$$
\begin{gathered}
\text { STUDY OF THE } \mathrm{K}^{+} \mathrm{K}^{-} \text {SYSTER PRODUCED IN } \\
\pi^{+} \mathrm{d} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{--}+\mathrm{X} \text { at } 10 \mathrm{GEV} / \mathrm{C}
\end{gathered}
$$

E. W. Anderson, H. B. Craviey, A. Firestone, V. J. Keman, D. L. parker

Devartmont of Physies
Tova State Univers'ty and Ames Laboratory, ERDA Ames, Xowa 50011
J. Chapman: B. P. Roe, J. Vander Velde, A. Seidl

Department of Physies University of Michigan
Ann Arbor, Michigen 48104

1. Introduction

We propose to use the SLAC LASS facility to study the reaction $\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$+ X . As will be described bolow; we expeor co osain mation on several tests of the onvorzel then (0Zi) selection rule. These
 In the latter two reactions the attempt is to measure coupling constants such as $g_{\phi N H}$ and compare with $\xi_{\phi-1}$ and $g_{\phi T p}$. We will aloo seudy the reaction
 Deck Kodels (heme H is a heayy meson state - not necesserily resonant). In addition the reactions $\pi^{+} n \rightarrow K^{+} \mathrm{K} \mathrm{p}$ and $\pi^{+} \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \Delta^{++}$will allow the study (through the usual extrapolations to the pion pole) of the meson-meson scattering reaction $\pi^{+} \pi^{-\cdots} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$。
II. General discussion and Physics Questions

A. Ouerview

According to the quark model with jdeal mixing, the φ meson is a pure state, $s \bar{s}$, of strange quarks. It is therefore of immediate interest to investigate the mechanism of ϕ production in interactions of non-strange mesons. This is particularly important in view of the fact that there may be a close analogy with the production of ψ mesons (or of charmed states) from non-charmed hadrons. (1,2) An fimportant ldea in understanding such processes is the OZI selection rule, (3) which states that the quark-antiquark pair in the meson do not annihilate, but that production and decay take place through planar connected quark diagrams. The $K^{+} K^{-}$decay mode of the ϕ^{0} has the experimental advantage that in low multiplicity final states it produces a clean and efficient trigger for use with the LASS system. An experimental set up in which the LASS System is used to preferentially trigger on $\mathrm{K}^{+} \mathrm{K}^{-}$events would therefore produce a
large anount of data of the reactions involving ϕ mesons. This data can be studied to better mdenstand the \bar{s} quark systers, to help refine the theoretical models for such states, and to illuminate theoretical models for other wnusual quark combinacions such as ce.

Production of ϕ mesons is not the only mechanisn which feeds the $K^{+} K^{\prime \prime}+X$ reaction. The othex mechanisms are also worthy of detailed study. For example, the process $\pi^{+} \mathrm{N}+\overline{\mathrm{K} \circ} \mathrm{O} \mathrm{K}^{+} \mathrm{N}, \overline{\mathrm{K} \alpha}+\mathrm{K}^{-1} \pi^{+}$wiII create events which produce a trigger. Such events can bo stufied in temb of a keggeized Deck Kodel and can produce data with which such models can be refined and tested. In addition, $\pi^{+} \pi^{-}$scattering futo $K^{+} K^{-\quad}$, for example in the reaction $\pi^{+} u \rightarrow K^{+} K^{-} p$, winl also feed the $K^{+} K^{\text {ºn }}$ final states. In addition to studying ($K^{+} K^{-}$) $+p$ final stetee it is possible to study $\mathrm{K}^{+}+\mathrm{Y}^{\circ}$, with $Y^{\circ}+K^{-} \mathrm{p}$ in the same data.
B. Trigger Condiezations

