
Evaluation of Advanced TCP Stacks on Fast Long-
Distance Production Networks

Abstract
With the growing needs of data intensive science,
such as High Energy Physics, and the need to share
data between multiple remote computer and data
centers worldwide, the necessity for high network
performance to replicate large volumes (TBytes) of
data between remote sites in Europe, Japan and the
U.S. is imperative. Currently, most production bulk-
data replication on the network utilizes multiple
parallel standard (Reno based) TCP streams.
Optimizing the window sizes and number of parallel
stream is time consuming, complex, and varies (in
some cases hour by hour) depending on network
configurations and loads. We therefore evaluated
new advanced TCP stacks that do not require
multiple parallel streams while giving good
performances on high speed long-distance network
paths. In this paper, we report measurements made
on real production networks with various TCP
implementations on paths with different Round Trip
Times (RTT) using both optimal and sub-optimal
window sizes.

We compared the New Reno TCP with the
following stacks: HS-TCP, Fast TCP, S-TCP,
HSTCP-LP, H-TCP and Bic-TCP. The analysis will
compare and report on the stacks in terms of
achievable throughput, impact on RTT, intra- and
inter-protocol fairness, stability, as well as the
impact of reverse traffic.
We also report on some tentative results from tests
made on unloaded 10 Gbps paths during
SuperComputing 2003.

1 Introduction
With the huge amounts of data gathered in fields
such as High Energy and Nuclear Physics (HENP),
Astronomy, Bioinformatics, Earth Sciences, and
Fusion, scientists are facing unprecedented
challenges in managing, processing, analyzing and
transferring the data between major sites like major
research sites in Europe and North America that are
separated by long distances. Fortunately, the rapid
evolution of high-speed networks is enabling the
development of data-grids and super-computing
that, in turn, enable sharing vast amounts of data
and computing power. Tools built on TCP, such as

bbcp [11], bbftp [4] and GridFTP [1] are
increasingly being used by applications that need to
move large amounts of data.
The standard TCP (Transmission Control Protocol)
has performed remarkably well and is generally
known for having prevented severe congestion as
the Internet scaled up. It is well-known that the
current version of TCP - which relies on the Reno
congestion avoidance algorithm to measure the
capacity of a network - is not appropriate for high
speed long-distance networks. The need to
acknowledge packets sets a limit for the throughput
for Reno TCP to be a function1 of 1/RTT where
RTT is the Round Trip Time. For example, with
1500-Byte packets and a 100 ms RTT, it would
require an average congestion window of 83,333
segments and a packet drop rate of at most one
congestion event every 5,000,000,000 packets to
achieve a steady-state throughput of 10 Gbps (or
equivalently, at most one congestion event every
100 minutes)[8]. This loss rate is typically below
what is possible today with optical fibers.
Today the major approach, on production networks,
to improve the performance of TCP is that of
adjusting the TCP window size to the bandwidth (or
more accurately the bitrate) * delay (RTT) product
(BDP) of the network path, and using parallel TCP
streams.
In this paper, we provide an independent (of the
TCP stack developers) analysis of the performance
and the fairness of various new TCP stacks. We ran
tests in 3 network configurations: short distance,
middle distance and long distance. With these
different network conditions, our goal is to find a
protocol that is easy to configure, that provides
optimum throughput, that is network friendly to
other users, and that is stable to changes in available
bitrates. We tested 7 different TCP stacks (see
section 2 for a brief description of each): P-TCP, S-
TCP, Fast TCP, HS-TCP, HSTCP-LP, H-TCP and
Bic-TCP. The main aim of this paper is to compare

1 The macroscopic behavior of the TCP congestion
avoidance algorithm by Mathis, Semke, Mahdavi &
Ott in Computer Communication Review, 27(3),
July 1997

1

We call advanced stacks the set of protocols
presented below, except the first (TCP Reno). All of
these stacks are improvements of TCP Reno apart
from Fast TCP that is an evolution from TCP
Vegas. All the stacks only require to be used on the
sender’s side. Further all the advanced stacks run on
GNU/Linux.

and validate how well the various TCP stacks work
in real high-speed production networks.

Section 2 describes the specifications of each
advanced protocol we tested. Section 3 explains
how we made the measurements. Section 4 shows
how each protocol: affects the RTT and CPU loads,
and behaves with respect to the txqueuelen (the
number of packets queued up by the IP layer for the
Network Interface Card (NIC)). This section also
shows: how much throughput each protocol can
achieve; how stable is each protocol in the face of
“stiff” sinusoidally varying UDP traffic; and the
stability of each protocol. Section 5 moves on to
consider the effects of cross-traffic on each
protocol. We consider both cross-traffic from the
same protocol (intra-protocol) and a different
protocol (inter-protocol). We also look at the effects
of the reverse traffic on the protocols. Section 6
reports on some tentative results from tests made
during SuperComputing 20003 (SC03). Section 7
talks about possible future measurements and
section 8 provides the conclusion.

2.1 Reno TCP
TCP’s congestion management is composed of two
major algorithms: the slow-start and congestion
avoidance algorithms which allow TCP to increase
the data transmission rate without overwhelming the
network. Standard TCP cannot inject more than
cwnd (congestion window) segments of
unacknowledged data into the network. TCP Reno’s
congestion avoidance mechanism is referred to as
AIMD (Additive Increase Multiplicative Decrease).
In the congestion avoidance phase TCP Reno
increases cwnd by one packet per packet of data
acknowledged and halves cwnd for every window
of data containing a packet drop. Hence the
following equations:
Slow-Start 2 The advanced stacks c old new :ACK cwndcwnd += (1)

We selected the following TCP stacks according to
two criteria in order to achieve high throughput on
long distance:

Congestion Avoidance

old

a old new :ACK
cwnd

cwndcwnd += (2) Software change Since most data-intensive
science sites are end-users of networks - with
no control over the routers or infrastructure of
the wide area network - we required that any
changes needed would only apply to the end-
hosts. Thus, for standard production networks,
protocols like XCP [15] (router assisted
protocol) or Jumbo Frame (e.g. MTU=9000)
are excluded. Furthermore, since our sites are
major generators and distributors of data, we
wanted a solution that only required changes
to the sender end of a transfer. Consequently
we eliminated protocols like Dynamic Right
Sizing [5], which required a modification on
the receiver’s side.

cwndcwndcwnd old *old new : DROP b−= (3)

Where a = 1, b = 0.5, c = 1.

