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Abstract 
With the growing needs of data intensive science, 
such as High Energy Physics, and the need to share 
data between multiple remote computer and data 
centers worldwide, the necessity for high network 
performance to replicate large volumes (TBytes) of 
data between remote sites in Europe, Japan and the 
U.S. is imperative. Currently, most production bulk-
data replication on the network utilizes multiple 
parallel standard (Reno based) TCP streams. 
Optimizing the window sizes and number of parallel 
stream is time consuming, complex, and varies (in 
some cases hour by hour) depending on network 
configurations and loads. We therefore evaluated 
new advanced TCP stacks that do not require 
multiple parallel streams while giving good 
performances on high speed long-distance network 
paths. In this paper, we report measurements made 
on real production networks with various TCP 
implementations on paths with different Round Trip 
Times (RTT) using both optimal and sub-optimal 
window sizes.  

We compared the New Reno TCP with the 
following stacks: HS-TCP, Fast TCP, S-TCP, 
HSTCP-LP, H-TCP and Bic-TCP. The analysis will 
compare and report on the stacks in terms of 
achievable throughput, impact on RTT, intra- and 
inter-protocol fairness, stability, as well as the 
impact of reverse traffic. 
We also report on some tentative results from tests 
made on unloaded 10 Gbps paths during 
SuperComputing 2003. 

1 Introduction  
With the huge amounts of data gathered in fields 
such as High Energy and Nuclear Physics (HENP), 
Astronomy, Bioinformatics, Earth Sciences, and 
Fusion, scientists are facing unprecedented 
challenges in managing, processing, analyzing and 
transferring the data between major sites like major 
research sites in Europe and North America that are 
separated by long distances. Fortunately, the rapid 
evolution of high-speed networks is enabling the 
development of data-grids and super-computing 
that, in turn, enable sharing vast amounts of data 
and computing power. Tools built on TCP, such as 

bbcp [11], bbftp [4] and GridFTP [1] are 
increasingly being used by applications that need to 
move large amounts of data. 
The standard TCP (Transmission Control Protocol) 
has performed remarkably well and is generally 
known for having prevented severe congestion as 
the Internet scaled up. It is well-known that the 
current version of TCP - which relies on the Reno 
congestion avoidance algorithm to measure the 
capacity of a network - is not appropriate for high 
speed long-distance networks. The need to 
acknowledge packets sets a limit for the throughput 
for Reno TCP to be a function1 of 1/RTT where 
RTT is the Round Trip Time. For example, with 
1500-Byte packets and a 100 ms RTT, it would 
require an average congestion window of 83,333 
segments and a packet drop rate of at most one 
congestion event every 5,000,000,000 packets to 
achieve a steady-state throughput of 10 Gbps (or 
equivalently, at most one congestion event every 
100 minutes)[8]. This loss rate is typically below 
what is possible today with optical fibers.  
Today the major approach, on production networks,  
to improve the performance of TCP is that of 
adjusting the TCP window size to the bandwidth (or 
more accurately the bitrate) * delay (RTT) product 
(BDP) of the network path, and using parallel TCP 
streams.  
In this paper, we provide an independent (of the 
TCP stack developers) analysis of the performance 
and the fairness of various new TCP stacks. We ran 
tests in 3 network configurations: short distance, 
middle distance and long distance. With these 
different network conditions, our goal is to find a 
protocol that is easy to configure, that provides 
optimum throughput, that is network friendly to 
other users, and that is stable to changes in available 
bitrates. We tested 7 different TCP stacks (see 
section 2 for a brief description of each): P-TCP, S-
TCP, Fast TCP, HS-TCP, HSTCP-LP, H-TCP and 
Bic-TCP. The main aim of this paper is to compare 

 
1  The macroscopic behavior of the TCP congestion 
avoidance algorithm by Mathis, Semke, Mahdavi & 
Ott in Computer Communication Review, 27(3), 
July 1997 
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We call advanced stacks the set of protocols 
presented below, except the first (TCP Reno). All of 
these stacks are improvements of TCP Reno apart 
from Fast TCP that is an evolution from TCP 
Vegas. All the stacks only require to be used on the 
sender’s side. Further all the advanced stacks run on 
GNU/Linux. 

and validate how well the various TCP stacks work 
in real high-speed production networks.  

Section 2 describes the specifications of each 
advanced protocol we tested. Section 3 explains 
how we made the measurements. Section 4 shows 
how each protocol: affects the RTT and CPU loads, 
and behaves with respect to the txqueuelen  (the 
number of packets queued up by the IP layer for the 
Network Interface Card (NIC)). This section also 
shows: how much throughput each protocol can 
achieve; how stable is each protocol in the face of 
“stiff” sinusoidally varying UDP traffic; and the 
stability of each protocol. Section 5 moves on to 
consider the effects of cross-traffic on each 
protocol. We consider both cross-traffic from the 
same protocol (intra-protocol) and a different 
protocol (inter-protocol). We also look at the effects 
of the reverse traffic on the protocols. Section 6 
reports on some tentative results from tests made 
during SuperComputing 20003 (SC03). Section 7 
talks about possible future measurements and 
section 8 provides the conclusion.  

2.1 Reno TCP 
TCP’s congestion management is composed of two 
major algorithms: the slow-start and congestion 
avoidance algorithms which allow TCP to increase 
the data transmission rate without overwhelming the 
network. Standard TCP cannot inject more than 
cwnd (congestion window) segments of 
unacknowledged data into the network. TCP Reno’s 
congestion avoidance mechanism is referred to as 
AIMD (Additive Increase Multiplicative Decrease). 
In the congestion avoidance phase TCP Reno 
increases cwnd by one packet per packet of data 
acknowledged and halves cwnd for every window 
of data containing a packet drop. Hence the 
following equations: 
Slow-Start 2 The advanced stacks  c  old  new :ACK cwndcwnd +=       (1) 

We selected the following TCP stacks according to 
two criteria in order to achieve high throughput on 
long distance:  

Congestion Avoidance 

 
old

a old  new :ACK 
cwnd

cwndcwnd +=      (2) Software change Since most data-intensive 
science sites are end-users of networks - with 
no control over the routers or infrastructure of 
the wide area network - we required that any 
changes needed would only apply to the end-
hosts. Thus, for standard production networks, 
protocols like XCP [15] (router assisted 
protocol) or Jumbo Frame (e.g. MTU=9000) 
are excluded. Furthermore, since our sites are 
major generators and distributors of data, we 
wanted a solution that only required changes 
to the sender end of a transfer. Consequently 
we eliminated protocols like Dynamic Right 
Sizing [5], which required a modification on 
the receiver’s side.  

cwndcwndcwnd old *old  new : DROP b−=      (3) 

Where a = 1, b = 0.5, c = 1. 