With an incident pion bean of about $10 \mathrm{GeV} / \mathrm{c}$ it is proposed to run the LASS Syctem with a fatriy loose multiplicity trigger and with the requirement that no charged pardicle produce light in C1 (the segmented Cerenkov Comerer at the exit end of the solenoid system). The multiplicity will be defined using hodoscopes in the region between CI and the dipole magnet. The requirenent here will be that 2,3 , or 4 charged particles be detected. The threshold in Cl (using Methyl Chloride as the gas) would be set at $\beta \sim .998$ ($p_{p} \sim 16 \mathrm{GeV} / \mathrm{c}$, $\left.p_{K} \sim 8.5 \mathrm{GeV} / \mathrm{c}, \mathrm{p}_{\pi} \sim 2.4 \mathrm{GeV} / \mathrm{c}\right)$. In this configuration ϕ mesons produced at the pion vertex will trigger the system with high probability independent of the baryon vertex conffguration, because any charged pions emitted at the baryon vertex will be low momentum pions in the laboratory. Reactions such as $\pi^{+}+n \rightarrow \phi^{\circ}+p$ where all final state particles are heavy will not produce a veto signal in C1. On the other hand, the reaction $\pi^{+}+p \not \Delta^{++\alpha}+\phi^{\circ}$ will, in the case of a baryon exchange graph, have trigger efficiency less than 50% since if the π^{+} emitted in the Δ^{++}decay has $p_{\pi}>2.4 \mathrm{GeV} / \mathrm{c}$ it will veto the event. Other reactions o
interest such as $\pi^{+}+n \rightarrow K^{+} \phi^{\circ} \Lambda^{\circ}$ will have trigger efficiencies of neariy 100%. Monte Carjo studies of trigger rates for final states with no strange particles vary from < 1% (cypical for any reaction whth a fast "leading" $\pi{ }^{+}$) to $\sim 25 \%$ for a six-prong with the fastest pion being a π°. We estimate the cross section for $\pi^{+}+d+K^{+} \mathrm{K}^{-}+X$ to be ~ 1 mot $10 \mathrm{deV} / \mathrm{c},{ }^{(4)}$ and using the known cross-sections for other $\pi^{t} d$ reactions, the ratio of $K^{+} R^{-\prime}$ events satisfying the trigger to n events satisfying the triggex is

$$
\frac{\mathrm{K}^{+} \mathrm{K}^{-}}{\pi} \sim \frac{1}{\mathrm{I}}
$$

(for a more detalled discuesion of trigger considerations see Section III). Information on the estjmated trigger efficiency for every reartion considered in the discussion of the physics of this proposel is contained in Table I.
C. Physica Considerations
(i.) $\pi^{+}+n+k^{\dagger} \phi^{\circ} \Lambda^{\circ}$

If this process is observed with reasonable statistics it would allovian excellent study of the oZl rule within one final state. By studying the fourmomentum transfers from the incident π^{+}to either the \mathbb{K}^{+}or to the ϕ, the

Diagram 1

Diagram 2
may be compared directly. We emphasize the fact that the first diagram is a connected quark graph, while the second is an OZI violating discomnected graph. Unfortunately no weasurement of this cross-section exists at any energy to our
knowledge. Simple consiuerations yield lower bound estimates of 50 no and upper bound estimates of ~ 1 th (See Section IV). Teirly detailed multi-Regge calculations (K.E. Lassila) yield estimates of 250 nb . (5), homever these calculations have not jncluded all of the possible diagrans so a more appropriate estimate of the crossmsection from these calculations might be in the rage of 200 to 700 nb . How many events in this final state are neoded to noke a definite concluston about the rate of 02 L violation is unfortunately a function of this xate itself, There are too many whown factors to be able co conclude that wo can successfully stroy the out rule in this final state llowever, it is so interesting thet we have used this final state to calculate mang times. Our conclusions from this study (See Section IV for more detafls) aze as follows:
(1) If $\sigma\left(\pi^{+1} n+\alpha^{t} \sigma^{\circ}\right)$ is $\geqslant 500 \mathrm{nb}$ and the intencity of the "OZI violating" diagran is $\geqslant 10 \%$ of the other diagram, we can du a good job with ~ 500 hrs. of experimental rundng time. With about 500 hrs. we have a chance to be able to do a good job for a 10% violation even if the cross-section is 200 nb . This would reguite ustng events (Λ° or Σ°) where the Λ° is not seen (neutral decay or failure to reconstruct) but is inferred from the missing mass alone. (To insist on Λ reconstruction imposes a factor of 3 reduction in event rate.) In the absence of real data for the missing mass distribution in this reaction, using LASS, it is not possible to conclude whether such events can be used for this analysis or not.
(2) The two major questions, the rate for this process and the usefulness of the missing mass events can be settled with 100 hrs . of rumng time.
(3) Most other channels of interest will have sufficient statistics with 100 hrs . of running.

Therefore we request 100 hrs. of running followed by at least 4 months off of the machine. During this time we will try to isolate the $K^{+}{ }^{\circ} \Lambda^{o}$ sample.