2.2 P-TCP
After tests with varying maximum window sizes
and numbers of streams, from our site to many sites,
we observed that using the TCP Reno protocol with
16 streams and an appropriate window size
(typically the number of streams * window size ~
BDP) was a reasonable compromise for medium
and long network distance paths. Since today
physicists are typically using TCP Reno with
multiple parallel streams to achieve high
throughputs, we use this number of streams as a
base for the comparisons with other protocols.
However:

TCP improvement Given the existing
software infrastructure based on file transfer
applications such as bbftp, bbcp and GridFTP
that are based on TCP, and TCP’s success in
scaling up to the Gbps range [6], we restricted
our evaluations to implementations of the TCP
protocol. Rate based protocols like SABUL [9]
and Tsunami [21] or storage based protocols
such as iSCSI or Fibre Channel over IP and
circuit oriented solutions are currently out of
scope.

• It may be over-aggressive and unfair
• The optimum number of parallel streams

can vary significantly with changes (e.g.,
routes) or utilization of the networks.

To be effective for high performance throughput,
the best new advanced protocols, while using a
single stream, need to provide similar performance
to P-TCP (parallel TCP Reno) and in addition, they
should have better fairness than P-TCP.

2

2.7 H-TCP For this implementation, we used the latest
GNU/Linux kernel available (2.4.22) which
includes SACK [RFC 2018] and New Reno [RFC
2582]. This implementation still has the AIMD
mechanism shown in (2) and (3).

This modification has a similar approach to High-
Speed TCP since H-TCP switches to the advanced
mode after it has reached a threshold. Instead of
using a table like HS-TCP, H-TCP uses an
heterogeneous AIMD algorithm described in [24]. 2.3 S-TCP
2.8 Bic-TCP Scalable TCP changes the traditional TCP Reno

congestion control algorithm: instead of using
Additive Increase, the increase is exponential and
the Multiplicative Decrease factor b is set to 0.125
to reduce the loss of throughput following a
congestion event. It was described by Tom Kelly in
[16].

In [26], the authors introduce a new protocol whose
objective is to correct the RTT unfairness of
Scalable TCP and HS-TCP. The protocol uses an
additive increase and a binary search increase.
When the congestion window is large, additive
increase with a large increment ensures linear RTT
fairness as well as good scalability. Under small
congestion windows, binary search increase is
designed to provide TCP friendliness.

2.4 Fast TCP
The Fast TCP protocol is the only protocol which is
based on Vegas TCP instead of Reno TCP. It uses
both queuing delay and packet loss as congestion
measures. It was introduced by Steven Low and his
group at Caltech in [14] and demonstrated during
SC2002 [13]. It reduces massive losses using pacing
at sender and converges rapidly to an equilibrium
value.

3 Measurements
Each test was run for 20 minutes from our site to
three different networks: Caltech for short-distance
(minimum RTT of 10 ms), University of Florida
(UFL) for middle distance (minimum RTT of 70
ms) and University of Manchester for long-distance
(minimum RTT of 170 ms). We duplicated some
tests to DataTAG3 Chicago (minimum RTT of 70
ms) and DataTAG CERN (minimum RTT of 170
ms) in order to see if our tests were coherent. We
ran all the tests once. Some tests were duplicated in
order to see if we can get the same result again.
These duplicated tests corroborated our initial
findings. The tests were run for about 20 minutes,
and this helped us determine if the data were
coherent.

2.5 HS-TCP
The HighSpeed TCP was introduced by Sally Floyd
in [7] and [8] as a modification of TCP’s congestion
control mechanism to improve the performance of
TCP in fast, long delay networks. This modification
is designed to behave like Reno for small values of
cwnd, but above a chosen value of cwnd a more
aggressive response function is used. When cwnd is
large (greater than 38 packets equivalent to a packet
loss rate of 1 in 1000), the modification uses a table
to indicate by how much the congestion window
should be increased when an ACK is received, and
it releases less network bandwidth than 1/2 cwnd on
packet loss. We were aware of two versions of
High-Speed TCP: Li [18] and Dunigan [3]. Apart
from the SC03 measurements, we chose to test the
stack developed by Tom Dunigan which was
included in the Web1002 patch.

The throughputs on these production links go from
400 Mbps to 600 Mbps which was the maximum we
could reach because of the OC12/POS (622 Mbps)
links to ESnet and CENIC at our site. The route for
Caltech uses CENIC from our site to Caltech and
the bottleneck capacity for most of the tests was 622
Mbps. The route used for UFL was CENIC and
Abilene and the bottleneck capacity was 467 Mbps
at UFL. The route to CERN was via ESnet and
Starlight and the bottleneck capacity was 622 Mbps
at our site. The route used for University of
Manchester is ESnet then GEANT and JANET.

2.6 HSTCP-LP
The aim of this modification, which is based on
TCP-LP [17], is to utilize only the excess network
bandwidth left unused by other flows. By giving a
strict higher priority to all non-HSTCP-LP cross-
traffic flows, the modification enables a simple two-
class prioritization without any support from the
network. HSTCP-LP was implemented by merging
together HS-TCP and TCP-LP.

At the sender side, we used three machines:
• Machine 1 runs ping.
• Machine 2 runs Advanced TCP.
• Machine 3 runs Advanced TCP for cross-

traffic or UDP traffic.