2.2 P-TCP 
After tests with varying maximum window sizes 
and numbers of streams, from our site to many sites, 
we observed that using the TCP Reno protocol with 
16 streams and an appropriate window size 
(typically the number of streams * window size ~ 
BDP) was a reasonable compromise for medium 
and long network distance paths. Since today 
physicists are typically using TCP Reno with 
multiple parallel streams to achieve high 
throughputs, we use this number of streams as a 
base for the comparisons with other protocols. 
However: 

TCP improvement Given the existing 
software infrastructure based on file transfer 
applications such as bbftp, bbcp and GridFTP 
that are based on TCP, and TCP’s success in 
scaling up to the Gbps range [6], we restricted 
our evaluations to implementations of the TCP 
protocol. Rate based protocols like SABUL [9] 
and Tsunami [21] or storage based protocols 
such as iSCSI or Fibre Channel over IP and 
circuit oriented solutions are currently out of 
scope.  

• It may be over-aggressive and unfair 
• The optimum number of parallel streams 

can vary significantly with changes (e.g., 
routes) or utilization of the networks.  

To be effective for high performance throughput, 
the best new advanced protocols, while using a 
single stream, need to provide similar performance 
to P-TCP (parallel TCP Reno) and in addition, they 
should have better fairness than P-TCP.  
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2.7 H-TCP For this implementation, we used the latest 
GNU/Linux kernel available (2.4.22) which 
includes SACK [RFC 2018] and New Reno [RFC 
2582]. This implementation still has the AIMD 
mechanism shown in (2) and (3). 

This modification has a similar approach to High- 
Speed TCP since H-TCP switches to the advanced 
mode after it has reached a threshold. Instead of 
using a table like HS-TCP, H-TCP uses an 
heterogeneous AIMD algorithm described in [24].  2.3 S-TCP 
2.8 Bic-TCP Scalable TCP changes the traditional TCP Reno 

congestion control algorithm: instead of using 
Additive Increase, the increase is exponential and 
the Multiplicative Decrease factor b is set to 0.125 
to reduce the loss of throughput following a 
congestion event. It was described by Tom Kelly in 
[16]. 

In [26], the authors introduce a new protocol whose 
objective is to correct the RTT unfairness of 
Scalable TCP and HS-TCP. The protocol uses an 
additive increase and a binary search increase. 
When the congestion window is large, additive 
increase with a large increment ensures linear RTT 
fairness as well as good scalability. Under small 
congestion windows, binary search increase is 
designed to provide TCP friendliness. 

2.4 Fast TCP 
The Fast TCP protocol is the only protocol which is 
based on Vegas TCP instead of Reno TCP. It uses 
both queuing delay and packet loss as congestion 
measures. It was introduced by Steven Low and his 
group at Caltech in [14] and demonstrated during 
SC2002 [13]. It reduces massive losses using pacing 
at sender and converges rapidly to an equilibrium 
value. 

3 Measurements 
Each test was run for 20 minutes from our site to 
three different networks: Caltech for short-distance 
(minimum RTT of 10 ms), University of Florida 
(UFL) for middle distance (minimum RTT of 70 
ms) and University of Manchester for long-distance 
(minimum RTT of 170 ms). We duplicated some 
tests to DataTAG3 Chicago (minimum RTT of 70 
ms) and DataTAG CERN (minimum RTT of 170 
ms) in order to see if our tests were coherent. We 
ran all the tests once. Some tests were duplicated in 
order to see if we can get the same result again. 
These duplicated tests corroborated our initial 
findings. The tests were run for about 20 minutes, 
and this helped us determine if the data were 
coherent. 

2.5 HS-TCP 
The HighSpeed TCP was introduced by Sally Floyd 
in [7] and [8] as a modification of TCP’s congestion 
control mechanism to improve the performance of 
TCP in fast, long delay networks. This modification 
is designed to behave like Reno for small values of 
cwnd, but above a chosen value of cwnd a more 
aggressive response function is used. When cwnd is 
large (greater than 38 packets equivalent to a packet 
loss rate of 1 in 1000), the modification uses a table 
to indicate by how much the congestion window 
should be increased when an ACK is received, and 
it releases less network bandwidth than 1/2 cwnd on 
packet loss. We were aware of two versions of 
High-Speed TCP: Li [18] and Dunigan [3]. Apart 
from the SC03 measurements, we chose to test the 
stack developed by Tom Dunigan which was 
included in the Web1002 patch. 

The throughputs on these production links go from 
400 Mbps to 600 Mbps which was the maximum we 
could reach because of the OC12/POS (622 Mbps) 
links to ESnet and CENIC at our site. The route for 
Caltech uses CENIC from our site to Caltech and 
the bottleneck capacity for most of the tests was 622 
Mbps. The route used for UFL was CENIC and 
Abilene and the bottleneck capacity was 467 Mbps 
at UFL. The route to CERN was via ESnet and 
Starlight and the bottleneck capacity was 622 Mbps 
at our site. The route used for University of 
Manchester is ESnet then GEANT and JANET.  

2.6 HSTCP-LP 
The aim of this modification, which is based on 
TCP-LP [17], is to utilize only the excess network 
bandwidth left unused by other flows. By giving a 
strict higher priority to all non-HSTCP-LP cross-
traffic flows, the modification enables a simple two-
class prioritization without any support from the 
network. HSTCP-LP was implemented by merging 
together HS-TCP and TCP-LP. 