If we can isolate 50 to 100 events in this final state from this preliminary data we request an aditional 400 hrs . to complete this study.
 two Feyman graphs that have been considered seems to be straightomard. The most basic variables to use seem to be t_{K} and t_{ϕ}, were ${ }^{t}{ }_{i}$ is the square of the four-monentun tansfer from the incident pion to particje i. We generated 350 events of the ozi obeying diagran with the dependence on $t_{K} \sim e^{3.5 t_{K}}$ and 70 events of the ozx violating diagram with the dependence on $t_{\phi} n{ }^{3} 3 t_{\phi}$. This Monte Cario data $1 s$ shom in Figure I as circles and dots. A rather simple analysis then resulted in attributing 347 events to the ozl obeying process. In addition to the statistical uncertainties, the separation of the overlap region was estrated to contribute an uncertatnty of ± 6 events in the 347 events.

It should be emphasized that one difficulty in this study was that the two diagraws were treated in an incoherent fashion. If both djagrams contribute appreciable anounts of data, the effects of coherence in the overiap region of the t_{K}, t_{ϕ} variables can be evaluated.
(ii.) $\pi^{+} n^{-}+\phi^{0}+p$

A 100 hr . run would have ~ 350 events/ $\mu \mathrm{b}$ with $\phi^{\circ} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$(ignoring inefficiencies for event reconstruction). St $15 \mathrm{CcV} / \mathrm{e}$ the reaction $\pi^{\dagger} \mathrm{p} \rightarrow \phi^{\circ} \Delta^{++}$ has been observed by Baltay et al ${ }^{(6)}$ and the cross-section is estimated to be $\sim 13 \mu \mathrm{~b}$. (Other estimates for $\sigma\left(\pi^{+} \mathrm{n} \rightarrow \phi^{\mathrm{P}} \mathrm{p}\right.$) are $\sim .35 \mu \mathrm{~b} .{ }^{(7)}$) Therefore we should have ~ 120 events in the $\phi^{\circ} \mathrm{p}$ final state. (For 500 hrs . this would be >600 events). A study of the t distribution should therefore be possible. Events in which the proton is produced forward and the ϕ° backwards in the center-of-mass should serve as a measure of the coupling constant $g_{\phi N \bar{N}}$. This coupling constant is at present thought tobe suall but would be expected
to be of the order of $\varepsilon_{\text {dpt }}$ which also violates the oui rule.

$$
\text { (iii.) } \pi^{+} p+\phi^{0} \Delta^{+1}
$$

Here one would expect who 0 events for 100 hrs, In this case, however, the nucleon exchange case is suppressed by the trigger. The estimated trigger efficiency for this reaction varies from 1.0 for $\left|t_{\phi}\right|$ \& $I(G, V /)^{2}$ to 00.6 for $\left|t_{\phi}\right| \sim 2(\operatorname{cov} /)^{2}$.

$$
\text { (Avo) } \pi^{+}+\mathrm{N} \Rightarrow \mathrm{~K}^{+}: \mathrm{E}_{\rightarrow-\mathrm{R}^{+}}^{(000)}+\mathrm{N}:
$$

The tiger eftidency for the final state varies wi the moment an of the charged pion which routs from the k. decay. We point out that the kinematics using devtername such that a which yields a misgng neutral particle in the decay is not useful, ie. missing mas in this configuration is not sufficient to identify the \bar{K}. Thus other charge states, egg. $\pi^{+} n+K^{+} K^{-} p$, $\mathrm{K}^{*}+\mathrm{K}^{+} \mathrm{t}^{\circ}$, wii not be useful. Even including all of these losses we should have 5000 to 6000 events from the channels completely detemmed, ie. $\pi^{+} \mathrm{N} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-\cdots} \pi^{+} \mathrm{N}$. (For estimates on these cross-sections see Appendix B.)

The reaction $\pi^{\dagger} \mathrm{N}+\mathrm{K}^{+} \mathrm{K}^{2} 0 \mathrm{~N}$ is of particular interest to the study of Reggeized Deck models, as only two diagrams contribute:

Diagram 3

Diagrati 4
whinh involve efther for ar archarge. (B) Shee the fina staten are icentleat, these tro diagram tntertere, and a predtetan of the intenthty tnvolves the absolute acuare of the sum of the ampitudes. Thus the anclysis would ytele valuble information on the relative phases of the two mpltudes, and past oxperisuce indicates such phase inforation to be of importance In evatuatine the chaned successes of keggejzed Dect Modeis. $\left(v_{u}\right)$ Mess of MABter $\mathrm{F}^{*} \mathrm{~B}$
The crovsorectiors fow production of (3t th by pions is whone It is

 with whth w 100 hev ericts and has a product of producrion crosesoction
 It In this expeximat. Sthee π production of chis system would be supressod relatve so x production, and E-75 at grat has reported no such effects in K inouced reactions, it is not likely thot this experiment will yield a positive stemal honever the search of the data should be made and results published.
(vi.) Higher Mass Non-Strange Mesons (2k) ${ }^{0}$