3 Research & Technological Development for a
Transatlantic Grid: http://datatag.web.cern.ch/datatag/ 2 http://www.web100.org

3

Machines 2 and 3 had 3.06 GHz dual-processor
Xeons with 1 GB of memory, a 533 MHz front side
bus and an Intel Gigabit Ethernet (GE) interface.
Due to difficulties concerning the availability of
hosts at the receiving sites, we usually used only
two servers on the receiver’s side (Machines 1 and 2
at the sender side send data to the same machine at
the receiver side).
After various tests, we decided to run ping and iperf
in separate machines. With this configuration we
had no packet loss for ping during the tests. We
used a modified version of iperf4 in order to test the
advanced protocol in a heterogeneous environment.
The ping measurements provide the RTT which
provide information on how the TCP protocol stack
implementations affect the RTT and how they
respond to different RTTs. Following an idea
described by Hacker [10], we modified iperf to be
able to send UDP traffic with a sinusoidal variation
of the throughput. We used this to see how well
each advanced TCP stack was able to adjust to the
varying “stiff” UDP traffic. The amplitude of the
UDP stream varied from 5% to 20% of the
bandwidth with periods of 60 seconds and 30
seconds. Both the amplitude and period could be
specified.
We ran iperf (TCP and UDP flows) with a report
interval of 5 seconds. This provided the incremental
throughputs for each 5 second interval of the
measurement. For the ICMP traffic the interval that
was used by the traditional ping program, is of the
same order as the RTT in order to gain some
granularity in the results. The tests were run mostly
during the weekend and the night in order to reduce
the impact on other traffic.
On the sender’s side, we used the different kernels
patched for the advanced TCP stacks. The different
kernels are based on vanilla GNU/Linux 2.4.19
through GNU/Linux 2.4.22. The TCP source code
of the vanilla kernels is nearly identical. On the
receiver’s side we used a standard Linux kernel no
patches for TCP.

For each test we computed different values:
throughput average and standard deviation, RTT
average and standard deviation, stability and
fairness index. The stability index helps us find out
how the advanced stack evolves in a network with
rapidly varying available bandwidth.
With iperf, we can specify the maximum sender and
receiver window sizes the congestion window can
reach. For our measurements we set the maximum
sender and receiver window sizes equal. When
quoting the maximum window sizes for P-TCP we
refer to the window size for each stream. The

optimal window sizes according the bandwidth
delay product are about 500 KBytes for the short
distance path, about 3.5 MBytes for the medium
distance path and about 10 MBytes for the long
distance path. We used 3 main window sizes for
each path in order to try and bracket the optimum in
each case: for the short-distance we used 256
KBytes, 512K Bytes and 1024 KBytes; for the
middle distance we used 1 MBytes, 4 MBytes and 8
MBytes; and for the long-distance we used 4MByte,
8 MByte and 12 MByte maximum windows. In this
paper, we refer to these three different window sizes
for each distance as: size 1, 2 and 3.

4 Results
In this section, we present the essential points and
the analysis of our results. The data are available on
our website5.

4.1 RTT
All advanced TCP stacks are “fair” with respect to
the RTT (i.e. do not dramatically increase RTT)
except for P-TCP Reno. On the short distance, the
RTT of P-TCP Reno increases from 10 ms to 200
ms. On the medium and long distances, the
variation is much less noticeable and the difference
in the average RTTs between the stacks is typically
less than 10ms.
For the other advanced stacks the RTT remains the
same except with the biggest window size we
noticed, in general, a small increase of the RTT.

4.2 CPU load
We ran our tests with the time command in order to
see how each protocol used the CPU resource of the
machine on the sender’s side. We calculated the
MHz/Mbps rating by:

MHz/Mbps = (CPU Utilization * CPU MHz)
 Average Throughput

The MHz/Mbps utilization averaged over all stacks,
for all distances and all windows was 0.93 ± 0.08
MHz/Mbps. The MHz/Mbps averaged over all
distances and window sizes varied from 0.8± 0.35
for S-TCP to 1.0 ± 0.2 for Fast. We observed no
significant difference in sender side CPU load
between the various protocols.

4 http://dast.nlanr.net/Projects/Iperf/ 5Removed for double-blind review process.

4

 TCP

Reno
P-TCP S-TCP Fast

TCP
HS-TCP Bic-TCP H TCP HSTCP-

LP
Caltech 256KB 238±15 395±33 226±14 233±13 225±17 238±16 233±25 236±18
Caltech 512KB 361±44 412±18 378±41 409±27 307±31 372±35 338±48 374±51
Caltech 1MB 374±53 434±17 429±58 413±58 284±37 382±41 373±34 381±51
UFL 1MB 129±26 451±32 109±18 136±12 136±15 134±13 140±14 141±18
UFL 4MB 294±110 428±71 300±108 339±101 431±91 387±52 348±76 382±120
UFL 8MB 274±115 441±52 281±117 348±96 387±95 404±34 351±56 356±118
Manchester 4MB 97±38 268±94 170±20 163±33 171±15 165±26 172±13 87±61
Manchester 8MB 78±41 232±74 320±65 282±113 330±52 277±92 323±64 118±111
Manchester 12MB 182±66 212±83 459±71 262±195 368±161 416±100 439±129 94±113
Avg. thru Size 1 154 371 178 177 177 179 185 155
Avg. thru Size 2 244 357 384 343 356 345 336 292
Avg. thru Size 3 277 362 422 341 346 367 388 277
Avg. thru size 2 & 3 261 360 403 342 351 356 362 294
Std. dev. size 2 & 3 113 107 49 53 54 49 41 125

Table 1: Iperf TCP throughputs for various TCP stacks for different window sizes, averaged over the
three different network path lengths.

4.3 txqueuelen
In the GNU/Linux 2.4 kernel, the txqueuelen
enables us to regulate the size of the queue between
the kernel and the Ethernet layer. It is well-known
that the size of the txqueuelen for the NIC can
change the throughput but we have to use some
optimal tuning. Some previous tests [19] were made
by Li. Although use of a large txqueuelen can
result in a large increase of the throughput with TCP
flows and a decrease of sendstall, Li observed an
increase of duplicate ACKs.
Scalable TCP by default used a txqueuelen of 2000
but all the others use 100. Thus, we tested the
various protocols with txqueuelen sizes of 100,
2000 and 10000 in order to see how this parameter
could change the throughput. In general, the
advanced TCP stacks perform better with a
txqueuelen of 100 except for S-TCP which
performs better with 2000. With the largest
txqueuelen, we observe more instability in the
throughput.

4.4 Throughput
Table 1 and Figure 1 show the iperf TCP
throughputs averaged over all the 5 seconds
intervals for each 1200 second measurement
(henceforth referred to as the 1200 second average)
together with the standard deviations, for the
various stacks, network distances and window sizes.
Also shown are the “averages of the 1200 second
averages” for the three network distances for each
window size. Since the smallest window sizes were

unable to achieve the optimal throughputs, we also
provide the averages of the 1200 second averages

Figure 1: Average

for sizes 2 and 3.

 of the 1200 second averages for

• With the smallest maximum window sizes

maximum window sizes 2 and 3 shown for three
network distances and various TCP stacks. The y
axis is the throughput achieved in Mbps.