At the sender side, we used three machines:  
• Machine 1 runs ping. 
• Machine 2 runs Advanced TCP. 
• Machine 3 runs Advanced TCP for cross-

traffic or UDP traffic. 

                                                           
                                                           
3 Research & Technological Development for a  
Transatlantic Grid: http://datatag.web.cern.ch/datatag/ 2 http://www.web100.org  
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Machines 2 and 3 had 3.06 GHz dual-processor 
Xeons with 1 GB of memory, a 533 MHz front side 
bus and an Intel Gigabit Ethernet (GE) interface. 
Due to difficulties concerning the availability of 
hosts at the receiving sites, we usually used only 
two servers on the receiver’s side (Machines 1 and 2 
at the sender side send data to the same machine at 
the receiver side). 
After various tests, we decided to run ping and iperf 
in separate machines. With this configuration we 
had no packet loss for ping during the tests. We 
used a modified version of iperf4 in order to test the 
advanced protocol in a heterogeneous environment. 
The ping measurements provide the RTT which 
provide information on how the TCP protocol stack 
implementations affect the RTT and how they 
respond to different RTTs. Following an idea 
described by Hacker [10], we modified iperf to be 
able to send UDP traffic with a sinusoidal variation 
of the throughput. We used this to see how well 
each advanced TCP stack was able to adjust to the 
varying “stiff” UDP traffic. The amplitude of the 
UDP stream varied from 5% to 20% of the 
bandwidth with periods of 60 seconds and 30 
seconds. Both the amplitude and period could be 
specified.  
We ran iperf (TCP and UDP flows) with a report 
interval of 5 seconds. This provided the incremental 
throughputs for each 5 second interval of the 
measurement.  For the ICMP traffic the interval that 
was used by the traditional ping program, is of the 
same order as the RTT in order to gain some 
granularity in the results. The tests were run mostly 
during the weekend and the night in order to reduce 
the impact on other traffic.  
On the sender’s side, we used the different kernels 
patched for the advanced TCP stacks. The different 
kernels are based on vanilla GNU/Linux 2.4.19 
through GNU/Linux 2.4.22. The TCP source code 
of the vanilla kernels is nearly identical. On the 
receiver’s side we used a standard Linux kernel no 
patches for TCP.  

For each test we computed different values: 
throughput average and standard deviation, RTT 
average and standard deviation, stability and 
fairness index. The stability index helps us find out 
how the advanced stack evolves in a network with 
rapidly varying available bandwidth.  
With iperf, we can specify the maximum sender and 
receiver window sizes the congestion window can 
reach. For our measurements we set the maximum 
sender and receiver window sizes equal. When 
quoting the maximum window sizes for P-TCP we 
refer to the window size for each stream. The 

optimal window sizes according the bandwidth 
delay product are about 500 KBytes for the short 
distance path, about 3.5 MBytes for the medium 
distance path and about 10 MBytes for the long 
distance path. We used 3 main window sizes for 
each path in order to try and bracket the optimum in 
each case: for the short-distance we used 256 
KBytes, 512K Bytes and 1024 KBytes; for the 
middle distance we used 1 MBytes, 4 MBytes and 8 
MBytes; and for the long-distance we used 4MByte, 
8 MByte and 12 MByte maximum windows. In this 
paper, we refer to these three different window sizes 
for each distance as: size 1, 2 and 3. 

4 Results 
In this section, we present the essential points and 
the analysis of our results. The data are available on 
our website5. 

4.1 RTT 
All advanced TCP stacks are “fair” with respect to 
the RTT (i.e. do not dramatically increase RTT) 
except for P-TCP Reno. On the short distance, the 
RTT of P-TCP Reno increases from 10 ms to 200 
ms. On the medium and long distances, the 
variation is much less noticeable and the difference 
in the average RTTs between the stacks is typically 
less than 10ms.  
For the other advanced stacks the RTT remains the 
same except with the biggest window size we 
noticed, in general, a small increase of the RTT. 

4.2 CPU load 
We ran our tests with the time command in order to 
see how each protocol used the CPU resource of the 
machine on the sender’s side. We calculated the 
MHz/Mbps rating by: 
 

MHz/Mbps = (CPU Utilization * CPU MHz) 
                      Average Throughput  

 
The MHz/Mbps utilization averaged over all stacks, 
for all distances and all windows was 0.93 ± 0.08 
MHz/Mbps. The MHz/Mbps averaged over all 
distances and window sizes varied from 0.8± 0.35 
for S-TCP to 1.0 ± 0.2 for Fast. We observed no 
significant difference in sender side CPU load 
between the various protocols.  
 

                                                                                                                      
4 http://dast.nlanr.net/Projects/Iperf/   5Removed for double-blind review process. 
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 TCP 

Reno 
P-TCP S-TCP Fast 

TCP 
HS-TCP Bic-TCP H TCP HSTCP-

LP 
Caltech 256KB 238±15 395±33 226±14 233±13 225±17 238±16 233±25 236±18 
Caltech 512KB 361±44 412±18 378±41 409±27 307±31 372±35 338±48 374±51 
Caltech 1MB 374±53 434±17 429±58 413±58 284±37 382±41 373±34 381±51 
UFL 1MB 129±26 451±32 109±18 136±12 136±15 134±13 140±14 141±18 
UFL 4MB 294±110 428±71 300±108 339±101 431±91 387±52 348±76 382±120 
UFL 8MB 274±115 441±52 281±117 348±96 387±95 404±34 351±56 356±118 
Manchester 4MB 97±38 268±94 170±20 163±33 171±15 165±26 172±13 87±61 
Manchester 8MB 78±41 232±74 320±65 282±113 330±52 277±92 323±64 118±111 
Manchester 12MB 182±66 212±83 459±71 262±195 368±161 416±100 439±129 94±113 
Avg. thru Size 1 154 371 178 177 177 179 185 155 
Avg. thru Size 2 244 357 384 343 356 345 336 292 
Avg. thru Size 3 277 362 422 341 346 367 388 277 
Avg. thru size 2 & 3 261 360 403 342 351 356 362 294 
Std. dev. size 2 & 3 113 107 49 53 54 49 41 125 
 
Table 1: Iperf TCP throughputs for various TCP stacks for different window sizes, averaged over the 
three different network path lengths. 
 

