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Abstract—.End-to-End fault and per formance problems detection 
in wide area production networks is becoming increasingly hard 
as the complexity of the paths, the diversity of the per formance, 
and dependency on the network increase. Several monitor ing 
infrastructures are built to monitor  different network metr ics 
and collect monitor ing information from thousands of hosts 
around the globe. Typically there are hundreds to thousands of 
time-ser ies plots of network metr ics which need to be looked at to 
identify network per formance problems or  anomalous var iations 
in the traffic. Fur thermore, most commercial products rely on a 
compar ison with user  configured static thresholds and often 
require access to SNMP-MIB information, to which a typical 
end-user  does not usually have access. In our  paper we propose 
new techniques to detect network per formance problems 
proactively in close to real-time and we do not rely on threshold 
and SNMP-MIB information. We descr ibe and compare the use 
of several different algor ithms that we have implemented to 
detect persistent network problems using anomalous var iations 
analysis in real end-to-end Internet per formance measurements. 
We also provide methods and/or  guidance for  how to set the user  
settable parameters. The measurements are based on active 
probes running on 40 production network paths with bottlenecks 
varying from 0.5Mbits/s to 1000Mbit/s. For  well behaved data (no 
missed measurements and no very large outliers) with small 
seasonal changes most algor ithms identify similar  events. We 
compare the algor ithms’  robustness with respect to false positives 
and missed events especially when there are large seasonal effects 
in the data. Our proposed techniques cover  a wide var iety of 
network paths and traffic patterns. We also discuss the 
applicability of the algor ithms in terms of their  intuitiveness, 
their  speed of execution as implemented, and areas of 
applicability. Our encouraging results compare and evaluate the 
accuracy of our  detection techniques when applied to step 
down/up, diurnal changes and congestion effects. 

Keywords- Anomalous event detection, forecasting, network 
monitoring, network performance, performance analysis, persistent 
anomalies, trouble shooting, Kolmogorov-Smirnov, Holt-Winters, 
Plateau algorithm.    

I.  INTRODUCTION 

anagement of wide area networking from an end 
user/administrator point of view is increasingly hard as 

the complexity of the paths, the diversity of the performance, 
and the dependency on the network increases. Several 
monitoring infrastructures have been built [1], [2], [3], [4], [5], 
[6], [7] to assist by addressing the measurement, archiving, 
analysis, and presentation aspects of end-to-end performance 
monitoring. Each of these infrastructures consists of tens to 
hundreds of monitoring hosts. Each of these monitoring hosts, 
can make measurements of multiple metrics e.g. delays (both 
Round Trip Time (RTT) and one way delay), loss, jitter, TCP 
achievable throughput, available bandwidth, and applications’  
performance (e.g. file transfers or web requests) to hundreds 
of monitored (remote) hosts. Typically for every pair of hosts 
(monitor and remote host) there will be a time series plot for 
each metric, amounting to hundreds to thousands of plots that 
need to be reviewed to look for anomalous changes in 
performance.  The network administrator can, at best, review 
some of these reports reactively upon being presented with a 
problem by a user. We need to enable the network 
administrator to be pro-active and spot the problem before the 
user. This in turn requires automating reliable (few false 
positives and most events detected) detection of persistent 
(lasts for at least a few hours), anomalous (unusual and 
significant1) changes (events) in performance and reporting 
them in an efficient way to the network administrator.  

Most current commercial products rely on a comparison 
with a user configured static threshold value and often require 

                                                           
1 For our purposes we roughly defined an anomalous event as having a 

relatively quick (fall time � 3hours) step down in performance, where the 
magnitude of the step was over 10%, and the reduction in performance lasted 
for a duration of over 4 hours. The fall time and duration depend on the needs 
of the network administrator and the frequency of measurements available. 
Less frequent measurements will necessarily increase the fall time and 
duration in order to accumulate sufficient data to be statistically meaningful.  

M 



access to SNMP MIB information from network devices that 
the end-user does not have permission to view. Our intent is to 
dynamically derive the threshold from the end-user accessible 
data so that it automatically tracks the network’s performance. 

