
Evaluation of Techniques to Detect Significant
Network Performance Problems using End-to-End

Active Network Measurements

R. Les Cottrell1, Connie Logg1, Mahesh Chhaparia1,
Maxim Grigoriev2

SLAC Computing Services(SCS)
Stanford Linear Accelerator Center(SLAC)1

Menlo Park, CA 94025 USA
Fermilab2

Batavia, IL 60510, USA
{ cottrell,cal,maheshkc} @slac.stanford.edu, maxim@fnal.gov

Felipe Haro3, Fawad Nazir4, Mark Sandford5
Pontificia Universidad Catolica de Chile3,

Santiago, Chile
NUST Institute of Information Technology4

Rawalpindi, Pakistan
Department of Electronic Engineering5,

Leicestershire, LE11 3TU, UK
felipeharo@gmail.com, fawad.nazir@niit.edu.pk,

J.M.Sandford@lboro.ac.uk

Abstract—.End-to-End fault and per formance problems detection
in wide area production networks is becoming increasingly hard
as the complexity of the paths, the diversity of the per formance,
and dependency on the network increase. Several monitor ing
infrastructures are built to monitor different network metr ics
and collect monitor ing information from thousands of hosts
around the globe. Typically there are hundreds to thousands of
time-ser ies plots of network metr ics which need to be looked at to
identify network per formance problems or anomalous var iations
in the traffic. Fur thermore, most commercial products rely on a
compar ison with user configured static thresholds and often
require access to SNMP-MIB information, to which a typical
end-user does not usually have access. In our paper we propose
new techniques to detect network per formance problems
proactively in close to real-time and we do not rely on threshold
and SNMP-MIB information. We descr ibe and compare the use
of several different algor ithms that we have implemented to
detect persistent network problems using anomalous var iations
analysis in real end-to-end Internet per formance measurements.
We also provide methods and/or guidance for how to set the user
settable parameters. The measurements are based on active
probes running on 40 production network paths with bottlenecks
varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no
missed measurements and no very large outliers) with small
seasonal changes most algor ithms identify similar events. We
compare the algor ithms’ robustness with respect to false positives
and missed events especially when there are large seasonal effects
in the data. Our proposed techniques cover a wide var iety of
network paths and traffic patterns. We also discuss the
applicability of the algor ithms in terms of their intuitiveness,
their speed of execution as implemented, and areas of
applicability. Our encouraging results compare and evaluate the
accuracy of our detection techniques when applied to step
down/up, diurnal changes and congestion effects.

Keywords- Anomalous event detection, forecasting, network
monitoring, network performance, performance analysis, persistent
anomalies, trouble shooting, Kolmogorov-Smirnov, Holt-Winters,
Plateau algorithm.

I. INTRODUCTION

anagement of wide area networking from an end
user/administrator point of view is increasingly hard as

the complexity of the paths, the diversity of the performance,
and the dependency on the network increases. Several
monitoring infrastructures have been built [1], [2], [3], [4], [5],
[6], [7] to assist by addressing the measurement, archiving,
analysis, and presentation aspects of end-to-end performance
monitoring. Each of these infrastructures consists of tens to
hundreds of monitoring hosts. Each of these monitoring hosts,
can make measurements of multiple metrics e.g. delays (both
Round Trip Time (RTT) and one way delay), loss, jitter, TCP
achievable throughput, available bandwidth, and applications’
performance (e.g. file transfers or web requests) to hundreds
of monitored (remote) hosts. Typically for every pair of hosts
(monitor and remote host) there will be a time series plot for
each metric, amounting to hundreds to thousands of plots that
need to be reviewed to look for anomalous changes in
performance. The network administrator can, at best, review
some of these reports reactively upon being presented with a
problem by a user. We need to enable the network
administrator to be pro-active and spot the problem before the
user. This in turn requires automating reliable (few false
positives and most events detected) detection of persistent
(lasts for at least a few hours), anomalous (unusual and
significant1) changes (events) in performance and reporting
them in an efficient way to the network administrator.

Most current commercial products rely on a comparison
with a user configured static threshold value and often require

1 For our purposes we roughly defined an anomalous event as having a

relatively quick (fall time � 3hours) step down in performance, where the
magnitude of the step was over 10%, and the reduction in performance lasted
for a duration of over 4 hours. The fall time and duration depend on the needs
of the network administrator and the frequency of measurements available.
Less frequent measurements will necessarily increase the fall time and
duration in order to accumulate sufficient data to be statistically meaningful.

