; 2) the Kalman filter (KF) based detector by Augustin

et al. [13]; and 3) the adaptive fault detector by Hajji [14]. To
maintain a logical flow of thought, we briefly describe these
algorithms in the following section. The rest of this section
provides detailed performance evaluation of these anomaly
detectors on the labeled IEPM dataset.

A. Description of Existing Algorithms

1) Plateau Algorithm [12]: The plateau algorithm [12]
is the currently-deployed change detection algorithm that
monitors bandwidth to the sites in IEPM-BW project [6],
[8]. The algorithm, which evolved from [24], flags significant
deviations in the mean and standard deviation of real-time
bandwidth observations. Flagged measurements are compared
against user-defined thresholds and classified as normal or
anomalous.

2) Kalman Filter (KF) based Detector [13]: Augustin et
al. [13] filter out the characteristic behavior of an Internet
path using Kalman filters. The residuals are then investigated
for potential anomalies. Four different methods are used: 1)
to compare the residuals to a user-defined threshold; 2) as
an extension of [3], to compare the local variance to the
global variance assessment; 3) To apply wavelet analysis on
the filtered data, unlike [3] which does the same for raw data;
and 4) to define a likelihood ratio test to identify change in
the mean rate of the residual signal. It is observed that the
wavelet analysis performs poorly in comparison to the user
defined threshold as well as the likelihood ratio test as the
intuition that an anomaly should diffuse itself at several time
scales is not realized as such.

3) Adaptive Fault Detection (AFD) Method [14]: Hajji
[14] models traffic measurements as a K-variate Gaussian
distribution. The model operates on an increment process that
observes differences between consecutive values rather than
operating on the original measurements. The detection proce-
dure includes two phases: 1) training a baseline model for the
network traffic increments using the expectation-maximization
algorithm; and 2) flagging sudden changes using the likelihood
ratio test.

B. Evaluation of the Existing Detectors

1) ROC Curves: We compare the accuracies of the detec-
tors through ROC curves [25]. ROCs are commonly used to
evaluate the performance of classification algorithms. These
curves are used extensively in signal processing, intrusion
detection, medicine, machine learning and data-mining com-
munities [25]. ROC curves are well-suited for performance
evaluation of classification algorithms because they organize
the performance of an observed algorithm for the complete
range of its tuning parameters (or threshold settings). Before
proceeding to the evaluation, we define the main performance
evaluation metrics used in ROC curves of the present problem:

Definition 2. A true-positive is the correct classification of an
anomalous bandwidth event.

Definition 3. A false-positive is the incorrect classification of
a normal bandwidth measurement as anomalous.
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Fig. 3. ROC curves of Kalman Filters method (KF), Adaptive Fault Detection
(AFD) and the Plateau Algorithm (PL) for pathChirp measurements as seen
from SLAC.

Definition 4. True-positive rate is the ratio of the correctly
classified events to the total number of events present in a
dataset.

Definition 5. False-positive rate is defined as the ratio of the
incorrectly classified normal values to the total number of days
observed.

We draw the ROC curves with the true-positive rate on
the Y -axis and the false-positive rate on the X-axis. Each
point on the ROC curve represents performance results for one
configuration (or threshold value) whereas the curve represents
the behavior for the complete set of configurations. When
compared, the steepest curve is considered the best as it
approaches the highest true-positive rate with the lowest false-
positive rate.

2) Comparison of Change Detection Accuracies: To gener-
ate ROC curves, we varied the buffer lengths and the threshold
values of the algorithms. The ROC curves of the AFD, KF
and PL algorithms are shown in Fig. 3. We observe that both
the AFD and KF perform poorly with unacceptable levels of
false-positive rates for desired change-detection rates. When
applied to the Internet path SLAC-CERN, the AFD method at
best results in a true-positive rate of 1 and correspondingly
3 false-positives per day. Similarly, as shown in Table II,
the AFD method achieves 100% true-positive rate with a
corresponding false positive rate of 7.07 for the Internet path
SLAC-UTORONTO. The plateau algorithm, on the other hand,
performs much better with a true-positive rate of approxi-
mately 0.75 against a relatively low false-positive rate of 0.5
incorrect alarms per day.