In this paper we report on several open source approaches to 
make forecasts and automatically detect persistent anomalies 
in end-to-end network performance metrics using active end-
to-end network performance measurements from an 
instantiation of the IEPM-BW [2] measurement infrastructure. 
The requirements are to detect decreases in performance that 
are sufficiently large and persist for sufficient time that, upon 
notification, the local network administrator is able to review 
the change and report the problem to the up stream provider’s 
Network Operations Center.  

The rest of the paper is organized as follows. Section II 
describes how the measurements were made, section III 
describes the analysis used to extract anomalous events, section 
IV describes the results, section V describes in progress and 
possible future work, and section VI presents the conclusions 
and describes avenues for further investigation. 

II. MEASUREMENTS 

We use measurements from the ABwE [8] lightweight 
bandwidth estimation tool that uses the packet pair dispersion 
technique, and from the more intrusive [9] iperf [10] 
achievable throughput estimation tool. We are also applying 
the techniques to bbftp [11] and GridFTP [12] measurements 
made at 60 to 120 minute intervals [13], though the results 
from this are not reported here. ABwE was chosen since it 
quickly (< 1 second) provides both RTT and rough dynamic 
bandwidth estimates, that are important to many applications 
such as bulk data transfer, while it imposes a light network 
load. Twenty packet pairs are used per direction for each 
measurement. The frequency of the measurements used for the 
current work is one to three minute intervals.  For each 
interval, three metrics are measured: dynamic bottleneck 
capacity (Cap) by analyzing the minimum packet pair 
separation; Cross Traffic (Xtr) by analyzing the packet pair 
dispersion; and the Available Bandwidth (Abw) = Cap – Xtr. 
ABwE also simultaneously provides Cap, Xtr and Abw 
measurements for the reverse direction. 

  
Figure 1: Topology of the remote hosts measured from 

SLAC 
The Abw measurements are probably of most interest to a 

user, however they are more sensitive to cross-traffic over 
which we have little control. Changes in Cap on the other 
hand are more likely to reflect route changes or operator errors 
etc. and thus may be easier to address. Cap estimates are thus 
generally preferred for our work.  Since only 20 packet pairs 
are used for each bandwidth estimate, the statistical variability 
of the estimates is quite high.  Estimates can thus vary 
dramatically from minute to minute and have large outliers. 
Therefore, ABwE also provides smoothed data using an 
Exponential Weighted Moving Average (EWMA). 

The measurements are made to about 40 hosts in 13 
countries. The static bottlenecks vary from 0.5Mbits/s to 
1000Mbits/s. The paths traverse about 50 Autonomous 
Systems (ASs) and over 15 major Internet Service Providers 
(ISPs). The topology of the remote hosts is seen in Fig. 1. The 
main ISPs that the paths cross are identified as shaded boxes. 
For Abilene and ESnet the major Points of Presence (PoPs) are 
also identified. The remote host sites are also noted, as well as 
the capacity bottlenecks (Cap) for the paths. Five of the 
remote hosts (identified in Fig. 1 by “ I2”  and “Host” ) are at 
ISP PoPs, the remainder are at end user sites. 

The measurements also suffer from gaps in the observations 
due to problems with the measurement host, the paths and/or 
the remote (measured host). 
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Figure 2 : ABwE bandwidth estimates from SLAC to U. 
Florida with a history buffer duration (λλλλ) of 10 hours. 

III. ANALYSIS 

A. Plateau Algorithm 

The “Plateau”  bandwidth change detection algorithm is 
described in [14]. It is a modification of the algorithm 
described in [15] that was successfully used to detect step 
changes in a time series set of measurements of Round Trip 
Times (RTT).  Here we use it to analyze both the Abw and 
Cap measurements. Currently, missing measurements (e.g. 
because there is no functioning path between the monitor and 
monitoring host) are ignored compressing time so the gap is 
covered over. 

The Plateau algorithm basically divides the measurements 
into two buffers: a history buffer (h) for base-lining, or into a 
trigger buffer (t), when a measurement meets a specific 
requirement. The specific requirement is that the current 
measurement is less than ββββ (we use bold face to indicate a user 
settable parameters) standard deviations (oh) below the current 
mean of the history buffer mh. If the measurement is placed in 
h then the oldest entry is removed from t. The buffers have 
maximum durations of λλλλ (history) and ττττ (trigger).  Given a 
requested buffer duration, the number of items in a buffer 
(length) is calculated using the median time separation of the 
data points. When ττττ is reached the mean of the trigger buffer 
mt is compared with mh and if the relative difference ∆ = (mh – 
mt) / mh is greater than the threshold δδδδ then an event is deemed 
to have occurred.  