(size 1) we were unable to achieve optimal
throughputs except when using P-TCP.

5

6Removed for confidential purpose.

• Depending on the paths, we could achieve
throughputs varying from 300 to 500
Mbps.

0

50

100

150

200

250

300

350

400

450

500

0 400 800 1200

Seconds

M
bp

s

0

50

100

150

200

250

300

350

400

450

500

R
TT

 m
s.

RTTUDP

Aggregate

Bic-TCP

• There are more differences in the protocol
achievable throughputs for the longer
distances.

• For the long distance (Manchester), the
BDP predicts an optimum window size
closer to 12 MBytes than 8 Mbytes. As a
result S-TCP, H-TCP, Bic-TCP and HS-
TCP perform best for the Manchester path
with the 12 MByte maximum window size.

• The top throughput performer for window
sizes 2 and 3 was Scalable-TCP, followed
by (roughly equal) Bic-TCP, Fast TCP, H-
TCP, P-TCP and HS-TCP, with HSTCP-
LP and Reno single stream bringing up the
rear.

Figure 2: Bic-TCP with sinusoidal UDP traffic.

4.6 Stability
• The poor performance of Reno single

stream is to be expected due to its AIMD
congestion avoidance behavior.

Following [14], we compute the stability index as
the standard deviation normalized by the average
throughput Index (i.e. standard deviation / average
throughput). If we have few oscillations in the
throughput, we will have a stability index close to
zero.

• Since HSTCP-LP deliberately backs off
early to provide a lower priority, it is not
unexpected that it will perform less well
than other more aggressive protocols.

• P-TCP performs well on short and medium
distances, but not as well on the long-
distance path, possibly since the
windows*streams product was >> the
BDP.

Figure 3 shows the stability index for each of the
stacks for each of the distances averaged over
window sizes 2 and 3. Without the UDP cross-
traffic, all stacks have better stability indices (factor
of 1.5 to 4 times better) with the smallest window
sizes (average stability index over all stacks and
distances for size 1 = 0.09±0.02, for size 2 =
0.2±0.1 and size 3 = 0.24±0.1). S-TCP has the best
stability (index ~ 0.1) for the optimal and larger
than optimal window sizes, this is followed closely
by H-TCP, Bic-TCP and HS-TCP. Single stream
Reno and HSTCP-LP have poorer stabilities (> 0.3).

We note that the standard deviations of these
averages are sufficiently large that the ordering
should only be regarded as a general guideline.

4.5 Sinusoidal UDP
The throughput of a protocol is not sufficient to
describe its performance. Thus, we analyzed how
the protocol behaves when competing with a UDP
stream varying in a sinusoidal manner. The purpose
of this stream is to emulate the variable behavior of
the background cross-traffic. Our results show that
in general, all protocols converge quickly to follow
the changes in the available bandwidth and maintain
a roughly constant aggregate throughput - especially
for Bic-TCP. Fast TCP, and P-TCP to a lesser
extent have, some stability problems on long-
distance and become unstable with the largest
window size. Figure 2 shows an example of the
variation of Bic-TCP in the presence of sinusoidal
UDP traffic measured from our site to UFL with an
8 MByte window.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

S-
TC

P

H
 T

C
P

Bi
c-

TC
P

H
S-

TC
P

R
en

o
TC

P
16

Fa
st

 T
C

P

R
en

o
TC

P

H
ST

C
P-

LP

St
ab

ili
ty

Average
Caltech
UFlorida
Manchester

Figure 3: Stability index for the 3 different network
paths, averaged over the optimal and largest
window sizes. Also shown are the averages and
standard deviations over the two window sizes and
paths.

6

With the sinusoidal UDP traffic, better stability is
achieved once again with the smallest window sizes
(stability index averaged over all stacks and
distances for size 1 = 0.13±0.06, size 2= 0.21±0.08,
size 3= 0.25±0.01). For the other window sizes (see
Figure 4) there is little difference (0.01) between the
two UDP-frequency stabilities for a given stack.
The throughputs with the UDP cross-traffic are
generally larger (15%) than those without the UDP
cross-traffic. Bic-TCP closely followed by the two
more aggressive protocols, P-TCP and Scalable-
TCP, have the best stability indices (< 0.2). H-TCP
and HS-TCP have stability indices typically > 0.2
and Fast TCP and HSTCP-LP have stability indices
> 0.3

∑
∑

=

== n

i i

n

i i

xn

x
F

1
2

2
1

)(

A fairness index of 1 corresponds to a perfect
allocation of the throughput between all protocols.
There are other definitions of the concept of
fairness. For example, in [25] the authors describe
and extend the concept of “Fa fairness”. However,
we chose to use the definition of Chiu and Jain
which is the one most quoted in the networking
literature concerning a simple model of a single
bottleneck.
The intra-protocol fairness is the fairness between
two flows of the same protocol. Each flow is sent
from a different sending host to a different receiving
host at the same time.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

Bi
c-

TC
P

R
en

o
TC

P
16

S-
TC

P

H
 T

C
P

H
S-

TC
P

Fa
st

 T
C

P

H
ST

C
P-

LP

St
ab

ili
ty

 in
de

x

Avg UDP 60s
Avg UDP 30s
Avg no UDP

Figure 4: Stability as a function of TCP stack and
UDP cross traffic frequency. The data is averaged
over window sizes 2 and 3 and network paths.

0

100

200

300

400

500

0 400 800 1200
Seconds

M
bp

s

0

100

200

300

400

500

R
TT

 m
s.

Aggregate

RTT

FAST-1

FAST-2

0

100

200

300

400

500

0 400 800 1200
Seconds

M
bp

s

0

100

200

300

400

500

R
TT

 m
s.