M

access to SNMP MIB information from network devices that
the end-user does not have permission to view. Our intent is to
dynamically derive the threshold from the end-user accessible
data so that it automatically tracks the network’s performance.

In this paper we report on several open source approaches to
make forecasts and automatically detect persistent anomalies
in end-to-end network performance metrics using active end-
to-end network performance measurements from an
instantiation of the IEPM-BW [2] measurement infrastructure.
The requirements are to detect decreases in performance that
are sufficiently large and persist for sufficient time that, upon
notification, the local network administrator is able to review
the change and report the problem to the up stream provider’s
Network Operations Center.

The rest of the paper is organized as follows. Section II
describes how the measurements were made, section III
describes the analysis used to extract anomalous events, section
IV describes the results, section V describes in progress and
possible future work, and section VI presents the conclusions
and describes avenues for further investigation.

II. MEASUREMENTS

We use measurements from the ABwE [8] lightweight
bandwidth estimation tool that uses the packet pair dispersion
technique, and from the more intrusive [9] iperf [10]
achievable throughput estimation tool. We are also applying
the techniques to bbftp [11] and GridFTP [12] measurements
made at 60 to 120 minute intervals [13], though the results
from this are not reported here. ABwE was chosen since it
quickly (< 1 second) provides both RTT and rough dynamic
bandwidth estimates, that are important to many applications
such as bulk data transfer, while it imposes a light network
load. Twenty packet pairs are used per direction for each
measurement. The frequency of the measurements used for the
current work is one to three minute intervals. For each
interval, three metrics are measured: dynamic bottleneck
capacity (Cap) by analyzing the minimum packet pair
separation; Cross Traffic (Xtr) by analyzing the packet pair
dispersion; and the Available Bandwidth (Abw) = Cap – Xtr.
ABwE also simultaneously provides Cap, Xtr and Abw
measurements for the reverse direction.

Figure 1: Topology of the remote hosts measured from

SLAC
The Abw measurements are probably of most interest to a

user, however they are more sensitive to cross-traffic over
which we have little control. Changes in Cap on the other
hand are more likely to reflect route changes or operator errors
etc. and thus may be easier to address. Cap estimates are thus
generally preferred for our work. Since only 20 packet pairs
are used for each bandwidth estimate, the statistical variability
of the estimates is quite high. Estimates can thus vary
dramatically from minute to minute and have large outliers.
Therefore, ABwE also provides smoothed data using an
Exponential Weighted Moving Average (EWMA).

The measurements are made to about 40 hosts in 13
countries. The static bottlenecks vary from 0.5Mbits/s to
1000Mbits/s. The paths traverse about 50 Autonomous
Systems (ASs) and over 15 major Internet Service Providers
(ISPs). The topology of the remote hosts is seen in Fig. 1. The
main ISPs that the paths cross are identified as shaded boxes.
For Abilene and ESnet the major Points of Presence (PoPs) are
also identified. The remote host sites are also noted, as well as
the capacity bottlenecks (Cap) for the paths. Five of the
remote hosts (identified in Fig. 1 by “ I2” and “Host”) are at
ISP PoPs, the remainder are at end user sites.

The measurements also suffer from gaps in the observations
due to problems with the measurement host, the paths and/or
the remote (measured host).

Bandwidth from SLAC to U Florida

0

200

400

600

800

1000

6/19/04 0:00 6/21/04 0:00 6/23/04 0:00 6/25/04 0:00 6/27/04 0:00

B
an

d
w

id
th

 (
M

b
it

s/
s)

0

5

10

15

20

25

30

35

T
ri

g
g

er
 b

u
ff

er
 le

n
g

th* β = 2; δ = 0;
λ = 333 points (600 mins);
τ = 33 points(60 mins)

Event
detected

EWMA(Abw)

m h

m h - ββββ * o h

Mon FriWed SunSat

Trigger buffer length

m h

Figure 2 : ABwE bandwidth estimates from SLAC to U.
Florida with a history buffer duration (λλλλ) of 10 hours.

III. ANALYSIS

A. Plateau Algorithm

The “Plateau” bandwidth change detection algorithm is
described in [14]. It is a modification of the algorithm
described in [15] that was successfully used to detect step
changes in a time series set of measurements of Round Trip
Times (RTT). Here we use it to analyze both the Abw and
Cap measurements. Currently, missing measurements (e.g.
because there is no functioning path between the monitor and
monitoring host) are ignored compressing time so the gap is
covered over.