 Sensible values of β β β β are between 2 and 3 [16], we used ββββ = 
2.    Το minimize the effects of diurnal changes we used λ λ λ λ = 1 
day. Less frequent measurements will require λλλλ to be longer. 
In general we believe λ λ λ λ  should be aligned with any 
seasonality in the data (e.g. an integral number of days) the 
length of the history buffer should be > 100 points and  
λ λ λ λ should be  >>  λλλλ. . . . Larger values flatten the time series 
behavior of mh, shorter values will yield less statistically 
accurate values of mh. Values that are not aligned with the 
seasonality (in our case the diurnal behavior) of the data will 
result in the sinusoidal-wave like curve of mh being out of 
synchronization with the diurnal changes (see for example Fig. 
2 (where λλλλ = 10 hours, ττττ = 3 hours, δδδδ = 0%), and is seen to 
trail the EWMA(Abw) by several hours).  Note that missing 

data points can also cause loss of synchronization. Since we 
were only interested in long term changes we typically use τ τ τ τ = 
3 hours. For measurements at 3 minute intervals this gives a 
trigger buffer length of 60 that gives sufficient statistical 
accuracy. We currently use δδδδ = 33%. Larger values of δδδδ are 
likely to miss more real events; lower values are likely to lead 
to more false positives. 

B. Kolmogorov-Smirnov (KS) 

The KS test [17] is the best known of several distribution 
free techniques that test general differences between 
distributions.  The technique makes no assumption about the 
underlying distribution of the measurements. It compares the 
observed and expected Cumulative Distribution Functions 
(CDF) for M data points before (expected) and after 
(observed) each measurement being evaluated. The KS test is 
calculated taking the vertical difference between the two CDFs 
as a test statistic. M in the current work was chosen to be 100 
(5 hours for measurements separated by 3 minutes) as a 
reasonable compromise between the accuracy obtained 
(sufficient points for the distributions) and the time to wait for 
a response or the analysis time.  If response time is deemed 
less important it may well be worth using a larger value of M 
as this will provide a larger sample for each distribution. For 
previous work [18] with less frequent measurements, we chose 
M to be 24 hours worth of data to minimize the diurnal effects 
as discussed earlier in the current paper (although one still gets 
false positives associated with weekends, public holidays etc.) 

C. Holt-Winters (HW) Algorithm 

The Holt-Winters (HW) [19] [20] algorithm uses a triple 
EWMA approximation to characterize the time series behavior 
as a superposition of three components: a baseline, a linear 
trend and a seasonal effect (e.g. diurnal changes). We 
developed two implementations of the HW technique and also 
used the RRD implementation [19] to compare our results 
against, and to understand the technique. We will focus our 
discussion on the implementation developed at SLAC (based 
on the formulation in [20]) since it has the most flexibility for 
our needs.  

HW is critically dependent on having regularly spaced data 
with no missing points, so the first step is to bin the data into 
regularly spaced time bins and use similar data to interpolate 
for bins with no data. For bins with no data in the first week 
we use data from following weeks for the same day and time 
bin. For the following weeks we use the previous week’s 
interpolated data. For our data with bin widths of 3 minutes we 
found that having about five to seven weeks of data enabled us 
to successfully interpolate the data and fill in missing bins. 
Once we have the first week’s interpolated data, new data can 
be quickly merged onto the existing interpolated data without 
having to go back through all the data. 

Due to the noisiness of the data, we also set the maximum 
forecast = maximum of all observed values. 

We used two methods to choose the initial HW parameters. 
• We chose the initial HW parameters using the guidelines 



in [18]. 99% of the contribution for the baseline EWMA 
came from measurements made in the last 24 hours; 99% 
of the seasonal EWMA contribution came from the last 
week, 50% of the trend EWMA contribution came from 
the last 24 hours. 

• For each path, we minimized the sum of the squares of 
the residuals (R2 = �r i

2, where r i = yi – fi, the sum is over 
all interpolated data, yi is the interpolated observation at 
time i and fi is the forecast at the same time) as a function 
of the HW parameters.  This method always resulted in 
the trend parameter being set to very close to 0 (< 
0.00001). 