4.3 txqueuelen 
In the GNU/Linux 2.4 kernel, the txqueuelen 
enables us to regulate the size of the queue between 
the kernel and the Ethernet layer. It is well-known 
that the size of the txqueuelen for the NIC can 
change the throughput but we have to use some 
optimal tuning. Some previous tests [19] were made 
by Li. Although use of a large txqueuelen can 
result in a large increase of the throughput with TCP 
flows and a decrease of sendstall, Li observed an 
increase of duplicate ACKs.  
Scalable TCP by default used a txqueuelen of 2000 
but all the others use 100. Thus, we tested the 
various protocols with txqueuelen sizes of 100, 
2000 and 10000 in order to see how this parameter 
could change the throughput. In general, the 
advanced TCP stacks perform better with a 
txqueuelen of 100 except for S-TCP which 
performs better with 2000. With the largest 
txqueuelen, we observe more instability in the 
throughput.  

4.4 Throughput 
Table 1 and Figure 1 show the iperf TCP 
throughputs averaged over all the 5 seconds 
intervals for each 1200 second measurement 
(henceforth referred to as the 1200 second average) 
together with the standard deviations, for the 
various stacks, network distances and window sizes. 
Also shown are the “averages of the 1200 second 
averages” for the three network distances for each 
window size. Since the smallest window sizes were 

unable to achieve the optimal throughputs, we also 
provide the averages of the 1200 second averages 

Figure 1: Average

                                                           

for sizes 2 and 3. 

 of the 1200 second averages for 

• With the smallest maximum window sizes 

maximum window sizes 2 and 3 shown for three 
network distances and various TCP stacks. The y 
axis is the throughput achieved in Mbps. 
 

(size 1) we were unable to achieve optimal 
throughputs except when using P-TCP. 
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• Depending on the paths, we could achieve 
throughputs varying from 300 to 500 
Mbps. 
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• There are more differences in the protocol 
achievable throughputs for the longer 
distances. 

• For the long distance (Manchester), the 
BDP predicts an optimum window size 
closer to 12 MBytes than 8 Mbytes. As a 
result S-TCP, H-TCP, Bic-TCP and HS-
TCP perform best for the Manchester path 
with the 12 MByte maximum window size. 

• The top throughput performer for window 
sizes 2 and 3 was Scalable-TCP, followed 
by (roughly equal) Bic-TCP, Fast TCP, H-
TCP, P-TCP and HS-TCP, with HSTCP-
LP and Reno single stream bringing up the 
rear.  

Figure 2: Bic-TCP with sinusoidal UDP traffic. 

4.6 Stability 
• The poor performance of Reno single 

stream is to be expected due to its AIMD 
congestion avoidance behavior. 

Following [14], we compute the stability index as 
the standard deviation normalized by the average 
throughput Index (i.e. standard deviation / average 
throughput). If we have few oscillations in the 
throughput, we will have a stability index close to 
zero.  

• Since HSTCP-LP deliberately backs off 
early to provide a lower priority, it is not 
unexpected that it will perform less well 
than other more aggressive protocols. 

• P-TCP performs well on short and medium 
distances, but not as well on the long-
distance path, possibly since the 
windows*streams product was >> the 
BDP.  

Figure 3 shows the stability index for each of the 
stacks for each of the distances averaged over 
window sizes 2 and 3. Without the UDP cross-
traffic, all stacks have better stability indices (factor 
of 1.5 to 4 times better) with the smallest window 
sizes (average stability index over all stacks and 
distances for size 1 = 0.09±0.02, for size 2 = 
0.2±0.1 and size 3 =  0.24±0.1). S-TCP has the best 
stability (index ~ 0.1) for the optimal and larger 
than optimal window sizes, this is followed closely 
by H-TCP, Bic-TCP and HS-TCP. Single stream 
Reno and HSTCP-LP have poorer stabilities (> 0.3). 

We note that the standard deviations of these 
averages are sufficiently large that the ordering 
should only be regarded as a general guideline.  

4.5 Sinusoidal UDP 
The throughput of a protocol is not sufficient to 
describe its performance. Thus, we analyzed how 
the protocol behaves when competing with a UDP 
stream varying in a sinusoidal manner. The purpose 
of this stream is to emulate the variable behavior of 
the background cross-traffic. Our results show that 
in general, all protocols converge quickly to follow 
the changes in the available bandwidth and maintain 
a roughly constant aggregate throughput - especially 
for Bic-TCP. Fast TCP, and P-TCP to a lesser 
extent have, some stability problems on long-
distance and become unstable with the largest 
window size. Figure 2 shows an example of the 
variation of Bic-TCP in the presence of sinusoidal 
UDP traffic measured from our site to UFL with an 
8 MByte window. 
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Figure 3: Stability index for the 3 different network 
paths, averaged over the optimal and largest 
window sizes. Also shown are the averages and 
standard deviations over the two window sizes and 
paths. 
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With the sinusoidal UDP traffic, better stability is 
achieved once again with the smallest window sizes 
(stability index averaged over all stacks and 
distances for size 1 = 0.13±0.06, size 2= 0.21±0.08, 
size 3= 0.25±0.01). For the other window sizes (see 
Figure 4) there is little difference (0.01) between the 
two UDP-frequency stabilities for a given stack. 
The throughputs with the UDP cross-traffic are 
generally larger (15%) than those without the UDP 
cross-traffic. Bic-TCP closely followed by the two 
more aggressive protocols, P-TCP and Scalable-
TCP, have the best stability indices (< 0.2). H-TCP 
and HS-TCP have stability indices typically > 0.2 
and Fast TCP and HSTCP-LP have stability indices 
> 0.3 
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A fairness index of 1 corresponds to a perfect 
allocation of the throughput between all protocols.  
There are other definitions of the concept of 
fairness. For example, in [25] the authors describe 
and extend the concept of “Fa fairness”. However, 
we chose to use the definition of Chiu and Jain 
which is the one most quoted in the networking 
literature concerning a simple model of a single 
bottleneck.  
The intra-protocol fairness is the fairness between 
two flows of the same protocol. Each flow is sent 
from a different sending host to a different receiving 
host at the same time.  