AFD has poor accuracy because it relies on the assumption
that the difference between consecutive normal measurements
is small. While this assumption holds for frequent bandwidth
measurements, in case of measurements that are spread out in

TABLE II
PERFORMANCE RESULTS FOR THE AFD ALGORITHM (SLAC TO

UTORONTO) (TRUE ANOMALIES = 38, NUMBER OF DAYS = 900).

Desired
detection
rate

Desired
false
positive
rate

Number
of true
positives

Number
of false
positives

True
positive
rate

False
positive
rate

0.95 0.02 1 19 0.03 0.02
0.95 0.01 4 291 0.11 0.32
0.95 0.009 4 438 0.11 0.49
0.95 0.007 6 764 0.16 0.85
0.95 0.006 14 1057 0.37 1.17
0.95 0.003 24 2199 0.47 2.44
0.95 0.002 28 4457 0.74 4.95
0.95 0.0018 35 4806 0.92 5.34
0.95 0.001 38 6361 1.00 7.07

time (e.g., the IEPM-BW measurements every 30-45 mins,)
large variations between consecutive measurements enhance
the sensitivity and the false-positive rate of the AFD algorithm.
Kalman filter fails primarily because it assumes that bandwidth
measurements are corrupted by an additive Guassian noise
process, an assumption that does not hold in the present
context. Plateau provides better accuracy because, instead of
making assumptions about the bandwidth or noise processes,
it leverages the mean and standard deviation of the real-time
bandwidth measurements.

3) Delay Comparison: Detection delay is generally defined
as the time taken by an anomaly detector in identifying
an anomalous event. Since IEPM-BW’s measurements are
made with regular intervals, we define detection delay as the
difference between the first observation flagged as anomalous
by an algorithm and the first actual anomalous observation of
the event.

Fair comparison of detection delays is difficult because
different detectors feature different false positive and detection
rates. Consider, for instance, an anomaly detector that classi-
fies all bandwidth measurements as anomalous. Now while this
detector is a completely impractical and the most inaccurate
detector, its detection delay will be zero. Therefore, fair
comparison of detection delays requires that delay is computed
for a practical point on the ROC curve. To this end, for each
detector we select the ROC point of the detector having the
maximum possible detection rate; PL in the present case. For
the highest detection rate PL detector, the detection delays of
all detected events are computed. For the remaining detectors,
we compute detection delays at ROC points having similar
false alarm rate as the PL detector. Average detection delays
of all detectors are computed by simply adding the delay in
detecting each event divided by the number of detected events.
Also we define the detection delays of events not detected by
an anomaly detector as ∞.

Delay results for the Internet paths between SLAC and
UTORONTO, CERN, DESY, SDSC and FZK are listed in
Table III. Plateau and the Kalman Filter method provide
similar detection delays, while the Adaptive Fault Detection
method requires a significantly larger number of observations
before an event is detected. We also observed with Plateau
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TABLE III
AVERAGE DETECTION DELAY ε̄ (IN TERMS OF ADDITIONAL

OBSERVATIONS REQUIRED BEFORE AN EVENT IS DETECTED).

Plateau
Detected Undetected Total False positives

# ε̄ # ε̄

UTOR 23 4.98 15 ∞ 38 217
CERN 1 2.00 7 ∞ 8 19
DESY 14 12.60 17 ∞ 31 97
SDSC 1 0.00 5 ∞ 6 14
FZK 7 28.53 10 ∞ 17 117

Adaptive Fault Detection
Detected Undetected Total False positives

# ε̄ # ε̄

UTOR 4 53.25 34 ∞ 38 219
CERN 0 0.00 8 ∞ 8 193
DESY 1 47.43 30 ∞ 31 31
SDSC 0 0.00 6 ∞ 6 5
FZK 3 110.53 14 ∞ 17 163

Kalman Filters
Detected Undetected Total False positives
# ε̄ # ε̄

UTOR 4 4.75 34 ∞ 4 227
CERN 0 0.00 8 ∞ 0 819
DESY 0 0.00 31 ∞ 1 309
SDSC 0 0.00 6 ∞ 0 -
FZK 0 0.00 17 ∞ 3 -

TABLE IV
GOODNESS-OF-FIT TEST RESULTS FOR MEASUREMENTS (AS SEEN FROM

SLAC) FITTING A GAUSSIAN DISTRIBUTION.