Aggregate

RTT HS-TCP 2

HS-TCP 1

5 Cross-traffic
5.1 Intra-protocol fairness
The cross-traffic tests are important and help us to
understand how fair a protocol is. At our research
centers, we wanted to know not only the fairness of
each advanced protocol against TCP Reno, but also
how fairly the protocols behave towards each other.
It is important to see how the different protocols
compete with one another since the protocol that
our research centers will adopt shortly must coexist
harmoniously with existing protocols and with
advanced protocols chosen by other sites. Of course,
we cannot avoid a future protocol being unfair only
with our chosen one. In this paper we consider a fair
share per link metric. If there are n flows through a
bottleneck link, each flow will take 1/n of the
capacity of the bottleneck link. We measure the
average bandwidth xi of each source i during the test
then we compute the fairness index as described in
[2] by Chiu and Jain :

Figure 5: Comparison of Intra-protocol fairness
measurements from our site to UFL

Table 2 shows the Intra-protocol friendliness
measured from our site to Caltech, UFL and
Manchester for the 3 different window sizes. Also
shown are the averages and standard deviations.

7

Dest
Win
dow

P-
TCP

S-
TCP Fast

HS-
TCP

Bic-
TCP

H-
TCP

HS
TCP-
LP

Calt 256K 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Calt 512K 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Calt 1MB 1.00 1.00 1.00 1.00 0.99 1.00 1.00

U. Fl. 1MB 1.00 1.00 1.00 1.00 1.00 1.00 1.00

U. Fl. 4MB 1.00 1.00 1.00 0.99 1.00 1.00 1.00

U. Fl. 8MB 1.00 1.00 1.00 0.94 1.00 1.00 1.00
Man 4MB 1.00 1.00 1.00 1.00 0.98 0.98 0.99
Man 8MB 0.98 1.00 0.97 1.00 1.00 0.90 0.96
Man 12MB 0.92 0.97 1.00 0.97 0.97 0.79 0.86

Avg 0.99 0.99 1.00 0.99 0.99 0.96 0.98
Std 0.03 0.01 0.01 0.02 0.01 0.07 0.05

21

21

xx
xxA

+
−

=

where x1 and x2 are the throughput averages of
streams 1 and 2 in the cross-traffic.

Table 3 shows the asymmetries of the cross-traffic
between different stacks. A value near one indicates
that the protocol is too aggressive towards the
competing protocol. A value near minus one
indicates a too gentle protocol. The optimal is to
have a value near 0 that indicates that the protocol is
fair against the other protocols.

 P-

TCP
S-
TCP

Fast HS-
TCP

Bic-
TCP

H-
TCP

HS
TCP-
LP

Caltech 0.16 0.24 -0.1 -0.28 0.01 -0.02 -0.47
UFL 0.78 0 -0.01 -0.06 0.15 -0.12 0
Man
chester

0.19 -0.08 0.04 -0.38 -0.03 0.25 -0.56

Avg 0.37 0.05 -0.02 -0.24 0.04 0.04 -0.34

Table 2: Intra-protocol Fairness

In general, all the protocols have a good intra-
fairness (83% of the measurements had F ≥ 0.98).
Poorer fairness was observed for larger distances
and to a lesser extent for larger windows. Figure 5
shows examples of Intra-protocol measurements
between our site and UFL for FAST vs. FAST (F ~
0.99) and HS-TCP vs. HS-TCP (F ~ 0.94) from our
site to UFL with window sizes of 8 MBytes. The
two time series (one with a solid line, the other with
a dotted line) in the middle for each plot are the
individual throughputs for the two HS-TCP (lower
plot) and FAST (upper plot) protocols. We observe
that in this example the two HS-TCP flows will
switch with one another instead of maintaining a
constant share of the bandwidth. The first flow will
decrease after a certain time and leave the available
bandwidth to the second flow. As a result, we
observe a large instability in these HS-TCP flows.
This effect was present but less noticeable on the
Manchester path for window sizes 2 and 3. We did
not notice this HS-TCP behavior on the short
distance path or window size 1.

Table 3: Average asymmetry of each protocol vs. all
others

Our results show that Bic-TCP, Fast TCP, S-TCP
and H-TCP have small absolute values of the
fairness asymmetry. It is normal for HSTCP-LP to
be too gentle (and have a large negative value of the
asymmetry) since it uses only the remaining
bandwidth and is deliberately non-intrusive - thus
we removed it from our calculation of the average
asymmetry of the other protocols for the middle-
distance and long-distance. On the short-distance,
we can see that all advanced TCP stacks other than
P-TCP compete like a single stream of Reno but
since P-TCP is very aggressive (as expected), we do
not include it in the average asymmetry of the other
protocols for the short-distance. Only Bic-TCP is
sufficiently aggressive to compete with P-TCP in
this case, but it appears too aggressive for the other
protocols. Our results show that S-TCP, which is
very aggressive in short-distance, becomes quite
gentle in the long-distance. On the other hand, H-
TCP, which is gentle in the short and middle
distances, becomes aggressive in long-distance. HS-
TCP, as expected, is too gentle in our tests.

5.2 Inter-protocol fairness
For the inter-protocol fairness we sent two different
flows on the link from two different machines. The
aim of this experiment was to see how each protocol
behaves with a competing protocol. We hoped that
the protocol would neither be too aggressive nor too
gentle (non-aggressive) towards the other protocols.
The fairness computation described earlier does not
tell us how aggressive or gentle the protocol is, only
that it is not taking/getting a fair share of the
achievable throughput. Hence we introduce the
following formula, which defines the asymmetry
between two throughputs:

5.3 Reverse-traffic
Reverse-traffic causes queuing on the reverse path.
This in turn can result in the ACKs being lost or
coming back in bursts (compressed ACKs [30]).
Normally, the router, the path and the Ethernet card
are full-duplex and should not be affected by the
reverse-traffic but in actuality the reverse-traffic
affects the forward traffic implicitly by modifying

8

the ACK behavior. Therefore, we tested the
protocols by sending TCP traffic from our site to
UFL using an advanced stack and from UFL to our
site using P-TCP with 16 streams. Table 4 shows
the results of the throughputs in Mbps measured
with 8 MByte windows where the first 10 minutes
of the measurement had the reverse traffic and the
remaining 10 minutes had no reverse traffic.
Typical standard deviations are about 10-20% of the
average throughputs. It is seen that Fast TCP -
which is based on TCP Vegas that uses RTT for
congestion detection - is more heavily affected by
heavy reverse-traffic that affects (usually increases)
the reverse path delays and hence the RTTs. The net
effect is that, for the tested version of Fast TCP,
throughput is typically about 4 times less than the
other stacks, apart from HS-TCP. HS-TCP never
reaches the limit at which the AIMD behavior
changes from Reno to HS.