The Regge recurxence of the ϕ, the so-called ϕ^{\prime}, is expected at a mass of about $1.8-1.9 \mathrm{GeV} / \mathrm{c}^{2}$. We have good acceptance for $\mathrm{M}(\mathrm{KK})$ to nearly $3 \mathrm{GeV} / \mathrm{c}^{2}$, and so should be able to observe such a resonance with good statistics if the product of its production cross-section and branching ratio to $\mathrm{K}^{+\quad} \mathrm{K}^{--}$, is 100 nb . Other decay modes, such as ($\overline{\mathrm{KK}}$) and ($\overline{\mathrm{KK}} \times$) whll have about half the acceptance of the ($\mathrm{KK} \overline{\mathrm{K}}$) wode due to the veto by a fast forward pion from the K : decay.

- (vil.) $\pi \pi \rightarrow K^{+} K^{-}$Scattering and Phase Shift Analysis

In (id) and (did) the result of the expemmants reported in references 6 and 7 Were used /to estinate that in a 100 he mun there mond be $x 800$ events of the reaction $\pi^{+} n \rightarrow \phi^{\circ} p$ and whoo events of the reaction $N^{t} p \rightarrow \phi^{\circ} \Delta^{+1}$. At 15 Gev/c the more ceneral
 reaction $T^{+n}+\mathrm{K}^{+1 \mathrm{~K}} \mathrm{p}$ at $5.4 \mathrm{Gev} / \mathrm{c}$ has $\sigma=137 \pm 27 \mathrm{p}$ 。(10) If at $10 \mathrm{GeV} / \mathrm{c}$ We take the sum of these wo chamels to equal $420 \mu \mathrm{~b}$ (a very conservative estimate), then tre a 500 hx . Im thare would be a 200,000 events which could be used to stwdy the mit \rightarrow tw schtering by the stendaw techiques of extrapolations

 sizeable effects at frechold due to the effects of untarity and of the st pole. (12) It vould be interesting to study $\pi^{+\quad-} \rightarrow K^{+\quad} K^{-\quad}$ scattening directy. This reaction has not been welj oxplored; most of the data on the $\delta(970)$ coming from indirect chanels such as $n \pi$. ${ }^{(13)}$ High statistics in $\pi T \rightarrow \overline{K K}$ will eininate the need for model dependent analyses, and opens a new avenue of exploration of the meson-meson interaction. The Argonne EMS group has a significant data sample of $\pi^{-} p \rightarrow K^{+} \mathrm{E}^{-} \mathrm{n}$ and $\pi^{+} \mathrm{n}^{+} \rightarrow K^{+} K^{-} \mathrm{p}$ at lower energy. (14) However their analysis is restricted to the region $M(\bar{K})<1.8 \mathrm{GeV}$ and backward $K \bar{K} ' s$ did not trigger their spectrometer. The higher incident energy of our experiment will allow good acceptance for $M(\overline{K K})$ to nearly 3 GeV , and furthermore will reduce the Chew-Low boundary and allow the physical region to get closer to the pion pole at all masses, thus reducing extrapolation eirors. A 5100 event study of $\pi^{-} p \rightarrow K_{S}^{O} K_{s}^{O} n$ at $6 \mathrm{GeV} / \mathrm{c}$ published by the . Notre Dame- Argonne group (15) has recently given evidence of a new $I=1$ resonance in the 5 wave $K \bar{K}$ system at $1255 \mathrm{KeV}(\Gamma=80 \mathrm{MeV})$. An Argonne preprint, ${ }^{(16)}$ confims the existence of
the resonance but cladas an Isosphi of $x=0$. Oux 40,000 eqonts (fox the 100 hr , run) in the tro reactions $\pi^{+} p+K^{+1} K^{\prime \prime} \Delta^{+1}$ and $\pi^{+} n+K^{+} K^{\prime \prime} p$ should resolve this question. 121. Detailed Triger Constderacions

Tha crosemection for $\pi^{+} d+\mathrm{K}^{\dagger} \mathrm{K}^{\text {n }}+$ anything has not been measured at $10 \mathrm{Gev} / \mathrm{c}$. Thae different methods have been used to estimate this crossmection as shom in hppendur A. If ve take 1.0 m as a reasonabic estinate, then
for original data raduction the wort case wours if wh have a 100% triggen efficiency fot such equats. For a 100 hr . mon this would yield 700,000 events. Fore rallstic estrates would be $\sim 600,000$ avents atith 400,000 of these capable of befm reconstracted allowing for knom andor estimated reconstruction efficiencles votre the LASS system. Efther of these is m emount of data which con be handed, portcularly since a large fraction is really useîlu for physics anaysis, as has been emphastzed in section II C.