We have settled on using the second method. It provides 
good forecasts, works for a wider range of paths and requires 
minimal user input.  

Several methods were tested to raise anomalous event 
conditions: 

• The residual (r i) at each point was examined to see if it 
was a trigger, i.e. outside the standard deviation of the 
forecast for the last 100 points. If 70% of the points in a 
window of 2.5 hours were triggers then an event was 
generated.   

• The residual was compared to the EWMA of the 
absolute deviation [18]. If over 82% of the residuals 
were outside twice the EWMA of the absolute deviation 
in the last 84 minutes then an event was generated. 

• With a moving window sized to  cover 12 hours  we 
calculated 

� 2 = �r i
2/ fi,  and using tabulated 

� 2 values  
for N-1 degrees of freedom, where N is number of points 
per time window, we set a threshold to generate our 
triggers and more than 50% of points in the time window 
generated triggers then an event was raised.  

• We applied the Plateau algorithm and KS to the HW 
residuals. 

D. Mark Burgess (MB) Technique 

The Mark Burgess (MB) technique introduces a two 
dimensional time approach [21] to classify a periodic, adaptive 
threshold for service level anomaly detection. An iterative 
algorithm is applied to history analysis on this periodic time to 
provide a smooth roll-off in the significance of the data with 
time. This method was originally designed to detect anomalous 
behavior on a single host, with the aim of using the information 
for self-regulation, by initiating a counter response. An 
anomaly is indicated by a code indicating the state of the given 
statistic, as compared to an average of equivalent earlier times. 

IV. RESULTS 

A. Canonical Measurements 

To provide a canonical set of measurements to evaluate and 
compare the detection methods against we used Cap 
measurements for ~100 days from June through September 
2004 from SLAC to 30 remote hosts at sites shown in Fig. 1.  

B. Plateau Algorithm 

To first characterize the potential events seen in the 
canonical data, we used the Plateau algorithm, since it is the 
most intuitive of the algorithms and allows direct variation of 
parameters representing the size and duration of an event. We 
set δδδδ to 0 (i.e. we detect all events that fill the trigger buffer) 
and the other user parameters were set as described above. 
About 25 of the 40 paths manifested one or more events in this 
period. We carefully reviewed each of these events and 
created a library of interesting events.  We observe three 
general types of events that trigger our Plateau algorithm.  
• Step down changes in bandwidth (“step” ) 
• Diurnal changes (“diurnal” ) 
• Changes caused by actions causing congestion, e.g. a 

regularly scheduled cron job (“host” ), or network 
bandwidth test, flash crowds etc. 

Three paths out of 30 (Caltech, NIIT and U. Florida) 
exhibited marked diurnal changes that triggered “diurnal”  
Plateau events, especially following a weekend. To study the 
diurnal behavior more carefully we binned the bandwidth data 
by hour of day and calculated the percentiles to identify the 
daily bandwidth patterns. An example is shown in Fig. 3 
where there is a quick decrease in bandwidth when people 
arrive to work (20:00-23:00 PDT = 08:00 – 11:00 Pakistan 
time). This in turn causes an abnormally high number of 
events to be detected by the Plateau and KS algorithms during 
these hours (see Fig. 4). Usually these changes are not as 
sudden as the typical step change which may also help in 
separating the two types. For our purposes, these “diurnal”  
events are false positives that need to be eliminated.  

 
Figure 3: Percentiles of capacity bandwidth (Cap) seen on 

the SLAC-NIIT path as a function of time of day 
One host (ANL) exhibited regular “host”  type events that 

were tracked down to a cron job running on the host that 
used (via NFS) the network heavily. This host was eliminated 
from further non-seasonal analyses. Events for a given host 
typically have a small range for ∆ (standard deviation (∆) / 
mean (∆) ~ 0.11± 0.1) indicating that the backup routes or 
diurnal behavior is consistent. This manifests itself in a multi-
modal Distribution Function for ∆. 



By careful examination of ~ 120 Plateau candidate events 
detected2 with δδδδ = 0 (and ignoring whether the events are 
diurnal) we classify all candidates as to whether they are 
events we are interested3 in or not (i.e. exhibit sharp drop in 
bandwidth (e.g. 90% of change occurs in < 220 mins), persist 
for a long term (>> 3 hours) and are large enough (e.g. 
δδδδ > 10%)). With δδδδ = 10% and restricting the duration of 90% 
of the trigger buffer to 220 minutes, we miss 8% of the events 
and see 16% false positives. Increasing δδδδ to 33% we get 32% 
misses and 2% false positives. In this case 15% of the events 
are caused by diurnal changes.  