Site χ2 p-value C.Val@0.05 C.Val@0.001
UTOR 14.18 0.2892 21.026 32.909
CERN 15.46 0.2170 21.026 32.909
DESY 17.30 0.1385 21.026 32.909
ORNL 18.22 0.1089 21.026 32.909
FZK 19.09 0.0864 21.026 32.909
SDSC 21.02 0.1009 23.685 36.123

that reducing the size of the buffers results in a decrease in
the detection delay but has an adverse effect of making the
algorithm sensitive to spurious changes which subsequently
increase the algorithm’s false positive rate.

C. Discussion

Based on the results of this section, the accuracies of existing
anomaly detectors leave significant room for improvement.
Overall, we observed that all of the existing anomaly detectors
are general-purpose anomaly detectors which are designed
to flag changes in any underlying observation metric. We
show in the following section that bandwidth measurements
on Internet paths exhibit some very specific characteristics that
can facilitate classification. However, existing algorithms do
not take these inherent bandwidth characteristics into account
and are therefore unable to provide the required performance.
The next section reveals useful statistical characteristics of
Internet path bandwidth measurements and then proposes a
anomaly detector that leverages these characteristics in a
decision-theoretic framework.
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samples (as seen from SLAC).

IV. BANDWIDTH STATISTICS AND THE
DECISION-THEORETIC ANOMALY DETECTOR

In this section, we first show that the baseline behavior of path
bandwidth measurements collected using packet-pair disper-
sion techniques exhibit Gaussianity. Observations that deviate
from the Gaussian behavioral model can thus be classified as
anomalous. We then use the Gaussian baseline model in a
decision-theoretic framework for real-time anomaly detection.

A. Statistical Behavior of Available Bandwidth Measurements

We randomly selected sample subsets from the IEPM data to
identify the baseline characteristics of the observed Internet
paths. These sample subsets included observations made over
three or more consecutive days. A window of three days
was selected because we observed in the IEPM dataset that
anomalies generally persist for less than three days and con-
versely any change persisting beyond three days tends to be
permanent.

In more than two-thirds of the pathChirp subsets, we
observed that the distribution of bandwidth measurements
approach Gaussinity. Examples of these Gaussian subsets
are shown in Table IV and Fig. 4. This is an important
statistical characteristic of the underlying normal pathChirp
bandwidth measurements which can and should be leveraged
for baseline behavior characterization and subsequently for
anomaly detection. We use this baseline Gaussian behavior
of pathChirp measurements in a decision-theoretic anomaly
detection framework in the next section. Before we proceed
further, a note on the bandwidth distributions of the other
two tools (iperf and thrulay) is in place. Assuming that the
three performance measurement tools were configured and
deployed correctly, one would expect that the bandwidth
estimates and their statistical properties provided by different
tools for the same path would at least track each other if
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not be exactly identical. However, comparison of the available
bandwidth estimates by pathChirp, iperf and thrulay showed
clear inconsistencies. As an example, thrulay’s bandwidth
estimates and their resultant frequency distribution for the
SLAC-SDSC link are shown in Fig. 5. Clearly, this distribution
is very different from a Gaussian distribution. In particular, we
observed that bandwidths measured by thrulay and iperf for
high-speed links were similar, while the estimates made by
pathChirp were significantly greater than those of thrulay and
iperf. Further investigation revealed that the factor influencing
the measurement results for iperf and thrulay was the underline
TCP stack; the same conclusion was reached in an independent
study of [26] which came to our attention much later in this
effort. For IEPM-BW the underline TCP stack is TCP New
Reno6 [27]. It has been shown earlier [28], [29] that Reno’s
Additive Increase Multiplicative Decrease (AIMD) congestion
control algorithm works well for low-speed links, but AI
is very slow and MD is too drastic for high-speed links.
This discrepancy results in poor link utilization by thrulay
and iperf, and consequently their bandwidth estimates are
different from the low-throughput pathChirp tool. Based on
these results and [18], [19] we acknowledge that bandwidth
measurements are not always accurate. However, as long as
the measurements feature significant and sustained pertur-
bations during anomalous periods, measurement accuracy is
not fundamentally required for change detection. Thus, while
considering the discussion in Section II-B, we advocate the
use of pathChirp as an available bandwidth measurement tool
for anomaly (particularly change) detection over Internet paths
links. Henceforth, we only report results using the pathChirp
datasets. The following section develops the decision-theoretic
model to detect anomalies in the bandwidth measurements.