 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

Bi
c-

TC
P

R
en

o 
TC

P 
16

S-
TC

P

H
 T

C
P

H
S-

TC
P

Fa
st

 T
C

P

H
ST

C
P-

LP

St
ab

ili
ty

 in
de

x

Avg UDP 60s
Avg UDP 30s
Avg no UDP

Figure 4: Stability as a function of TCP stack and 
UDP cross traffic frequency. The data is averaged 
over window sizes 2 and 3 and network paths.  
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5 Cross-traffic 
5.1 Intra-protocol fairness 
The cross-traffic tests are important and help us to 
understand how fair a protocol is. At our research 
centers, we wanted to know not only the fairness of 
each advanced protocol against TCP Reno, but also 
how fairly the protocols behave towards each other. 
It is important to see how the different protocols 
compete with one another since the protocol that 
our research centers will adopt shortly must coexist 
harmoniously with existing protocols and with 
advanced protocols chosen by other sites. Of course, 
we cannot avoid a future protocol being unfair only 
with our chosen one. In this paper we consider a fair 
share per link metric. If there are n flows through a 
bottleneck link, each flow will take 1/n of the 
capacity of the bottleneck link. We measure the 
average bandwidth xi of each source i during the test 
then we compute the fairness index as described in 
[2] by Chiu and Jain : 

Figure 5: Comparison of Intra-protocol fairness 
measurements from our site to UFL 
 
Table 2 shows the Intra-protocol friendliness 
measured from our site to Caltech, UFL and 
Manchester for the 3 different window sizes. Also 
shown are the averages and standard deviations.  
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Dest
Win
dow

P-
TCP

S-
TCP Fast

HS-
TCP

Bic-
TCP

H-
TCP

HS 
TCP-
LP

Calt 256K 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Calt 512K 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Calt 1MB 1.00 1.00 1.00 1.00 0.99 1.00 1.00

U. Fl. 1MB 1.00 1.00 1.00 1.00 1.00 1.00 1.00

U. Fl. 4MB 1.00 1.00 1.00 0.99 1.00 1.00 1.00

U. Fl. 8MB 1.00 1.00 1.00 0.94 1.00 1.00 1.00
Man 4MB 1.00 1.00 1.00 1.00 0.98 0.98 0.99
Man 8MB 0.98 1.00 0.97 1.00 1.00 0.90 0.96
Man 12MB 0.92 0.97 1.00 0.97 0.97 0.79 0.86

Avg 0.99 0.99 1.00 0.99 0.99 0.96 0.98
Std 0.03 0.01 0.01 0.02 0.01 0.07 0.05  

21

21

xx
xxA

+
−

=  

where x1 and x2 are the throughput averages of 
streams 1 and 2 in the cross-traffic.  
 
Table 3 shows the asymmetries of the cross-traffic 
between different stacks. A value near one indicates 
that the protocol is too aggressive towards the 
competing protocol. A value near minus one 
indicates a too gentle protocol. The optimal is to 
have a value near 0 that indicates that the protocol is 
fair against the other protocols.  
 
 P-

TCP 
S-
TCP

Fast HS-
TCP 

Bic-
TCP 

H-
TCP 

HS 
TCP-
LP 

Caltech 0.16 0.24 -0.1 -0.28 0.01 -0.02 -0.47 
UFL 0.78 0 -0.01 -0.06 0.15 -0.12 0 
Man 
chester

0.19 -0.08 0.04 -0.38 -0.03 0.25 -0.56 

Avg 0.37 0.05 -0.02 -0.24 0.04 0.04 -0.34 

Table 2: Intra-protocol Fairness 
 
In general, all the protocols have a good intra-
fairness (83% of the measurements had F ≥ 0.98).  
Poorer fairness was observed for larger distances 
and to a lesser extent for larger windows. Figure 5 
shows examples of  Intra-protocol measurements 
between our site and UFL for FAST vs. FAST (F ~ 
0.99) and HS-TCP vs. HS-TCP (F ~ 0.94) from our 
site to UFL with window sizes of 8 MBytes. The 
two time series (one with a solid line, the other with 
a dotted line) in the middle for each plot are the 
individual throughputs for the two HS-TCP (lower 
plot) and FAST (upper plot) protocols. We observe 
that in this example the two HS-TCP flows will 
switch with one another instead of maintaining a 
constant share of the bandwidth. The first flow will 
decrease after a certain time and leave the available 
bandwidth to the second flow. As a result, we 
observe a large instability in these HS-TCP flows. 
This effect was present but less noticeable on the 
Manchester path for window sizes 2 and 3. We did 
not notice this HS-TCP behavior on the short 
distance path or window size 1. 

Table 3: Average asymmetry of each protocol vs. all 
others 
 
Our results show that Bic-TCP, Fast TCP, S-TCP 
and H-TCP have small absolute values of the 
fairness asymmetry. It is normal for HSTCP-LP to 
be too gentle (and have a large negative value of the 
asymmetry) since it uses only the remaining 
bandwidth and is deliberately non-intrusive - thus 
we removed it from our calculation of the average 
asymmetry of the other protocols for the middle-
distance and long-distance. On the short-distance, 
we can see that all advanced TCP stacks other than 
P-TCP compete like a single stream of Reno but 
since P-TCP is very aggressive (as expected), we do 
not include it in the average asymmetry of the other 
protocols for the short-distance. Only Bic-TCP is 
sufficiently aggressive to compete with P-TCP in 
this case, but it appears too aggressive for the other 
protocols. Our results show that S-TCP, which is 
very aggressive in short-distance, becomes quite 
gentle in the long-distance. On the other hand, H-
TCP, which is gentle in the short and middle 
distances, becomes aggressive in long-distance. HS-
TCP, as expected, is too gentle in our tests. 