For reactions which do not involve any kaons in the final state and which leak through the trigger extensive fonte Cario calculations have been done. Table II shows the effects of the $\pi^{\dagger} p$ interactions at $10 \mathrm{GeV} / \mathrm{c}$. These yield a trigger cross-section of $\sim 0.5 \mathrm{mb}$. If we double this to take into account the $\pi^{+}{ }^{+}$interactions we then have about 1.0 mb triger fron "no K " events or again $\sim 700,000$ events on tape for a 100 hour run. While this is not jideal it certainly yields a manageable amumit of data, that is $\sim 1.4 \times 10^{6}$ events on tape. The effect of reactions $\pi^{+} d \rightarrow K^{+}+X$ is difficult to evaluate. However, as a "worst case" estimate one might assume that these also contribute an addtional 0.7×10^{6} events on tape. (Some of this, for example $\pi^{+} n \rightarrow K^{\dagger} A^{\circ}$, may also be interesting physics). Our conclusion
from this to thet the data from a 100 hx rom are manageable considering our available conputational facilitios. The data from the adotional 400 hrs. would also be menagesbie if the $\mathrm{K}^{+} \mathrm{p}^{\circ}$ reaction occurs with a frequency which nakes hat run advisable. We wonld nowever use the reat data from the first 100 hrs. in an atcomt to tighten the trjger for this additional rundigg. IV. Detailed Constocrations for $\pi^{+} \rightarrow K^{4} \mathrm{H}^{\circ} \mathrm{N}^{0}$ The duagran

7ingrem 9
for this reaction obeys the ozt rule and the diagram

does not obey the OZI rule. Since the cross-section for the process is not known it is necessary to try and develop estimates or at least "bounds".

A. Lower Lirnit (G. Kane's suggestion)

In this method one tries to generalize from two body reactions such as $\pi^{+} n \rightarrow K * N$ and $\pi^{+} n \rightarrow \phi+N^{*}$ where K^{*} (or N^{*}) means any massive system which
can decay to $\mathrm{K} \phi$ (or KN). A conservative estimate is that typical oross-sections for each two body chanel aje $1 / 3$ to $1 / 2 \mu b$. Then one sums over-all such channels and gets $\sigma>1$ po for such two body reactions. Eut now average values
 one can use averages of knom real $n *$ systems and 5% is reasonable. For branching ratios of $K \% \rightarrow$ K ϕ one uses $S U(3)$ models. The rarge is $n 2 \%$ to 10% ad so one would tako 5% as an average. The result then is 1 fox $x 05 \sim 50$ nb as a luwer tivat.
B. Dpper Yimit (G. Nave's suggestion)

The genomal approach of this method is to treat ϕ and A° production as having independent probablities and therefore the probebility for $\operatorname{m}^{+} \rightarrow \phi^{0} \Lambda^{\circ}+x^{t}$ to be the product of these two probebjities. Ne estirate that at $15 \mathrm{GeV} / \mathrm{c}$ $\pi^{+} p \rightarrow \phi^{0}+X^{+4}$ has $\sigma=.25$ mb. Since tis is a rough estimate anvay we will take the same ofor $\pi^{+} n+4+X^{+}$at $10 \mathrm{GeV} / \mathrm{C}$. For $\sigma\left(\pi^{+} n+A^{\circ}+X^{+1}\right)$ at 10 GeV/c we estimate $\because .5 \mathrm{mb}$ to 2.0 mb . Then one would estimate that $\sigma\left(\pi_{n}^{+} \rightarrow \phi^{0} \Lambda^{0}+X^{+}\right)$ at $10 \mathrm{GeV} / \mathrm{c}$ to be given approximately by:

$$
\left(\frac{.5 \mathrm{mb}}{25 \mathrm{mb}}\right) \times\left(\frac{.25 \mathrm{mb}^{2}}{25 \mathrm{mb}}\right) \times 25 \mathrm{mb} \approx 5 \times 10^{-3} \mathrm{mb}=5 \mu \mathrm{~b}
$$