B. Decision-Theoretic Model of Bandwidth Measurements

Let Ri be the bandwidth measurements by pathChirp. These
measurements either reflect the baseline or normal behavior
of the path (i.e., the internal response [30]) or the anomalous
observations (i.e., the internal response modified by noise).

6TCP Reno and its variations –which are loss-based approaches– are the
most widely used TCP stacks.

We define two hypotheses: H0, the null hypothesis where Ri

represents the internal response (i.e., the baseline characteris-
tics); and H1, the alternate hypothesis where Ri represents the
internal response modified by noise (i.e., anomalous activity).
This can be summarized as follows:

H0 : Ri = n (2)
H1 : Ri = n + mi, (3)

where n represents a Gaussian random variable characterizing
the baseline distribution of bandwidth estimates. For ease of
exposition, we remove the first moment bias from n to make
it a standard normal distribution N (0, σ2). Also, we may
represent mi as: mi = Ri − n.

When a new bandwidth estimate arrives, it is mapped to
one of the two hypotheses using the following conditional
probability distributions:

Pr(Ri|H0) = 1
σ
√

2π
exp

(

−R2

i

2σ2

)

; and

Pr(Ri|H1) = 1
σ
√

2π
exp

(

−(Ri−mi)
2

2σ2

)

.
(4)

A likelihood ratio test [31] to choose between the two hy-
potheses can then be defined as:

Λ(Ri) =
Pr(Ri|H1)

Pr(Ri|H0)
. (5)

Assuming independence between real-time bandwidth mea-
surement, an aggregate likelihood for a set of measurements
R = {R1,R2, . . . ,RN} can be formulated as:

Λ(R) =

N
∏

i=1

1

σ
√

2π
exp

(−(Ri − mi)
2

2σ2

)

1

σ
√

2π
exp

(−R2
i

2σ2

) . (6)

Solving (6) using (3) we get:

ln η
H1

≶
H0

1

2σ2

N
∑

i=1

{

R2
i − n2

}

, (7)

where η is a tunable parameter.
In summary, n is the distribution of median-filtered baseline

bandwidth values. As new bandwidth estimates arrive, they are
plugged into the likelihood ratio defined in (7). The output of
the test is then compared to an upper threshold η1 and a lower
threshold η0. If Λ(Ri) ≤ η0, we accept the null hypothesis
H0. Alternatively, if Λ(Ri) ≥ η1, we accept the alternate
hypothesis H1. If neither case is true, we conclude that we
do not have enough information to make a decision and wait
for the next measurement to recalculate Λ(Ri).

C. Threshold Optimization

Wald showed [32] that we can define the thresholds η0 and
η1 in terms of the rate of true-positive (or detection rate) PD

and the false positive rate PF . He showed that these rates may
be approximated by user-defined values α and β such that:

PF ≤ α and PD ≥ β. (8)
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Algorithm 2: Event detection.
Data: Array of performance measurements Ω, False positive

rate α, Detection rate β, window size ρ, initial duration
for training dataset δ and width of median filter ν.

Result: Array of timestamp-brackets ψ classifying windows as
containing events.

Apply low-pass median filter of width ν to obtain Ωtr;1
Compute µtr and σtr for {ωt ∈ Ωtr|t0 < t < t0 + δ};2

Let threshold η1 =
βσ2

α
, η0 =

1 − β

1 − α
and t0 = 0;3

/* determine the baseline */
/* initialize the observation window */

Let τs = t0 + δ − ν and τe = t0 + δ ;4
for {ω ∈ Ω} do5

Let x1 = rand(), x2 = rand() and6

n =
√

−2 ln(x1) · sin(2πx2) · σ;
R = median{ωi|τs ≤ i ≤ τe};7

Compute η =
R2 − n2

2σ2
tr

;
8

if η1 < η then9
Observation ω is anomalous, add ω′s timestamp to the10
array of events ψ;

else if η < η0 then11
Observation ω is not anomalous;12
Update the training dataset with ω, discard the oldest13
entry, recalculate σtr and η1;

else Not enough information to make a decision;14
Increment τs and τe;15

end16
Analyze ψ and combine consecutive anomalous windows17
defining unique events;

We set these values to α = 0.2 and β = 0.99.
As an example, consider that the alternate hypothesis is

accepted when it is in fact true; i.e. (7) met the threshold:
η1 ≤ Pr(R|H1)