5.2 Inter-protocol fairness 
For the inter-protocol fairness we sent two different 
flows on the link from two different machines. The 
aim of this experiment was to see how each protocol 
behaves with a competing protocol. We hoped that 
the protocol would neither be too aggressive nor too 
gentle (non-aggressive) towards the other protocols. 
The fairness computation described earlier does not 
tell us how aggressive or gentle the protocol is, only 
that it is not taking/getting a fair share of the 
achievable throughput. Hence we introduce the 
following formula, which defines the asymmetry 
between two throughputs: 

5.3 Reverse-traffic 
Reverse-traffic causes queuing on the reverse path. 
This in turn can result in the ACKs being lost or 
coming back in bursts (compressed ACKs [30]). 
Normally, the router, the path and the Ethernet card 
are full-duplex and should not be affected by the 
reverse-traffic but in actuality the reverse-traffic 
affects the forward traffic implicitly by modifying  
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the ACK behavior. Therefore, we tested the 
protocols by sending TCP traffic from our site to 
UFL using an advanced stack and from UFL to our 
site using P-TCP with 16 streams.  Table 4 shows 
the results of the throughputs in Mbps measured 
with 8 MByte windows where the first 10 minutes 
of the measurement had the reverse traffic and the 
remaining 10 minutes had no reverse traffic. 
Typical standard deviations are about 10-20% of the 
average throughputs. It is  seen  that Fast TCP - 
which is based on TCP Vegas that uses RTT for 
congestion detection - is more heavily affected by 
heavy reverse-traffic that affects (usually increases) 
the reverse path delays and hence the RTTs. The net 
effect is that, for the tested version of Fast TCP, 
throughput is typically about 4 times less than the 
other stacks, apart from HS-TCP. HS-TCP never 
reaches the limit at which the AIMD behavior 
changes from Reno to HS. 
 
 Bic-

TCP 
Fast HS-

TCP 
HSTCP-
LP 

H-
TCP

P-
TCP

S-
TCP

With 
rev. 
traffic 

230 
± 40 

20  
± 10 

110 
± 50 

220  
± 60 

220 
± 40

200 
± 60

280 
± 50

Without 
rev. 
traffic 

400 
± 40 

260 
± 50 

380 
± 50 

380  
± 30 

380 
± 40

380 
± 60

400 
± 20

Table 4: Iperf TCP throughputs in Mbps from our 
site to UFL with and without reverse traffic 

6 10Gbps path tests 
During SuperComputing 20037, we made some 
tentative TCP performance measurements on 10 
Gbps links between hosts at our booth at the 
Phoenix convention center and a host at the Palo 
Alto Internet eXchange (PAIX), a host at StarLight 
in Chicago and a host at NIKHEF in Amsterdam. 
Due to the limited amount of time we had access to 
these links (<3 days) and the emphasis on 
demonstrating the maximum throughput for the 
SC03 Bandwidth Challenge, these measurement are 
necessarily incomplete, however some of the results 
are felt to be worth reporting. 

6.1 Setup 
All the hosts at Phoenix and PAIX were Dell 2650s 
with dual Xeon CPUs, a 533 MHz front side bus, 
and an Intel PRO/10GbE LR Network Interface 
Card (NIC) plugged into the 133 MHz 64 bit PCI-X 
bus slot. There were 3 hosts at our booth at SC03, 
two with 3.06 GHz CPUs, and the third with 2.04 
GHz CPUs. The host at PAIX had dual Xeon 3.06 
GHz CPUs and a 10 Gbps Ethernet connection 

(LAN PHY at level 2) to a Cisco GSR router in LA. 
From the GSR router the signal was transmitted via 
an OC192/POS circuit to a Juniper 640 router 
managed by SCInet at the Phoenix Convention 
Center. From the Juniper the path went via a Force 
10 E1200 router to the Cisco 6509 in our booth 
using a 10 Gbps Ethernet link.  

The StarLight/Chicago path from the booth went 
from the Cisco 6509 via a second 10 Gbps Ethernet 
link to the Force 10 router and on through a second 
Juniper router connected to the Abilene core at 10 
Gbps, and thence via Abilene routers at Los 
Angeles, Sunnyvale, Kansas City, and Indianapolis 
to Chicago. The host at StarLight was an HP 
Integrity rx2600 (64 bit Itanium) system with dual 
1.5 GHz CPUs and 4 GByte RAM.  

The Amsterdam path followed the same path to 
StarLight and then had one extra hop over the 
SURFnet 10 Gbps link to Amsterdam. The host at 
Amsterdam was an HP Itanium/F10 at NIKHEF. 

6.2 Methodology 
We set up the sending hosts at SC03 with the 
Caltech Fast TCP stack, and the DataTAG altAIMD 
stack [28]. The latter allowed dynamic (without 
reboot) selection of the standard Linux TCP stack 
(New Reno with Fast re-transmit), the Manchester 
University implementation of the High Speed TCP 
(HS-TCP) and the Cambridge University Scalable 
TCP stack (S-TCP). By default we set the 
Maximum Transfer Unit (MTU) to 9000 Bytes and 
the transmit queue length (txqueuelen) to 2000 
packets.  
We started the first set of measurements at the same 
time as our bandwidth challenge demonstration 
(about 16:00 PST Wednesday 19th November 
2003). The main emphasis at this time was to 
achieve the maximum throughput; the evaluation of 
different TCP stacks was a secondary goal. The 
duration of the tests was about 60 minutes. 
We started the second set of measurements just 
before midnight on Wednesday 19th November. 
These measurements were between Phoenix and 
PAIX, Phoenix and Chicago (65 ms minimum RTT) 
and Phoenix and Amsterdam (175 ms minimum 
RTT). This was a reasonably controlled set of 
measurements with no Bandwidth Challenge in 
progress and little cross-traffic. Each test was for 
1200 seconds, with a given stack, and fixed 
maximum window size. We finished the second set 
of tests at about 07:00 PST Thursday 20th 
November.