The Plateau algorithm basically divides the measurements
into two buffers: a history buffer (h) for base-lining, or into a
trigger buffer (t), when a measurement meets a specific
requirement. The specific requirement is that the current
measurement is less than ββββ (we use bold face to indicate a user
settable parameters) standard deviations (oh) below the current
mean of the history buffer mh. If the measurement is placed in
h then the oldest entry is removed from t. The buffers have
maximum durations of λλλλ (history) and ττττ (trigger). Given a
requested buffer duration, the number of items in a buffer
(length) is calculated using the median time separation of the
data points. When ττττ is reached the mean of the trigger buffer
mt is compared with mh and if the relative difference ∆ = (mh –
mt) / mh is greater than the threshold δδδδ then an event is deemed
to have occurred.

 Sensible values of β β β β are between 2 and 3 [16], we used ββββ =
2. Το minimize the effects of diurnal changes we used λ λ λ λ = 1
day. Less frequent measurements will require λλλλ to be longer.
In general we believe λ λ λ λ should be aligned with any
seasonality in the data (e.g. an integral number of days) the
length of the history buffer should be > 100 points and
λ λ λ λ should be >> λλλλ. . . . Larger values flatten the time series
behavior of mh, shorter values will yield less statistically
accurate values of mh. Values that are not aligned with the
seasonality (in our case the diurnal behavior) of the data will
result in the sinusoidal-wave like curve of mh being out of
synchronization with the diurnal changes (see for example Fig.
2 (where λλλλ = 10 hours, ττττ = 3 hours, δδδδ = 0%), and is seen to
trail the EWMA(Abw) by several hours). Note that missing

data points can also cause loss of synchronization. Since we
were only interested in long term changes we typically use τ τ τ τ =
3 hours. For measurements at 3 minute intervals this gives a
trigger buffer length of 60 that gives sufficient statistical
accuracy. We currently use δδδδ = 33%. Larger values of δδδδ are
likely to miss more real events; lower values are likely to lead
to more false positives.

B. Kolmogorov-Smirnov (KS)

The KS test [17] is the best known of several distribution
free techniques that test general differences between
distributions. The technique makes no assumption about the
underlying distribution of the measurements. It compares the
observed and expected Cumulative Distribution Functions
(CDF) for M data points before (expected) and after
(observed) each measurement being evaluated. The KS test is
calculated taking the vertical difference between the two CDFs
as a test statistic. M in the current work was chosen to be 100
(5 hours for measurements separated by 3 minutes) as a
reasonable compromise between the accuracy obtained
(sufficient points for the distributions) and the time to wait for
a response or the analysis time. If response time is deemed
less important it may well be worth using a larger value of M
as this will provide a larger sample for each distribution. For
previous work [18] with less frequent measurements, we chose
M to be 24 hours worth of data to minimize the diurnal effects
as discussed earlier in the current paper (although one still gets
false positives associated with weekends, public holidays etc.)

C. Holt-Winters (HW) Algorithm

The Holt-Winters (HW) [19] [20] algorithm uses a triple
EWMA approximation to characterize the time series behavior
as a superposition of three components: a baseline, a linear
trend and a seasonal effect (e.g. diurnal changes). We
developed two implementations of the HW technique and also
used the RRD implementation [19] to compare our results
against, and to understand the technique. We will focus our
discussion on the implementation developed at SLAC (based
on the formulation in [20]) since it has the most flexibility for
our needs.

HW is critically dependent on having regularly spaced data
with no missing points, so the first step is to bin the data into
regularly spaced time bins and use similar data to interpolate
for bins with no data. For bins with no data in the first week
we use data from following weeks for the same day and time
bin. For the following weeks we use the previous week’s
interpolated data. For our data with bin widths of 3 minutes we
found that having about five to seven weeks of data enabled us
to successfully interpolate the data and fill in missing bins.
Once we have the first week’s interpolated data, new data can
be quickly merged onto the existing interpolated data without
having to go back through all the data.

Due to the noisiness of the data, we also set the maximum
forecast = maximum of all observed values.

We used two methods to choose the initial HW parameters.
• We chose the initial HW parameters using the guidelines

in [18]. 99% of the contribution for the baseline EWMA
came from measurements made in the last 24 hours; 99%
of the seasonal EWMA contribution came from the last
week, 50% of the trend EWMA contribution came from
the last 24 hours.