The X^{+}muct have $S=+1$ but in some instances of course this will be $K^{\circ}+\pi^{+}+\left(N \pi^{\circ}\right)$. If we assume no polarization in isotopic spin space the number of K^{+}and K^{0} will be equal or $\approx 2.5 \mu \mathrm{~b}$ for $\pi^{+} \mathrm{n}^{+} \rightarrow \phi^{0} \Lambda^{\circ} \mathrm{K}^{+}+(\mathrm{n} \pi)$. Now for this rough estimate one must ask what percentage have $n=0$, i.e. no extra pions? So $2.5 \mu \mathrm{~b}$ is the upper Ifmit in this view and if one uses phase space or known multiplicities at these energies one would take $\sim 40 \%$ for $n=0$ (since there are already 4 particles in the final state $K^{+} K^{-} K^{+} \Lambda^{\circ}$) and a more realistic upper limit might be $\sim 1 \mu b$.

Even as an upper limit these are very questionable estimates. For example In most chanmels in the interactions, pproduction is suppressed by the ozl rule. That suppression factor is automatically buile into this estimate which is however for a chamel in which the suppression is not valid. But we have no Idea how much one should ratse these upper limit numbers because of this argument, so in fact we will leave then alone.
C. Mult-regge Calculations (K. E. Lassila)

Using standard Multi-Regge Deck model calculations Dr. K. L. Lassila has estimated a number of graphs contributhg to $\pi^{+1}+k^{+1} \phi^{0}($ aji at $10 \mathrm{CeV} / \mathrm{c})$. The ozi rule violating graph

$$
\text { Magram } 5
$$

has been estimated at $\sim 40 \mathrm{nb}$. In this, the amplitude for $\rho^{+}+\mathrm{n} \rightarrow \mathrm{K}^{+} \mathrm{A}^{\circ}$ has been taken to be equal to the amplitude for $\pi^{+}+n \rightarrow K^{+}+\Lambda^{0}$, with estimates for spin ilip and kinematic corrections included.

he started with the diagram

and used known amplitudes for $k+n \rightarrow \phi+\Lambda$. This graph gives $n 50 \mathrm{nb}$. The graph

would then be enhanced by two factors: (1) the increase in phase space with the lighter mass K^{+}at the top vertex, or equivalently, the decrease in $t_{\min }$ necessary for $\pi^{+} \rightarrow K^{+}$instead of $\pi^{+} \rightarrow K^{*}$ and (2) the fact that both spin flip and non-flip amplitudes contribute to graph 6 and only the flip amplitude contributes to graph 7. Since these are at best rough estimates the effect of the change in $t_{\min }$ has been calculated but the $K *_{n} \rightarrow \phi \Lambda$ amplitude is taken to be equal to the $K N \rightarrow \phi \Lambda$ amplitude. Among other approximations made, this does not count the spin non-flip amplitude. The result is then $\sim 220 \mathrm{nb}$ for this graph. So the two graphs total $\sim 250 \mathrm{rb}$. In addition for graph 6 the equivalent graph where Q is exchanged has not been included. Summing all of these, the best range for an estimate from these calculations would seem to be $\sim 200 \mathrm{nb}$ to ~ 700 nb . A summer of feievant cross sections may be found in wabie III.

D. Effective Date Rates

Here we are dealing with two major uncertainties. The uncertain crosssection has already been discussed. Whether the events with the Λ° not observed or reconstructed can be used is on adeitional factor of ~ 3 uncertainty. (Neutral A° decay $\sim 1 / 3$, and because reconstruction in LASs requires prer for each track $>75 \mathrm{~K} v / \mathrm{c}$ about $1 / 2$ of the $\mathrm{A}^{\circ} \rightarrow$ pi" will not reconstruct. . We have used the Hulthen wave funclion in a Monte cario gencration of events for deuterium and then have examoned the missing mass distrabution for the Λ°. In this case the FWim was $\sim 150 \mathrm{Hav}$. This suggests that such events can be ued. That may be putting too much wetight on the conputer simulation of LAss and a fanal decision is not poosible wthout real data. (te is aiso a function of how fast the AT, $\Sigma \pi$, etc backgromd İses froa threshold). We will therefore try to calculate hor many events can be observed per 100 nb per 100 hrs . for each of two cases, reconstructed Λ° and all Λ°. (Note, if the mi techntque works then $\pi^{+}{ }^{+}+K^{+} \phi^{\circ}{ }^{+}{ }^{+}$events may also be useful yiclding an addittonal rate factor in the range of 1.5 to 2.0).