Histogram of KS (>0.6) anomalous events as 
a  function of time of day for NIIT
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Figure 4: Distr ibution of events seen by KS in the Cap data 
as a function of time of day for  the SLAC-NI IT path. 

C. Comparisons of the Various TEchniques 

We then also applied KS and HW (with various anomalous 
evet detection methods described in section IIID) algorithms 
to the canonical data.  Fig. 5 shows a visualization of the 
Plateau, KS and HW algorithms applied to capacity bandwidth 
observations with step changes in performance from SLAC to 
BINP. As expected all three algorithms detect marked 
changes. KS detects both increases and decreases in the data 
and thus detects roughly twice as many events (229:116) as 
the Plateau algorithm which is currently tuned for negative 
changes only. Detecting both steps is valuable since, for 
example, it enables determining the duration of a change 
and/or taking some action when the original performance is 
restored. KS also provides the most accurate time estimate4 for 
when the event occurred which is important when correlating 
the event with other time-dependent information. 

                                                           
2 Less than 10% of these candidate events were associated with noticeable 

traceroute changes. 
3 Others may have very different criteria, in particular the duration of the 

change or the magnitude of the drop. With the exception of the plateau 
algorithm, the duration and magnitude filters need to be applied as a separate 
step.   

4 The time estimates for plateau and HW could be improved, for example 
for the plateau algorithm by identifying the time of the change when the event 
occurred as the time  at which the trigger buffer reached say 10% full. 

 
Figure 5: Plateau, KS and HW algor ithms applied to an 
observed step down and back up per formance change 
In Fig. 5 the KS statistic (dotted) is seen to reach a value of 

about 80%, on both the step up and down. The Plateau 
algorithm’s trigger buffer (solid line) only reaches ~ 80% full 
(since the step down’s duration is too short, in this case ~ 4 
hours) so no event is triggered. The HW Χ2 (dashed line) 
triggers an event after the performance has recovered. 

Increasing the threshold value (K) of the KS coefficient that 
defines an event reduces the false positives at the cost of 
increasing the missed events as seen in Fig.6. Currently we are 
using a value of K = 0.7 to trigger an event. Most (69%) of the 
false positives come from four paths. Minimizing R2 to 
estimate the initial HW parameters results in a fairly wide 
range of values of the local smoothing parameter (a = 0.0001 
to 0.95, median = 0.0024 ± 0.12) and the seasonal parameter 
(b = 0.0023 to 0.999, median = 0.22 ± 0.2).  About 50% of the 
paths have 0.0008 < a < 0.02 and 0.18 < b < 0.4. There is very 
weak correlation between a and b or R2 and a or b, which is 
suggestive that there may not be a suitable single set of 
parameters for all paths. 

Using HW to forecast, and with the 70% of triggers in 2.5 
hours method to detect events, plus bunching together events 
separated by < 3 hours, successfully removed the diurnal 
events for Caltech, NIIT and U. Florida. It also succeeded in 
eliminating the effects of the ANL cron jobs that ran at 
regular times each morning. However, there appear to be 
similar host based effects that do not occur at regular intervals 
that make the ANL data problematic. A similar effect giving 
rise to false positives was seen with the SDSC path. In this 
case there was a step down of about 10% (65Mbits/s) lasting 
for 3-4 hours starting around 1am each day for about one 
week.  



 
Figure 6: Cumulative step down event types as function of 

KS coefficient 
With the above HW event detection method, three paths 

(SOX, NASA and CESnet) with very small deviations in the 
observations, had small changes in bandwidth that resulted in 
events with very small changes in bandwidth.  

Eliminating the ANL and SDSC paths, and demanding a 
bandwidth change of at least 5% for an event, HW detected 23 
true events, with 1 false positive and 6 missed events. Four of 
the misses were during the first week of data, when the HW 
algorithm performs poorly due to not having good initial 
estimates. A further miss was since the change happened 
slowly (it took over a day to get from the initial value to the 
new stepped down value). The final miss was for a step down 
in performance that only lasted four hours. Thus, with the 
caveat that HW cannot forecast (and thus is not amenable to 
event detection methods discussed above) for measurements 
affected by applications running at irregular times and causing 
congestion, the HW technique works well for our data. To 
understand such events better more measurements are needed 
on hosts and network equipment to isolate the cause.  