• For each path, we minimized the sum of the squares of
the residuals (R2 = �r i

2, where r i = yi – fi, the sum is over
all interpolated data, yi is the interpolated observation at
time i and fi is the forecast at the same time) as a function
of the HW parameters. This method always resulted in
the trend parameter being set to very close to 0 (<
0.00001).

We have settled on using the second method. It provides
good forecasts, works for a wider range of paths and requires
minimal user input.

Several methods were tested to raise anomalous event
conditions:

• The residual (r i) at each point was examined to see if it
was a trigger, i.e. outside the standard deviation of the
forecast for the last 100 points. If 70% of the points in a
window of 2.5 hours were triggers then an event was
generated.

• The residual was compared to the EWMA of the
absolute deviation [18]. If over 82% of the residuals
were outside twice the EWMA of the absolute deviation
in the last 84 minutes then an event was generated.

• With a moving window sized to cover 12 hours we
calculated

� 2 = �r i
2/ fi, and using tabulated

� 2 values
for N-1 degrees of freedom, where N is number of points
per time window, we set a threshold to generate our
triggers and more than 50% of points in the time window
generated triggers then an event was raised.

• We applied the Plateau algorithm and KS to the HW
residuals.

D. Mark Burgess (MB) Technique

The Mark Burgess (MB) technique introduces a two
dimensional time approach [21] to classify a periodic, adaptive
threshold for service level anomaly detection. An iterative
algorithm is applied to history analysis on this periodic time to
provide a smooth roll-off in the significance of the data with
time. This method was originally designed to detect anomalous
behavior on a single host, with the aim of using the information
for self-regulation, by initiating a counter response. An
anomaly is indicated by a code indicating the state of the given
statistic, as compared to an average of equivalent earlier times.

IV. RESULTS

A. Canonical Measurements

To provide a canonical set of measurements to evaluate and
compare the detection methods against we used Cap
measurements for ~100 days from June through September
2004 from SLAC to 30 remote hosts at sites shown in Fig. 1.

B. Plateau Algorithm

To first characterize the potential events seen in the
canonical data, we used the Plateau algorithm, since it is the
most intuitive of the algorithms and allows direct variation of
parameters representing the size and duration of an event. We
set δδδδ to 0 (i.e. we detect all events that fill the trigger buffer)
and the other user parameters were set as described above.
About 25 of the 40 paths manifested one or more events in this
period. We carefully reviewed each of these events and
created a library of interesting events. We observe three
general types of events that trigger our Plateau algorithm.
• Step down changes in bandwidth (“step”)
• Diurnal changes (“diurnal”)
• Changes caused by actions causing congestion, e.g. a

regularly scheduled cron job (“host”), or network
bandwidth test, flash crowds etc.

Three paths out of 30 (Caltech, NIIT and U. Florida)
exhibited marked diurnal changes that triggered “diurnal”
Plateau events, especially following a weekend. To study the
diurnal behavior more carefully we binned the bandwidth data
by hour of day and calculated the percentiles to identify the
daily bandwidth patterns. An example is shown in Fig. 3
where there is a quick decrease in bandwidth when people
arrive to work (20:00-23:00 PDT = 08:00 – 11:00 Pakistan
time). This in turn causes an abnormally high number of
events to be detected by the Plateau and KS algorithms during
these hours (see Fig. 4). Usually these changes are not as
sudden as the typical step change which may also help in
separating the two types. For our purposes, these “diurnal”
events are false positives that need to be eliminated.

Figure 3: Percentiles of capacity bandwidth (Cap) seen on

the SLAC-NIIT path as a function of time of day
One host (ANL) exhibited regular “host” type events that

were tracked down to a cron job running on the host that
used (via NFS) the network heavily. This host was eliminated
from further non-seasonal analyses. Events for a given host
typically have a small range for ∆ (standard deviation (∆) /
mean (∆) ~ 0.11± 0.1) indicating that the backup routes or
diurnal behavior is consistent. This manifests itself in a multi-
modal Distribution Function for ∆.