 Bic-

TCP
Fast HS-

TCP
HSTCP-
LP

H-
TCP

P-
TCP

S-
TCP

With
rev.
traffic

230
± 40

20
± 10

110
± 50

220
± 60

220
± 40

200
± 60

280
± 50

Without
rev.
traffic

400
± 40

260
± 50

380
± 50

380
± 30

380
± 40

380
± 60

400
± 20

Table 4: Iperf TCP throughputs in Mbps from our
site to UFL with and without reverse traffic

6 10Gbps path tests
During SuperComputing 20037, we made some
tentative TCP performance measurements on 10
Gbps links between hosts at our booth at the
Phoenix convention center and a host at the Palo
Alto Internet eXchange (PAIX), a host at StarLight
in Chicago and a host at NIKHEF in Amsterdam.
Due to the limited amount of time we had access to
these links (<3 days) and the emphasis on
demonstrating the maximum throughput for the
SC03 Bandwidth Challenge, these measurement are
necessarily incomplete, however some of the results
are felt to be worth reporting.

6.1 Setup
All the hosts at Phoenix and PAIX were Dell 2650s
with dual Xeon CPUs, a 533 MHz front side bus,
and an Intel PRO/10GbE LR Network Interface
Card (NIC) plugged into the 133 MHz 64 bit PCI-X
bus slot. There were 3 hosts at our booth at SC03,
two with 3.06 GHz CPUs, and the third with 2.04
GHz CPUs. The host at PAIX had dual Xeon 3.06
GHz CPUs and a 10 Gbps Ethernet connection

(LAN PHY at level 2) to a Cisco GSR router in LA.
From the GSR router the signal was transmitted via
an OC192/POS circuit to a Juniper 640 router
managed by SCInet at the Phoenix Convention
Center. From the Juniper the path went via a Force
10 E1200 router to the Cisco 6509 in our booth
using a 10 Gbps Ethernet link.

The StarLight/Chicago path from the booth went
from the Cisco 6509 via a second 10 Gbps Ethernet
link to the Force 10 router and on through a second
Juniper router connected to the Abilene core at 10
Gbps, and thence via Abilene routers at Los
Angeles, Sunnyvale, Kansas City, and Indianapolis
to Chicago. The host at StarLight was an HP
Integrity rx2600 (64 bit Itanium) system with dual
1.5 GHz CPUs and 4 GByte RAM.

The Amsterdam path followed the same path to
StarLight and then had one extra hop over the
SURFnet 10 Gbps link to Amsterdam. The host at
Amsterdam was an HP Itanium/F10 at NIKHEF.

6.2 Methodology
We set up the sending hosts at SC03 with the
Caltech Fast TCP stack, and the DataTAG altAIMD
stack [28]. The latter allowed dynamic (without
reboot) selection of the standard Linux TCP stack
(New Reno with Fast re-transmit), the Manchester
University implementation of the High Speed TCP
(HS-TCP) and the Cambridge University Scalable
TCP stack (S-TCP). By default we set the
Maximum Transfer Unit (MTU) to 9000 Bytes and
the transmit queue length (txqueuelen) to 2000
packets.
We started the first set of measurements at the same
time as our bandwidth challenge demonstration
(about 16:00 PST Wednesday 19th November
2003). The main emphasis at this time was to
achieve the maximum throughput; the evaluation of
different TCP stacks was a secondary goal. The
duration of the tests was about 60 minutes.
We started the second set of measurements just
before midnight on Wednesday 19th November.
These measurements were between Phoenix and
PAIX, Phoenix and Chicago (65 ms minimum RTT)
and Phoenix and Amsterdam (175 ms minimum
RTT). This was a reasonably controlled set of
measurements with no Bandwidth Challenge in
progress and little cross-traffic. Each test was for
1200 seconds, with a given stack, and fixed
maximum window size. We finished the second set
of tests at about 07:00 PST Thursday 20th
November.

7 SC2003: http://www.sc-conference.org/sc2003/

9

10 Gbits/s throughput from SC2003 to PAIX

0

1

2

3

4

5

6

7

8

9

10

11/19/03
15:59

11/19/03
16:13

11/19/03
16:27

11/19/03
16:42

11/19/03
16:56

11/19/03
17:11

11/19/03
17:25 Date & Time

Thr
oug

hpu
t G

bits
/s

Router to LA/PAIX
Phoenix-PAIX HS-TCP
Phoenix-PAIX Scalable-TCP
Phoenix-PAIX Scalable-TCP #2

Figure 6: Points= TCP throughput from our booth to PAIX.
Smooth Curve= total SC2003 traffic on the link to LA, taken from the Juniper router.

10 Gbits/s throughput from SC2003 to Chicago & Amsterdam

0

1

2

3

4

5

6

7

8

9

10

11/19/03
15:59

11/19/03
16:13

11/19/03
16:27

11/19/03
16:42

11/19/03
16:56

11/19/03
17:11

11/19/03
17:25 Date & Time

Thr
oug

hpu
t G

bits
/s

Router traffic to Abilele

Phoenix-Chicago
Phoenix-Amsterdam

Figure 7: Points= TCP throughput from our booth to Amsterdam and Chicago.
Smooth Curve= total SC2003 traffic on the Abilene access link, taken from the Juniper router.

6.2.1 Tests made during the
Bandwidth Challenge

During the Bandwidth Challenge, TCP flows were
set up from our booth to PAIX, Chicago and
Amsterdam. They were generated using iperf with
an MTU of 9000 Bytes and TCP window sizes of
30, 60 and 200 MBytes respectively. Separate Dell
machines at the booth, running the DataTAG
altAIMD stack, were used for the flow to each
remote location. Following other work on PCI-X
transactions [27], the PCI-X parameter “maximum
memory read Byte count”, mmrbc, was set to 4096
bytes on both local are remote machines. Setting
mmrbc to the maximum 4096 bytes minimized the
time taken for the packets to cross the PCI-X bus
and thus increased throughput.
The flow to PAIX shared the SC2003-LA link with
traffic from the Caltech booth to nodes at LA. The
flows to Amsterdam and Chicago shared the 10