 
Figure 7: KS on Iper f data from SLAC to Caltech 

 

 
Figure 8: MB on Iper f Data SLAC to Caltech 

Figs. 7 and 8 show the effects of applying the KS and MB 
techniques to the same iperf data (from SLAC to Caltech 
March 6 – 13, 2005). Fig. 8 is a snapshot of the original graph 
showing the MB technique applied on Iperf Data. This 
snapshot gives a good idea about the real-time behavior of MB 
technique. It is seen in Fig. 7 that the KS coefficient (solid 
line) identifies the obvious long term step down and step up 
(both identified by circles) in the data on March 9, 2005 and 
March 11, 2005 respectively. In Fig. 8 on the other hand, the 
MB code (light dots) oscillates wildly as it tries to track the 
individual spikes in the noisy data and misses the important 
steps down and up.  

We also applied Plateau and KS on the HW residuals for 
the Cap measurements from SLAC to the U. of Michigan 
which have both diurnal changes and one-off anomalous 
events. We find that although both are able to detect one-off 
step-downs, Plateau shows no false positives while KS raises 
several events on weekends. This happens because KS 
compares two frequency distributions irrespective of the 
relative change in values. During weekends, residuals are close 
to 0 as data values usually mirror past weekend’s data and HW 
is able to make good forecasts based on its past week’s 
seasonal cycle values. However due to higher network usage 
during weekdays, there are higher fluctuations and residuals, 
though small in absolute value, are more spread out. So KS on 
weekend data effectively compares two very different 
distributions (past weekdays and weekend) thereby raising 
false events. This interesting observation highlights a weakness 
of KS for our current application. 

D. CPU Utilization 

Both the Plateau and HW algorithms are implemented on 
Linux systems as Perl scripts and so should be relatively easy 
to port. Currently no attempt has been made to optimize the 
speed of execution. For 43K data points on a dual Xeon 3GHz 
cpu host, it takes about 15 seconds to interpolate the data, 30-
40 seconds to minimize R2 to find the optimum HW 
parameters, and about 2 minutes for the HW analysis and 
reporting. The Plateau algorithm has mainly been used for 
exploring the data and thus has many extra tests and reporting 
which result in it taking about six times as long. The KS 
algorithm is implemented in C and takes about 1 minute with 
M = 100. The execution time of KS, however, is very 
dependent on M. For example, increasing M from 100 to 400 



increases the analysis time by a factor of 14.  

V. FUTURE WORK 

Since this is a production network that we do not 
administer, we are not comfortable with deliberately 
introducing known problems into the network to characterize 
their effects. On the other hand, now we have understood the 
techniques and optimized the parameters, we have reduced the 
number of potential events to a few per week. Each of these is 
now reported by email and carefully analyzed to see if it 
corresponds to a known cause (network maintenance, fiber 
cut, routing change, incorrect configuration etc.)  Initial results 
are encouraging, but more work is needed to properly 
characterize the relationships. 

We are looking at using wavelet decomposition to eliminate 
outliers and white noise seen in real data.  

To reduce the problems with occasional outliers in the 
ABwE measurements caused by inter-packet timing problems 
[23], we are evaluating using PathChirp [24] instead. While 
PathChirp increases the network traffic and the time to make a 
measurement by roughly a factor of ten, it does appear to give 
more accurate results. 

The subspace PCA analysis has been reported [25] to work 
well when applied to measurements from core routers. It is 
unclear how well it will work on less correlated end-to-end 
active Internet performance measurements.  It has the 
advantage of being able to simultaneously look at 
measurements of multiple metrics (e.g. RTT, iperf throughput, 
Cap, Xtr, reverse and forward performance measures such as 
provided by ABwE, and/or hosts/system performance 
measures) and paths simultaneously. On the other hand it may 
be less intelligible to someone without a statistical 
background. We have implemented this algorithm and are 
currently applying it to ABwE, iperf, and PathChirp 
measurements. 