By careful examination of ~ 120 Plateau candidate events
detected2 with δδδδ = 0 (and ignoring whether the events are
diurnal) we classify all candidates as to whether they are
events we are interested3 in or not (i.e. exhibit sharp drop in
bandwidth (e.g. 90% of change occurs in < 220 mins), persist
for a long term (>> 3 hours) and are large enough (e.g.
δδδδ > 10%)). With δδδδ = 10% and restricting the duration of 90%
of the trigger buffer to 220 minutes, we miss 8% of the events
and see 16% false positives. Increasing δδδδ to 33% we get 32%
misses and 2% false positives. In this case 15% of the events
are caused by diurnal changes.

Histogram of KS (>0.6) anomalous events as
a function of time of day for NIIT

0

10

20

30

40

0:
00

:0
0

3:
00

:0
0

6:
00

:0
0

9:
00

:0
0

12
:0

0:
00

15
:0

0:
00

18
:0

0:
00

21
:0

0:
00

0:
00

:0
0

Time of day (PDT)

A
no

m
al

ou
s

ev
en

t
fr

eq
ue

nc
y

0%
20%
40%
60%
80%
100%

C
D

F

Frequency
Cumulative %

Figure 4: Distr ibution of events seen by KS in the Cap data
as a function of time of day for the SLAC-NI IT path.

C. Comparisons of the Various TEchniques

We then also applied KS and HW (with various anomalous
evet detection methods described in section IIID) algorithms
to the canonical data. Fig. 5 shows a visualization of the
Plateau, KS and HW algorithms applied to capacity bandwidth
observations with step changes in performance from SLAC to
BINP. As expected all three algorithms detect marked
changes. KS detects both increases and decreases in the data
and thus detects roughly twice as many events (229:116) as
the Plateau algorithm which is currently tuned for negative
changes only. Detecting both steps is valuable since, for
example, it enables determining the duration of a change
and/or taking some action when the original performance is
restored. KS also provides the most accurate time estimate4 for
when the event occurred which is important when correlating
the event with other time-dependent information.

2 Less than 10% of these candidate events were associated with noticeable

traceroute changes.
3 Others may have very different criteria, in particular the duration of the

change or the magnitude of the drop. With the exception of the plateau
algorithm, the duration and magnitude filters need to be applied as a separate
step.

4 The time estimates for plateau and HW could be improved, for example
for the plateau algorithm by identifying the time of the change when the event
occurred as the time at which the trigger buffer reached say 10% full.

Figure 5: Plateau, KS and HW algor ithms applied to an
observed step down and back up per formance change
In Fig. 5 the KS statistic (dotted) is seen to reach a value of

about 80%, on both the step up and down. The Plateau
algorithm’s trigger buffer (solid line) only reaches ~ 80% full
(since the step down’s duration is too short, in this case ~ 4
hours) so no event is triggered. The HW Χ2 (dashed line)
triggers an event after the performance has recovered.

Increasing the threshold value (K) of the KS coefficient that
defines an event reduces the false positives at the cost of
increasing the missed events as seen in Fig.6. Currently we are
using a value of K = 0.7 to trigger an event. Most (69%) of the
false positives come from four paths. Minimizing R2 to
estimate the initial HW parameters results in a fairly wide
range of values of the local smoothing parameter (a = 0.0001
to 0.95, median = 0.0024 ± 0.12) and the seasonal parameter
(b = 0.0023 to 0.999, median = 0.22 ± 0.2). About 50% of the
paths have 0.0008 < a < 0.02 and 0.18 < b < 0.4. There is very
weak correlation between a and b or R2 and a or b, which is
suggestive that there may not be a suitable single set of
parameters for all paths.

Using HW to forecast, and with the 70% of triggers in 2.5
hours method to detect events, plus bunching together events
separated by < 3 hours, successfully removed the diurnal
events for Caltech, NIIT and U. Florida. It also succeeded in
eliminating the effects of the ANL cron jobs that ran at
regular times each morning. However, there appear to be
similar host based effects that do not occur at regular intervals
that make the ANL data problematic. A similar effect giving
rise to false positives was seen with the SDSC path. In this
case there was a step down of about 10% (65Mbits/s) lasting
for 3-4 hours starting around 1am each day for about one
week.

Figure 6: Cumulative step down event types as function of

KS coefficient
With the above HW event detection method, three paths

(SOX, NASA and CESnet) with very small deviations in the
observations, had small changes in bandwidth that resulted in
events with very small changes in bandwidth.