Gbps Ethernet link to the SCInet Force10 switch
and then shared the Abilene access link with other ~
1-2Gigabit traffic Bandwidth Challenge flows to US
sites.
The points in Figure 6 show the TCP user level
throughput (goodput) to the remote node in PAIX
and the solid line shows the total traffic from
SC2003 on the link to LA, taken from the link level
counters on the Juniper router. The first transfer
(16:00 – 16:40) used HS-TCP and initially the
observed throughput was 4.37 Gbps and extremely
stable, giving a Stability Index (standard deviation /
average throughput) of 0.005. After 16:12 the
throughput dropped to 2.87 Gbps with considerable
variation, giving a Stability Index of 0.16. This
could be due to the increase of the total traffic on
the link (~7.5 Gbps upwards). The dramatic drop at
16:32 coincides with the link reaching its 10 Gbps
capacity. The red points from 16:42 to 17:18 show
the throughput using scalable TCP, S-TCP. Initially
the throughput was 3.3 Gbps with a Stability Index
of 0.08, similar or slightly better than HS-TCP

10

given the load on the LA link. Between 17:08 and
17:18 a second S-TCP flow was started between the
same end hosts. The average of each flow drops to
~1.0 Gbps and the Stability Index increases to 0.56.
The sum of the two S-TCP flows was ~1.9 Gbps
with a Stability Index of 0.39.The combined rate
was less than that for 1 flow which could be due to
the extra processing required for two flows.
In comparison, Figure 7 shows the TCP user level
throughput to Chicago is quite steady at 3.1 Gbps
with a Stability Index of 0.016, while to Amsterdam
the throughput is greater at ~4.35 Gbps but less
stable with a Stability Index of 0.069.The solid line
in Figure 7 shows the total link level traffic from
SC2003 on the Abilene access link, which is about
1 Gbps more than the total of the Amsterdam and
Chicago traffic. It is worth noting that the host
providing the flow to Chicago had 2.04 GHz CPUs,
while that to Amsterdam had 3.06 GHz CPUs, this
may account for the lower throughput recorded.

6.2.2 Tests to PAIX
On the Phoenix to PAIX link (minimum RTT 17
ms) we used maximum window sizes of 8 MBytes,
16MBytes and 32 MBytes8. This bracketed the
nominal optimum window size calculated from the
BDP of 17 ms * 10 Gbps ~ 20 MBytes. For the
PAIX link, all the tests were made with a single
TCP stream. For Reno, HS-TCP and S-TCP there
was little observable differences between the four
stacks in the achievable bandwidth behavior.

• For an MTU of 9000 Bytes, a window size
of 8MBytes was inadequate and resulted in
throughput being limited to about 2.9 Gbps
for Reno single stream, HS-TCP and S-
TCP

• For an MTU of 9000 Bytes with window
sizes of 16 MBytes or 32 MBytes for Reno
single stream, HS-TCP and S-TCP the
throughput increased to about 4.3Gbps.

• The throughputs with an MTU of 9000
Bytes were very stable. Typical values of
the Stability Index were < 0.004. The
larger values for Reno with a single stream
and an 8 MByte window and HS-TCP with
a 16 MByte window were each caused by a
single sudden drop of throughput for one 5
second periods.

• Reducing the MTU from 9000 Bytes to
1500 Bytes reduced the throughput for a 16
MByte window from 4.3 Gbps to about
700 Mbps, and for an 8 MByte window
from 2.9 Gbps to ~ 360 Mbps. Also the

throughputs were less stable with the 1500
Byte MTU (Stability Index > 0.10).

• With an MTU of only 1500 Bytes, Fast
TCP gave similar performance to HS-TCP
and STCP when they ran with 1500Byte
MTUs.

The 4.3 Gbps limit was slightly less than the ~ 5.0
Gbps achieved with UDP transfers in our lab
between back to back 3.06 GHz Dell PowerEdge
2650 hosts. On the other hand it is less than that
calculated from the expected data transfer rate for a
10GE NIC with a 64 bit 133 MHz PCI-X bus [27].
The limitation in throughput is believed to be due to
CPU factors (CPU speed, memory/bus speed or the
I/O chipset). The relative decrease in throughput
going from 9000 Byte MTU to a 1500 Byte MTU
was roughly proportional to the reduction in MTU
size. This maybe related to the extra CPU power /
memory bandwidth required to process the 6 times
as many, but 6 times as small MTUs. Back to back
UDP transfers in our lab between 3.06 GHz Dell
PowerEdge 2650 hosts achieved about 1.5 Gbps or
about twice the 700 Mbps achieved with the SC03
long distance TCP transfers. Further work is
required to understand this discrepancy.

7 Future experiments
In the near future, we plan on repeating the tests on
higher speed networks, in particular on the
emerging 10 Gbps test beds. We also plan to test
other promising TCP stacks such as Westwood+
[20], and rate based protocols such as RBUDP [31],
SABUL/UDT, and compare their performances
with the TCP based protocols. Also we are planning
to work with others to compare our real network
results with those from simulators such as ns-29 or
emulators such as Dummynet [23].
In the future, we would like to test a similar
topology as described in [12] where the authors
indicate that it may be beneficial for long RTT
connections to become slightly more aggressive
during the additive increase phase of congestion
avoidance. In this paper we only made cross-traffic
tests with two protocols having the same RTT. It
means that all the senders’ servers were at the same
place. It was the same for the receiver. Thus, we
have to check how each protocol behaves with
different RTTs on the same link. The increase
between the different protocols on the path will be
different and it may affect the fairness.
We should also test the different protocols with
more than one stream to see how aggressive or
gentle a protocol is on this case. Finally, we plan to

9 ”The Network Simulator - ns-2”, available at
http://www.isi.edu/nsnam/ns/ 8Removed for confidential purpose

11

test other promising TCP stacks and rate based
protocols and compare their performance with the
TCP based protocols.

[2] D. Chiu and R. Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. In Computer Networks and
ISDN Systems, pages 1–14, June 1989.

8 Conclusion
In this paper we presented the results of a two-
month experiment to measure the performance of 7
TCP stacks from our site over various network
paths. If we compare the various TCP stacks for the
more important metrics (throughput achievable,
impact on RTT, aggressiveness, stability and
convergence) we observe for the set of
measurements:

[3] T. Dunigan.
http://www.csm.ornl.gov/~dunigan/net100/.
[4] G. Farrache. Available online:
http://doc.in2p3.fr/bbftp/.
[5] W. Feng, M. Fisk, M. Gardner, and E. Weigle.
Dynamic right-sizing: An automated, lightweight,
and scalable technique for enhancing grid
performance. In 7th IFIP/IEEE International
Workshop, PfHSN 2002, Berlin, April 2002.