The $\dot{\phi}^{\circ}+\mathrm{K}^{+} \mathrm{K}^{-}$rate js ~ 0.47. We will assume a total "event reconstruction efficiency" of $2 / 3$. (Note: this efficiency does not include the $1 / 3 \Lambda^{\circ}$ reconstruction effictency referred to earlier). So for 100 nb and 100 hrs. we would have:

I: $K^{+} \phi^{\circ} \Lambda^{\circ}\left(\Lambda^{\circ}\right.$ reconstructed) :
II: $K^{+} \phi^{\circ} \Lambda^{\circ}\left(\right.$ all $\left.\Lambda^{\circ}\right) \quad$:
$\operatorname{III~} K^{+} \phi^{\circ} Y\left(\right.$ i..e. $\left.h^{0}, \Sigma^{0}, \Sigma^{+}\right) \quad: \quad 70 \times .47 \times 2 / 3 \times 2=42$ events The next question tis how many events in this final state are needed to do a decent test of the OZI rule? If the answer is arbitarily set at 400 events,
 Case If for 500 ins . Fequres $\sigma\left(\pi^{+} n \rightarrow \mathrm{~K}^{+1} \phi^{\circ} \Lambda^{0}\right) \sim 400 \mathrm{nb}$.

Case III for 500 hrs, requires $\sigma\left(\pi^{+} R \rightarrow \mathrm{~K}^{+\dagger} \phi^{0} \mathrm{Y}\right) \sim 200 \mathrm{nb}$.

 The only importan cxiterion is that there should not be an catra pion of any charge. If such a phoa is present betwen the ${ }^{\circ}$ and the byperon in the Feymman greph, the graph becomes an OZI violating graph.
 lead us to sugeet that a part of the data, 100 hrs, be taken first and the results of that ram he used to evaluate the possbilitioe for continuag the study of this particular chemel for an additionel 400 brs.

TABLE T. Monte Carlo Estimates of Triger Efficiencies

a) We assumed a distribution $\sim e^{4 t_{\phi}}$
b) With the decay $\overline{\mathrm{K}}^{* 0} \rightarrow \mathrm{~K}^{-} \pi^{+}$assumed.
c) We assumed a distribution $v e^{4 t^{\prime}}$. .

Table Il. Nonwstrage Contributions to trigeer from $\pi^{\text {th }} \mathrm{p}$ at $10 \mathrm{GeV} / \mathrm{c}$

Multiplicity	ChanneJ.	σ	(mb)	$\begin{gathered} \text { riggen } \\ \text { Eff. } \end{gathered}$	$\sigma_{\operatorname{rrc}}(\mathrm{mb})$
2 prongs	a)1	\cdots	10.5		
	elastic	\sim	4.8	0.00	0.0
	Inclastic	\sim	5.7	0.01	0.06
4 prones	a11.	\sim	9.5		
	$\mathrm{pn}^{+1} n^{+}-$	\sim	1.5	0.01	0.02
	mbsotag neutrans	\sim	8.0		
	a.) Sast $\pi^{ \pm}$	\sim	6.0	0.01	0.06
	b.) fast π°	\sim	2.0	0.10	0.20
6 prongs	211	\sim	3.0		
	$p 3 \pi^{+2} 2 \pi$	\sim	. 4	0.01	0.00
	missing neutrals	\sim	2.6		
	a.) fast $\pi^{ \pm}$	\sim	2.1	0.01	0.02
	b.) fast π°	\sim	0.5	0.25	0.13
≥ 8 prongs	$a 11$		2.0	0.00	0.00

Figure 1

Table ITX. Summey of cross sections at $10 \mathrm{Gev} / \mathrm{c}$
$\pi^{+} \mathrm{d}+\mathrm{K}^{+} \mathrm{K}+$ Anytheng
v 1 mb .
(See fppendix A)
$\pi^{+} P \rightarrow K^{+} K \pi^{+} p$
$\therefore 80 \mathrm{\mu b}$
(73:7 1m. at $8 \mathrm{Gev} / \mathrm{c}$ and $90 \pm 10 \mathrm{\mu b}$, at $16(\mathrm{CV} / \mathrm{c})$
$\pi^{+} p \rightarrow K^{+} K^{+1+}$
$\cdots 50 \mu \mathrm{~b}$
$(31 \pm 5 \mu \mathrm{~b} . \mathrm{at} 8 \mathrm{GeV} / \mathrm{c})$
$\pi^{+} n \rightarrow k^{2} \mathrm{n} p$
$2150 \mathrm{\mu b}$
$(137 \pm 29 \mathrm{ub}$ ae $5 \cdot 4 \mathrm{CeV} / \mathrm{c})$
$\pi^{+}+\phi \Delta^{+\frac{1}{+}}$
$\pi^{+} n \rightarrow d p$
$v 13 \mathrm{~m}$
(13 1b at $15 \mathrm{Ccv} / \mathrm{c})$
$\pi^{+2} 2 \rightarrow R^{+\frac{1}{4}}$
$2.35 \mu \mathrm{~b}$
(.35 mb at $11 \mathrm{GeV} / \mathrm{c}$)
200 nb , 700 mb . (Soe Appondiz B)