Eliminating the ANL and SDSC paths, and demanding a
bandwidth change of at least 5% for an event, HW detected 23
true events, with 1 false positive and 6 missed events. Four of
the misses were during the first week of data, when the HW
algorithm performs poorly due to not having good initial
estimates. A further miss was since the change happened
slowly (it took over a day to get from the initial value to the
new stepped down value). The final miss was for a step down
in performance that only lasted four hours. Thus, with the
caveat that HW cannot forecast (and thus is not amenable to
event detection methods discussed above) for measurements
affected by applications running at irregular times and causing
congestion, the HW technique works well for our data. To
understand such events better more measurements are needed
on hosts and network equipment to isolate the cause.

Figure 7: KS on Iper f data from SLAC to Caltech

Figure 8: MB on Iper f Data SLAC to Caltech

Figs. 7 and 8 show the effects of applying the KS and MB
techniques to the same iperf data (from SLAC to Caltech
March 6 – 13, 2005). Fig. 8 is a snapshot of the original graph
showing the MB technique applied on Iperf Data. This
snapshot gives a good idea about the real-time behavior of MB
technique. It is seen in Fig. 7 that the KS coefficient (solid
line) identifies the obvious long term step down and step up
(both identified by circles) in the data on March 9, 2005 and
March 11, 2005 respectively. In Fig. 8 on the other hand, the
MB code (light dots) oscillates wildly as it tries to track the
individual spikes in the noisy data and misses the important
steps down and up.

We also applied Plateau and KS on the HW residuals for
the Cap measurements from SLAC to the U. of Michigan
which have both diurnal changes and one-off anomalous
events. We find that although both are able to detect one-off
step-downs, Plateau shows no false positives while KS raises
several events on weekends. This happens because KS
compares two frequency distributions irrespective of the
relative change in values. During weekends, residuals are close
to 0 as data values usually mirror past weekend’s data and HW
is able to make good forecasts based on its past week’s
seasonal cycle values. However due to higher network usage
during weekdays, there are higher fluctuations and residuals,
though small in absolute value, are more spread out. So KS on
weekend data effectively compares two very different
distributions (past weekdays and weekend) thereby raising
false events. This interesting observation highlights a weakness
of KS for our current application.

D. CPU Utilization

Both the Plateau and HW algorithms are implemented on
Linux systems as Perl scripts and so should be relatively easy
to port. Currently no attempt has been made to optimize the
speed of execution. For 43K data points on a dual Xeon 3GHz
cpu host, it takes about 15 seconds to interpolate the data, 30-
40 seconds to minimize R2 to find the optimum HW
parameters, and about 2 minutes for the HW analysis and
reporting. The Plateau algorithm has mainly been used for
exploring the data and thus has many extra tests and reporting
which result in it taking about six times as long. The KS
algorithm is implemented in C and takes about 1 minute with
M = 100. The execution time of KS, however, is very
dependent on M. For example, increasing M from 100 to 400

increases the analysis time by a factor of 14.

V. FUTURE WORK

Since this is a production network that we do not
administer, we are not comfortable with deliberately
introducing known problems into the network to characterize
their effects. On the other hand, now we have understood the
techniques and optimized the parameters, we have reduced the
number of potential events to a few per week. Each of these is
now reported by email and carefully analyzed to see if it
corresponds to a known cause (network maintenance, fiber
cut, routing change, incorrect configuration etc.) Initial results
are encouraging, but more work is needed to properly
characterize the relationships.

We are looking at using wavelet decomposition to eliminate
outliers and white noise seen in real data.

To reduce the problems with occasional outliers in the
ABwE measurements caused by inter-packet timing problems
[23], we are evaluating using PathChirp [24] instead. While
PathChirp increases the network traffic and the time to make a
measurement by roughly a factor of ten, it does appear to give
more accurate results.

The subspace PCA analysis has been reported [25] to work
well when applied to measurements from core routers. It is
unclear how well it will work on less correlated end-to-end
active Internet performance measurements. It has the
advantage of being able to simultaneously look at
measurements of multiple metrics (e.g. RTT, iperf throughput,
Cap, Xtr, reverse and forward performance measures such as
provided by ABwE, and/or hosts/system performance
measures) and paths simultaneously. On the other hand it may
be less intelligible to someone without a statistical
background. We have implemented this algorithm and are
currently applying it to ABwE, iperf, and PathChirp
measurements.