Pr(R|H0)
. This means that the detection rate PD is at

least η1 times the false positive rate PF when H1 is true.
Consequently, we can define η1 and η0 as:

η1 ≤ PD

PF

and
1 −PD

1 −PF

≤ η0. (9)

Using the approximation as defined in (8), we get:

η1 =
β

α
and η0 =

1 − β

1 − α
. (10)

Using the above thresholds, we can derive the upper and lower
thresholds corresponding to the two hypotheses from user-
defined detection and false-positive constraints. However, from
experiments we observe that the upper threshold of η1 renders
the algorithm too sensitive to datasets with large variance.
In order to allow the algorithm to adapt itself to datasets in
which the variance of the bandwidth measurements changes
over time, we redefine the upper threshold η1 as:

η1 =
βσ2

α
, (11)

where σ2 is the variance of the median-filtered data being
analyzed for anomalies. Step-wise execution of the above
decision-theoretic approach to real-time path event detection
is outlined in Algorithm 2.
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Fig. 6. Comparison of the Decision Theoretic Approach (DTA) with Kalman
Filters (KF), Adaptive Fault Detection (AFD) and Plateau Algorithm (PL).

TABLE V
INPUT PARAMETERS (FALSE POSITIVE RATE, DETECTION RATE AND

MEDIAN FILTER’S WIDTH) FOR THE DECISION THEORETIC APPROACH.

α β n

UTOR 0.145 0.99 17
CERN 0.31 0.99 7
DESY 0.02 0.99 7
SDSC 0.29 0.99 15
FZK 0.05 0.99 15

D. Accuracy of the Proposed Approach

A comparison of the proposed Decision-Theoretic Approach
(DTA) with the Adaptive Fault Detection (AFD), Kalman
Filters (KF) and Plateau Algorithm (PL) is shown in Fig. 6.
The input parameters listed in Table V were used by DTA to
compile these results.

It is clear that the proposed approach provides consistently
higher accuracy of change detection than all the existing
methods. AFD and KF methods provide significantly lower
detection accuracy than the proposed DTA because of the
reasons enumerated in the last section. Plateau algorithm gives
more false-positives than DTA because it operates on rigid
thresholds given as input to the algorithm. Consequently, if
an Internet path changes its characteristics even slightly (e.g.,
increases its variance,) Plateau is unable to adapt its parameters
in accordance with the slightly modified baseline behavior.
In summary, DTA and Plateau achieve high detection rates
for acceptable levels of false-positive rates, whereas KF and
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TABLE VI
AVERAGE DETECTION DELAY ε̄ OF THE PROPOSED DTA APPROACH (IN
TERMS OF ADDITIONAL OBSERVATIONS REQUIRED BEFORE AN EVENT IS

DETECTED).

Decision Theoretic Approach
Detected Undetected Total False positives

# ε̄ # ε̄

UTOR 35 9.77 3 ∞ 38 168
CERN 8 7.25 0 ∞ 8 18
DESY 31 5.77 0 ∞ 31 91
SDSC 5 7.60 1 ∞ 6 14
FZK 17 22.13 0 ∞ 17 110

AFD methods achieve 100% detection rates at very high false-
positive rates.

E. Detection Delay of the Proposed Approach

Detection delays of DTA are provided in Table VI. Com-
parison with Table III shows that DTA incurs nearly the
same detection delays as that of PL and KF. DTA performs
slightly better than PL on three links, but slightly worse on
the other two. On the other hand, the KF method features
lower delays, but it does so with poor true-positive rates.
The AFD method presents the worst results in comparison
to others. We therefore conclude that DTA does not present
significant improvements in detection delays. Nevertheless,
for detection delays comparable to existing approaches, DTA
provides considerably higher accuracy.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first evaluated the accuracies and detection
delays of existing anomaly detectors for event detection over
Internet paths. We concluded that existing methods can provide
acceptable detection delays, but their accuracies are quite
low. We then revealed statistical characteristics of Internet
bandwidth measurements that can facilitate detection. Based
on these characteristics, we proposed a decision-theoretic
anomaly detector which could achieve consistently higher
accuracy than the existing detectors while having similar
detection delay as existing detectors. As an extension of this
work, we are developing algorithms for event diagnosis and
extraction of diurnal patterns.
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