A second, filter process may be applied once potential 
events have been identified using one of the above techniques.  
A filter may serve two purposes.  Firstly unwanted events, or 
false positives may be removed and not reported.  Secondly, 
events that are noteworthy may be classified to aid in further 
diagnostic processes.  A neural network has been used as such 
a filter process in [18]. We are also looking at using neural 
networks to interpolate between infrequent, heavyweight 
measurements such as iperf by using more frequent 
lightweight measurements such as ABwE or RTT etc. 

Once we have a robust, reliable anomalous event detection 
technique that works with the ABwE data, we will extend it to 
other measurements including GridFTP and observations of 
host/system performance measures. We are also starting to use 
the current work to generate alerts that are distributed by 
email. These will be filtered, relevant information gathered 
from network devices, analyzed and reported to network 
administrators.  

Besides detecting anomalous events, we plan to make the 
forecasts available for Grid middleware such as a replication 
manager. 

VI. CONCLUSIONS 

 
End-to-End fault and performance problem detection is an 

important and challenging problem. The major challenges are 
due to the complexity of different network components, their 
working and interaction, diversity of the network performance 
and dependency on the networks. On the other hand, 
interpreting limited amount of end-to-end network monitoring 
data and detecting performance problems without having 
access to the intermediate network devices imposes another 
important challenge. To solve this problem most of the 
existing network problem detection software’s use statically 
set threshold based technique which require human interaction 
and they are not adaptive to network change. Keeping in 
consideration the dynamic nature of network end-to-end paths 
and above mentioned challenges, we proposed a new 
technique to detect network performance problems proactively 
in real time. In our method we do not rely on the device 
specific information of the intermediate nodes like SNMP-
MIB’s as typically network end users users don’ t have access 
to this type of information. The major techniques which we 
used in our approach were: the Plateau algorithm; 
Kolmogorov-Smirnov (KS) technique; the Holt-winters (HW) 
forecasting algorithms; and the Mark Burgress (MB) 
technique, We also integrated different techniques applying 
the Plateau algorithm to HW Residuals (PHR) and KS to HW-
Residuals (KHR). We applied these techniques on our active 
end-to-end measurements that we gathered by monitoring 40 
production network paths with bottlenecks varying from 0.5 
Mbits/sec to 1000Mbit/sec. 

Our results show that for measurements with limited diurnal 
(or other seasonal) changes the Plateau, KS and HW 
algorithms work well. The HW technique explicitly 
incorporates seasonal changes and so event detection methods 
incorporating HW work better than the Plateau and KS 
methods on paths with significant diurnal changes. Among the 
different event detection methods discussed for HW, Plateau 
and KS applied to HW residuals are the most effective in 
identifying seasonal variations. 

 KS provides accurate identification of when the step up or 
down occurred. KS, compared to Plateau is sensitive to both 
the average values and the distribution. It may thus be more 
valuable if the concern is for applications which are 
distribution sensitive (e.g. real-time applications such as 
interactive voice which depends on jitter). MB is aimed at 
real-time identification of changes but is not suited to finding 
long-term persistent anomalous changes. On the other hand for 
our purposes we are more interested in changes in average 
performance and so prefer the Plateau algorithm applied to 
HW residuals. 

The Plateau algorithm is easily understood by people with a 



non-statistical background and has easy to interpret user 
settable parameters.  

The KS algorithm is the most statistically formal of the 
three algorithms. It has only two parameters: the number of 
data points (M) used to evaluate the distribution functions; and 
the threshold (K) of the KS coefficient above which an event 
is assumed to have occurred. It provides the best estimates of 
when a step occurs.  

For the HW techniques it is critical to provide complete data 
at regular time intervals. Also one needs a few weeks worth of 
data to get a reasonable estimate of the seasonal variations. 
Estimating the parameters using the minimization techniques 
appears to work well in most cases. The basic Holt-Winters 
algorithm is a forecasting technique, and so may also be used 
for providing forecast information to applications such as Grid 
middleware [26]. 

Each technique requires several parameters. We have 
provided guidelines for selecting the Plateau parameters. For 
KS there are only two parameters. We settled on using M = 
100 data points and a threshold (K) of 70%. We have 
developed an automated technique (minimizing the residuals) 
to select the HW parameters to greatly simplify the use of the 
forecasting technique. This is particularly important since 
there is not a single set of selected HW parameters for all 
paths. 
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