A second, filter process may be applied once potential
events have been identified using one of the above techniques.
A filter may serve two purposes. Firstly unwanted events, or
false positives may be removed and not reported. Secondly,
events that are noteworthy may be classified to aid in further
diagnostic processes. A neural network has been used as such
a filter process in [18]. We are also looking at using neural
networks to interpolate between infrequent, heavyweight
measurements such as iperf by using more frequent
lightweight measurements such as ABwE or RTT etc.

Once we have a robust, reliable anomalous event detection
technique that works with the ABwE data, we will extend it to
other measurements including GridFTP and observations of
host/system performance measures. We are also starting to use
the current work to generate alerts that are distributed by
email. These will be filtered, relevant information gathered
from network devices, analyzed and reported to network
administrators.

Besides detecting anomalous events, we plan to make the
forecasts available for Grid middleware such as a replication
manager.

VI. CONCLUSIONS

End-to-End fault and performance problem detection is an

important and challenging problem. The major challenges are
due to the complexity of different network components, their
working and interaction, diversity of the network performance
and dependency on the networks. On the other hand,
interpreting limited amount of end-to-end network monitoring
data and detecting performance problems without having
access to the intermediate network devices imposes another
important challenge. To solve this problem most of the
existing network problem detection software’s use statically
set threshold based technique which require human interaction
and they are not adaptive to network change. Keeping in
consideration the dynamic nature of network end-to-end paths
and above mentioned challenges, we proposed a new
technique to detect network performance problems proactively
in real time. In our method we do not rely on the device
specific information of the intermediate nodes like SNMP-
MIB’s as typically network end users users don’ t have access
to this type of information. The major techniques which we
used in our approach were: the Plateau algorithm;
Kolmogorov-Smirnov (KS) technique; the Holt-winters (HW)
forecasting algorithms; and the Mark Burgress (MB)
technique, We also integrated different techniques applying
the Plateau algorithm to HW Residuals (PHR) and KS to HW-
Residuals (KHR). We applied these techniques on our active
end-to-end measurements that we gathered by monitoring 40
production network paths with bottlenecks varying from 0.5
Mbits/sec to 1000Mbit/sec.

Our results show that for measurements with limited diurnal
(or other seasonal) changes the Plateau, KS and HW
algorithms work well. The HW technique explicitly
incorporates seasonal changes and so event detection methods
incorporating HW work better than the Plateau and KS
methods on paths with significant diurnal changes. Among the
different event detection methods discussed for HW, Plateau
and KS applied to HW residuals are the most effective in
identifying seasonal variations.

 KS provides accurate identification of when the step up or
down occurred. KS, compared to Plateau is sensitive to both
the average values and the distribution. It may thus be more
valuable if the concern is for applications which are
distribution sensitive (e.g. real-time applications such as
interactive voice which depends on jitter). MB is aimed at
real-time identification of changes but is not suited to finding
long-term persistent anomalous changes. On the other hand for
our purposes we are more interested in changes in average
performance and so prefer the Plateau algorithm applied to
HW residuals.

The Plateau algorithm is easily understood by people with a

non-statistical background and has easy to interpret user
settable parameters.

The KS algorithm is the most statistically formal of the
three algorithms. It has only two parameters: the number of
data points (M) used to evaluate the distribution functions; and
the threshold (K) of the KS coefficient above which an event
is assumed to have occurred. It provides the best estimates of
when a step occurs.

For the HW techniques it is critical to provide complete data
at regular time intervals. Also one needs a few weeks worth of
data to get a reasonable estimate of the seasonal variations.
Estimating the parameters using the minimization techniques
appears to work well in most cases. The basic Holt-Winters
algorithm is a forecasting technique, and so may also be used
for providing forecast information to applications such as Grid
middleware [26].

Each technique requires several parameters. We have
provided guidelines for selecting the Plateau parameters. For
KS there are only two parameters. We settled on using M =
100 data points and a threshold (K) of 70%. We have
developed an automated technique (minimizing the residuals)
to select the HW parameters to greatly simplify the use of the
forecasting technique. This is particularly important since
there is not a single set of selected HW parameters for all
paths.

ACKNOWLEDGEMENT

We gratefully acknowledge Jerrod Williams and the
administrators at the remote hosts for their work in setting up
the hosts and keeping the measurements running. We also
thank Mark Crovella, Jerry Friedman, and Waqar Mahmood
for useful discussions on the subspace PCA technique, and Alf
Wachsman for help with the RRD version of HW and
assistance with the CFETool version of MB.