                                                           
7 SC2003: http://www.sc-conference.org/sc2003/  
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10 Gbits/s throughput from SC2003 to PAIX
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Figure 6:  Points= TCP throughput from our booth to PAIX.  
Smooth Curve= total SC2003 traffic on the link to LA, taken from the Juniper router. 

10 Gbits/s throughput from SC2003 to Chicago & Amsterdam
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Figure 7:  Points= TCP throughput from our booth to Amsterdam and Chicago.  
Smooth Curve= total SC2003 traffic on the Abilene access link, taken from the Juniper router. 
 
 

6.2.1 Tests made during the 
Bandwidth Challenge 

During the Bandwidth Challenge, TCP flows were 
set up from our booth to PAIX, Chicago and 
Amsterdam. They were generated using iperf with 
an MTU of 9000 Bytes and TCP window sizes of 
30, 60 and 200 MBytes respectively. Separate Dell 
machines at the booth, running the DataTAG 
altAIMD stack, were used for the flow to each 
remote location. Following other work on PCI-X 
transactions [27], the PCI-X  parameter “maximum 
memory read Byte count”, mmrbc, was set to 4096 
bytes on both local are remote machines. Setting 
mmrbc to the maximum 4096 bytes minimized the 
time taken for the packets to cross the PCI-X bus 
and thus increased throughput. 
The flow to PAIX shared the SC2003-LA link with 
traffic from the Caltech booth to nodes at LA. The 
flows to Amsterdam and Chicago shared the 10 

Gbps Ethernet link to the SCInet Force10 switch 
and then shared the Abilene access link with other ~ 
1-2Gigabit traffic Bandwidth Challenge flows to US 
sites.  
The points in Figure 6 show the TCP user level 
throughput (goodput) to the remote node in PAIX 
and the solid line shows the total traffic from 
SC2003 on the link to LA, taken from the link level 
counters on the Juniper router. The first transfer 
(16:00 – 16:40) used HS-TCP and initially the 
observed throughput was 4.37 Gbps and extremely 
stable, giving a Stability Index (standard deviation / 
average throughput) of 0.005. After 16:12 the 
throughput dropped to 2.87 Gbps with considerable 
variation, giving a Stability Index of 0.16. This 
could be due to the increase of the total traffic on 
the link (~7.5 Gbps upwards). The dramatic drop at 
16:32 coincides with the link reaching its 10 Gbps 
capacity. The red points from 16:42 to 17:18 show 
the throughput using scalable TCP, S-TCP. Initially 
the throughput was 3.3 Gbps with a Stability Index 
of 0.08, similar or slightly better than HS-TCP 
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given the load on the LA link. Between 17:08 and 
17:18 a second S-TCP flow was started between the 
same end hosts. The average of each flow drops to 
~1.0 Gbps and the Stability Index increases to 0.56. 
The sum of the two S-TCP flows was ~1.9 Gbps 
with a Stability Index of 0.39.The combined rate 
was less than that for 1 flow which could be due to 
the extra processing required for two flows. 
In comparison, Figure 7 shows the TCP user level 
throughput to Chicago is quite steady at 3.1 Gbps 
with a Stability Index of 0.016, while to Amsterdam 
the throughput is greater at ~4.35 Gbps but less 
stable with a Stability Index of 0.069.The solid line 
in Figure 7 shows the total link level traffic from 
SC2003 on the Abilene access link, which is about 
1 Gbps more than the total of the Amsterdam and 
Chicago traffic. It is worth noting that the host 
providing the flow to Chicago had 2.04 GHz CPUs, 
while that to Amsterdam had 3.06 GHz CPUs, this 
may account for the lower throughput recorded. 

6.2.2 Tests to PAIX  
On the Phoenix to PAIX link (minimum RTT 17 
ms) we used maximum window sizes of 8 MBytes, 
16MBytes and 32 MBytes8. This bracketed the 
nominal optimum window size calculated from the 
BDP of 17 ms * 10 Gbps ~ 20 MBytes. For the 
PAIX link, all the tests were made with a single 
TCP stream. For Reno, HS-TCP and S-TCP there 
was little observable differences between the four 
stacks in the achievable bandwidth behavior. 

• For an MTU of 9000 Bytes, a window size 
of 8MBytes was inadequate and resulted in 
throughput being limited to about 2.9 Gbps 
for Reno single stream, HS-TCP and S-
TCP 

• For an MTU of 9000 Bytes with window 
sizes of 16 MBytes or 32 MBytes for Reno 
single stream, HS-TCP and S-TCP the 
throughput increased to about 4.3Gbps. 

• The throughputs with an MTU of 9000 
Bytes were very stable. Typical values of 
the Stability Index were < 0.004. The 
larger values for Reno with a single stream 
and an 8 MByte window and HS-TCP with 
a 16 MByte window were each caused by a 
single sudden drop of throughput for one 5 
second periods. 

• Reducing the MTU from 9000 Bytes to 
1500 Bytes reduced the throughput for a 16 
MByte window from 4.3 Gbps to about 
700 Mbps, and for an 8 MByte window 
from 2.9 Gbps to ~ 360 Mbps. Also the 

throughputs were less stable with the 1500 
Byte MTU (Stability Index > 0.10). 

• With an MTU of only 1500 Bytes, Fast 
TCP gave similar performance to HS-TCP 
and STCP when they ran with 1500Byte 
MTUs.  