• The differences in the performances of the
TCP stacks are more noticeable for the
longer distances.

[6] W. Feng, J. Hurwitz, H. Newman, S. Ravot, R.
L. Cottrell, O. Martin, F. Coccetti, C. Jin, X. Wei,
and S. Low. Optimizing 10-gigabit Ethernet for
networks of workstations, clusters and grids: A case
study. In Supercomputing Conference 2003,
Phoenix, November 2003.

• TCP Reno single stream, as expected, is
low performance and unstable on longer
distances.

• P-TCP is too aggressive. It is also very
unfair with the RTT on short distance.

[7] S. Floyd. Limited slow-start for TCP with large
congestion windows. IETF Internet Draft, draft-
floyd-tcp-slowstart-01.txt, August 2002. • HSTCP-LP is too gentle and, by design,

backs-off too quickly otherwise it performs
well. It looks very promising to use to get
Less than Best Effort (LBE) service
without requiring network modifications.

[8] S. Floyd. HighSpeed TCP for large congestion
windows. IETF Internet Draft, draft-floyd-
highspeed-02.txt, February 2003.
[9] Y. Gu, X. Hong, M. Mazzuci, and R. L.
Grossman. SABUL: A high performance data
transport protocol. IEEE Communications Letters,
2002.

• Fast TCP performs as well as most others
but it is very handicapped by the reverse
traffic.

• S-TCP is very aggressive on middle-
distance and becomes unstable with UDP
traffic on long distance but achieves high
throughput.

[10] T. Hacker, B. Noble, and B. Athey. Improving
throughput and maintaining fairness using parallel
TCP. Submitted to IEEE INFOCOM 2004, Hong
Kong, 2004.

• HS-TCP is very gentle and has some
strange intra-fairness behavior.

[11] A. Hanushevsky, A. Trunov, and R. L. Cottrell.
Peer-to-peer computing for secure high performance
data copying. In Computing in High Energy
Physics, Beijing, 2001.

• Bic-TCP overall performs very well in our
tests.

[12] T. H. Henderson, E. Sahouria, S. McCanne,
and R. H. Katz. On improving the fairness of TCP
congestion avoidance. IEEE Globecomm
conference, 1998.

It is also very important to choose a TCP stack that
works well with and will not decrease the
performance and efficiency of TCP Reno used all
around the world. Moreover, we will always prefer
an advanced TCP which has the recommendation of
the IETF and which will be used by everybody.

[13] C. Jin, D. Wei, S. H. Low, G. Bushmaster, J.
Bunn, D. H. Choe, R. L. A Cottrell, J. C. Doyle, W.
Feng, O. Martin, H. Newman, F. Paganini, S.
Ravot, and S. Singh. FAST TCP: From theory to
experiments. In First International Workshop on
Protocols for Fast Long-Distance Networks
(PFLDNet 2003), Geneva, February 2003.

9 Acknowledgements
Section removed as part of the double-blind review
process.

10 References
[1] Globus Alliance. Available online:
http://www.globus.org/datagrid/gridftp.html.

[14] C. Jin, D. X. Wei, and S. H. Low. FAST TCP:
Motivation, architecture, algorithms, performance.
In IEEE INFOCOM 2004, Hong Kong, March
2004.

12

13

[15] D. Katabi, M. Handley, and C. Rohrs. Internet
congestion control for high bandwidth delay
product network. In ACM SIGCOMM, Pittsburgh,
August 2002.
[16] T. Kelly. Scalable TCP: Improving
performance in highspeed wide area networks.
Submitted for publication, December 2002.
[17] A. Kuzmanovic and E. W. Knightly. TCP-LP:
A distributed algorithm for low priority data
transfer. In IEEE INFOCOM, San Francisco, April
2003.
[18] Y. Li. URL:
http://www.hep.ucl.ac.uk/~ytl/tcpip/hstcp/.
[19] Y. Li. URL:
http://www.hep.ucl.ac.uk/~ytl/tcpip/linux/txqueuele
n/.
[20] L. A. Grieco and S. Mascolo, Performance
evaluation of Westwood+ TCP over WLANs with
Local Error Control, 28th Annual IEEE Conference
on Local Computer Networks (LCN 2003).
[21] Indiana University Advanced Network
Management Lab Tsunami Project. Available
http://www.indiana.edu/~anml/anmlresearch.html.
[23] Luigi Rizzo. Dummynet: A simple approach to
the evaluation of network protocols. ACM
Computer Communications Review, 27(1):31–41,
1997.
[24] R. Shorten, D. Leith, J. Foy, and R. Kildu,
Analysis and design of congestion control in
synchronised communication networks, 2003.
[25] M. Vojnovic, J-Y Le Boudec, and C.
Boutremans. Global fairness of additive-increase
and multiplicative-decrease with heterogeneous
round-trip times. In Proceedings of IEEE
INFOCOM‘2000, pages 1303–1312, TelAviv,
Israel, March 2000.
[26] L. Xu, K. Harfoush, and I. Rhee. Binary
increase congestion Control (BIC) for Fast, Long-
Distance Networks. To appear in Infocom 2004,
Hong Kong, March 2004
[27] R.Hughes-Jones, P. Clarke, S. Dallison and G.
Fairey, Performance of Gigabit and 10 Gigabit
Ethernet NICs with Server Quality Motherboards
Submitted for publication in High-Speed Networks
and Services for Data-Intensive Grids, Special issue
of Future Generation Computer Systems (FGCS),
2003
[28] Available at:
http://www.hep.uvl.ac.uk/~ytl/tcpip/linux/altaimd/
[29] Lawrence S. Brakmo, Sean W. O'Malley and
Larry L. Peterson,TCP Vegas: New Techniques for
Congestion Detection and Avoidance, SIGCOMM
1994

[30] L. Zhang, S. Shenker, and D. D. Clark,
Observations and dynamics of a congestion control
algorithm: the effects of two-way traffic, Proc.
ACM SIGCOMM '91, pages 133-147, 1991. 17
[31] E. He and J. Leigh, Reliable Blast UDP.
Available
http://www.evl.uic.edu/eric/atp/RBUDP.doc