REFERENCES

[1] McGregor A, Braun H-W, and Brown J, “The NLANR network analysis

infrastructure” , IEEE Communications Magazine, May 2000
[2] Cottrell R. L, Logg C, and Mei I-H, “Experiences and Results from a

New High Performance Network and Application Monitoring Toolkit” ,
PAM 2003.

[3] Matthews W. and R. L. Cottrell, “The PingER Project: Active Internet
Performance Monitoring for the HENP Community” , IEEE
Communications Magazine, May 2000.

[4] “National Internet Measurement Infrastructure” , available at
http://www.ncne.nlanr.net/nimi/

[5] “E2E piPES” , available at http://e2epi.internet2.edu/pipes/
[6] “RIPE NCC Test Traffic Measurements” , available at

http://www.ripe.net/ttm/
[7] “MonALISA: Monitoring Agents using a Large Integrated Services

Architecture” available at http://monalisa.caltech.edu/
[8] Navratil J and Cottrell R. L, “ABwE: A practical Approach to Available

Bandwidth Estimation”, PAM 2003 also SLAC-PUB-9622.
[9] Alok Shriram , Margaret Murray, Young Hyun, Nevil Brownlee, Andre

Broido, Marina Fomenkov, k claffy “Comparison of Public End-to-end
Bandwidth Estimation Tools on High-Speed Links", PAM2005.

[10] “ Iperf the TCP/UDP Bandwidth Measurement Tool” , available
http://dast.nlanr.net/Projects/Iperf/

[11] “BBFTP Large Files Transfer Protocols” , available at
http://doc.in2p3.fr/bbftp/

[12] “Globus Grid FTP Protocol and Software” , available at
http://www.globus.org/datagrid/gridftp.html

[13] Grigoriev M, Cottrell R. L. and Logg C., “Wide Area Network
Monitoring System for HEP Experiments at FNAL” , Computing in High
Energy Physics, Interlaken Switzerland, Sep 2004.

[14] Logg C, Cottrell R. L. and Navratil J., “Experiences in Traceroute and
Available Bandwidth Change Analysis” , SIGGCOMM’04 Workshops,
Aug 30 & Sep 3, 2004, Portland OR, USA

[15] McGregor A.J. and Braun H-W, ”Automated Event Detection for Active
Measurement Systems” , Proceedings of PAM2001, Amsterdam,
Netherlands, April 2001

[16] A. Ward, P. Glynn and K. Richardson, “ Internet service performance
failure detection” Performance Evaluation Review, 26:38-43, 1998

[17] Brockwell P. and Davis R, “ Introduction to Time Series and
Forecasting”, Springer New York, 1996

[18] Sandford, J.M., Parish, D.J. and Phillips, I.W., ''Neural approach to
detecting communication network events'' , IEE Proc. Communications,
1495 , October 2002, pp 257-264, ISSN 1350-2425.

[19] Brutlag J.D., “Aberrant Behaviour Detection in Time Series for Network
Monitoring” , Proceedings of LISA 2000, New Orleans, LA, USA,
December 2000.

[20] NIST e-handbook of statistics, http://www.itl.nist.gov/div898/handbook.
[21] Mark Burgess, Two dimensional time-series for anomaly detection and

regulation in adaptive systems, Proceedings of 13th IFIP/IEEE
International Workshop on Distributed System, operations and
management (DSOM 2002). "Management Technologies for E-
Commerce and E-Business Applications" Springer 2002.

[22] Comparison between Two Dimensional time-series & KS technique for
Anomalous Variations in End-to-End Internet Traffic : http://www-
iepm.slac.stanford.edu/monitoring/forecast/ksvsmb/ksvsmb.htm

[23] Shiram A, Murray M, Young H, Brownless N, Broido A, Fomenkov M,
Claffy K, “Comparison of Public End-to-End Bandwidth Estimation
Tools on High-Speed Links, PAM 2005.

[24] Ribeiro V, Reidi R, Baraniuk R, Navratil J, Cottrell R. L, “pathchirp:
Efficient Available Bandwidth Estimation for Network Paths” , PAM
2003.

[25] Lakhina A, Crovella M, Diot C, “Diagnosing Network-Wide Traffic
Anomalies” , Sigcomm 2004.

[26] Ian Foster, Carl Kesselman, “The Grid 2: Blueprint for a New
Computing Infrastructure” , Publisher: Morgan Kaufmann; 2 edition
(November 18, 2003), ISBN: 1558609334