The 4.3 Gbps limit was slightly less than the ~ 5.0 
Gbps achieved with UDP transfers in our lab 
between back to back 3.06 GHz Dell PowerEdge 
2650 hosts. On the other hand it is less than that 
calculated from the expected data transfer rate for a 
10GE NIC with a 64 bit 133 MHz PCI-X bus [27]. 
The limitation in throughput is believed to be due to 
CPU factors (CPU speed, memory/bus speed or the 
I/O chipset). The relative decrease in throughput 
going from 9000 Byte MTU to a 1500 Byte MTU 
was roughly proportional to the reduction in MTU 
size. This maybe related to the extra CPU power / 
memory bandwidth required to process the 6 times 
as many, but 6 times as small MTUs. Back to back 
UDP transfers in our lab between 3.06 GHz Dell 
PowerEdge 2650 hosts achieved about 1.5 Gbps or 
about twice the 700 Mbps achieved with the SC03 
long distance TCP transfers. Further work is 
required to understand this discrepancy. 

7 Future experiments 
In the near future, we plan on repeating the tests on 
higher speed networks, in particular on the 
emerging 10 Gbps test beds. We also plan to test 
other promising TCP stacks such as Westwood+ 
[20], and rate based protocols such as RBUDP [31], 
SABUL/UDT, and compare their performances 
with the TCP based protocols. Also we are planning 
to work with others to compare our real network 
results with those from simulators such as ns-29 or 
emulators such as Dummynet [23].  
In the future, we would like to test a similar 
topology as described in [12] where the authors 
indicate that it may be beneficial for long RTT 
connections to become slightly more aggressive 
during the additive increase phase of congestion 
avoidance. In this paper we only made cross-traffic 
tests with two protocols having the same RTT. It 
means that all the senders’ servers were at the same 
place. It was the same for the receiver. Thus, we 
have to check how each protocol behaves with 
different RTTs on the same link. The increase 
between the different protocols on the path will be 
different and it may affect the fairness.  
We should also test the different protocols with 
more than one stream to see how aggressive or 
gentle a protocol is on this case. Finally, we plan to 

                                                           
                                                           
9 ”The Network Simulator - ns-2”, available at 
http://www.isi.edu/nsnam/ns/  8Removed for confidential purpose 
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test other promising TCP stacks and rate based 
protocols and compare their performance with the 
TCP based protocols.  

[2] D. Chiu and R. Jain. Analysis of the increase 
and decrease algorithms for congestion avoidance in 
computer networks. In Computer Networks and 
ISDN Systems, pages 1–14, June 1989. 

8 Conclusion 
In this paper we presented the results of a two-
month experiment to measure the performance of 7 
TCP stacks from our site over various network 
paths. If we compare the various TCP stacks for the 
more important metrics (throughput achievable, 
impact on RTT, aggressiveness, stability and 
convergence) we observe for the set of 
measurements: 

[3] T. Dunigan. 
http://www.csm.ornl.gov/~dunigan/net100/. 
[4] G. Farrache. Available online: 
http://doc.in2p3.fr/bbftp/. 
[5] W. Feng, M. Fisk, M. Gardner, and E. Weigle. 
Dynamic right-sizing: An automated, lightweight, 
and scalable technique for enhancing grid 
performance. In 7th IFIP/IEEE International 
Workshop, PfHSN 2002, Berlin, April 2002. 

• The differences in the performances of the 
TCP stacks are more noticeable for the 
longer distances. 

[6] W. Feng, J. Hurwitz, H. Newman, S. Ravot, R. 
L. Cottrell, O. Martin, F. Coccetti, C. Jin, X. Wei, 
and S. Low. Optimizing 10-gigabit Ethernet for 
networks of workstations, clusters and grids: A case 
study. In Supercomputing Conference 2003, 
Phoenix, November 2003. 

• TCP Reno single stream, as expected, is 
low performance and unstable on longer 
distances. 

• P-TCP is too aggressive. It is also very 
unfair with the RTT on short distance. 

[7] S. Floyd. Limited slow-start for TCP with large 
congestion windows. IETF Internet Draft, draft-
floyd-tcp-slowstart-01.txt, August 2002. • HSTCP-LP is too gentle and, by design, 

backs-off too quickly otherwise it performs 
well. It looks very promising to use to get 
Less than Best Effort (LBE) service 
without requiring network modifications. 

[8] S. Floyd. HighSpeed TCP for large congestion 
windows. IETF Internet Draft, draft-floyd-
highspeed-02.txt, February 2003. 
[9] Y. Gu, X. Hong, M. Mazzuci, and R. L. 
Grossman. SABUL: A high performance data 
transport protocol. IEEE Communications Letters, 
2002. 

• Fast TCP performs as well as most others 
but it is very handicapped by the reverse 
traffic. 

• S-TCP is very aggressive on middle-
distance and becomes unstable with UDP 
traffic on long distance but achieves high 
throughput. 

[10] T. Hacker, B. Noble, and B. Athey. Improving 
throughput and maintaining fairness using parallel 
TCP. Submitted to IEEE INFOCOM 2004, Hong 
Kong, 2004. 

• HS-TCP is very gentle and has some 
strange intra-fairness behavior. 

[11] A. Hanushevsky, A. Trunov, and R. L. Cottrell. 
Peer-to-peer computing for secure high performance 
data copying. In Computing in High Energy 
Physics, Beijing, 2001. 

• Bic-TCP overall performs very well in our 
tests.  

[12] T. H. Henderson, E. Sahouria, S. McCanne, 
and R. H. Katz. On improving the fairness of TCP 
congestion avoidance. IEEE Globecomm 
conference, 1998. 

It is also very important to choose a TCP stack that 
works well with and will not decrease the 
performance and efficiency of TCP Reno used all 
around the world. Moreover, we will always prefer 
an advanced TCP which has the recommendation of 
the IETF and which will be used by everybody.  

[13] C. Jin, D. Wei, S. H. Low, G. Bushmaster, J. 
Bunn, D. H. Choe, R. L. A Cottrell,  J. C. Doyle, W. 
Feng, O. Martin, H. Newman,  F. Paganini, S. 
Ravot, and S. Singh. FAST TCP: From theory to 
experiments. In First International Workshop on 
Protocols for Fast Long-Distance Networks 
(PFLDNet 2003), Geneva, February 2003. 
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