Footnotes

(1.) J. I. Aubext, ct al. Phys. Rev. Lett. 33, 1404 (1974); Wuc1. Phys. B89 (1975) 1.
(2.) B. Knapp, et at., Phys. Rev. Lett. 34,1044 (1975).
(3.) G. Zweig, Cum-Th 42 (1964), mpmished; S. Okubo, Mye Tett. 5 165 (1963).
(4.) See Appenditx A.
(5.) K. Lassila, ISU. See Appendix B.
(6.) See e. \&. Ge Boltay, et al.s in Argone Confetence proceodings p. 289.
(7.) See e. g. R. Diebola, et al., Phys. Rev. Lett. 32,1463 (1974); or B. Ryams, The number 13 jb as via private commancation. et al. Axgome preprint ANL-MEP-CN-75-58; or 7 . Ludiam, thesis, Yale Dafversity (1969); or B. Hyams et al, Mucl. Phys. B22, 189 (1970).
(8.) K. Lassila and E. Piotilainen, ISU preprint 1976.
(9.) Aderholx, et, a1., Wucl. Phys. B14, 255 (1969).
(10.) M. Tarber, et al., Nucl. Phys. B29, 237 (1971).
(11.) For a discussion of the differences in extrapolation techiques needed for the Δ and neutron reactions see e.g. A. Firestone et al., Phys. Rev. DS, 2188 (1972); E. Colton and E. Malamud, Phys. Rev. D3, 2033 (1971); and 2. Mirg Mas et al. Phys. Rev. Lett. 23, 342 (1969).
(12.) S. Protopopescu, et al., Phys. Rev. D7, 1280 (1973).
(13.) See, for exemple, the sections on the $\varepsilon, S \%, \delta(970)$ and k in the Review of Particle Properties, 1974 , pages 74 through $77,83-84$, and 102-103 and references contained therein.
(14.) See A. J. Pawlicki, et al., Phys. Rev. D12, 631 (1975), and A. J. Pawlicki, et al., Argonne Preprint ANL-HEP-PR-76-26.
(15.) N. M. Cason, et al., Phys. Rev. Lett. 36, 1485 (1976).
(16.) A. J. Pawlickj, et al., "Isospin of the New Scalar KK State," Comments to Phys. Rev. Lett. (in press).

APPENDX A Estimate of $O\left(\pi^{\dagger} d+\mathrm{K}^{+1} \mathrm{~K}^{-}+\right.$Myyning $)$

We have used thoe Independent methods of estimathg o($\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+1} \mathrm{~K}^{-}+$Anythirg at $10 \mathrm{CeV} / \mathrm{c}$.

Method (I):
At $16 \mathrm{GeV} / \mathrm{c}^{(\mathrm{A})}$, the sum of $\sigma\left(\pi^{+} \mathrm{P} \rightarrow \pi^{+} \mathrm{pK}^{+} \mathrm{K}^{-}\right)$

$$
\begin{aligned}
& \sigma\left(\pi^{+} \mathrm{p} \rightarrow \pi^{+1} \mathrm{pK} \mathrm{~K}^{+\cdots} \pi^{0}\right) \\
& \text { and } \quad \sigma\left(\pi^{+} \mathrm{p} \rightarrow \pi^{+} \pi^{\cdots} \mathrm{K}^{+1} \mathrm{~K} \mathrm{n}\right) \text { is } \because 210 \omega \mathrm{~b} .
\end{aligned}
$$

At 13 Gev/c $\mathrm{Ch}^{(h)}$, the sum is a 160 Hb .
At $3.5 \mathrm{CeV} / \mathrm{C}^{(83)}$, hris sum is r $180 \mu \mathrm{~b}$ 。
At $8 \mathrm{GeV} / \mathrm{c}^{(10)}$, thas sum is 200 mb .
At $5 \mathrm{Gev} / \mathrm{c}^{(5)}$, hits sum is $270 \mu \mathrm{~b}$.
We themefore guess that at $20 \mathrm{GeV} / \mathrm{C} \sigma\left(\pi^{+} \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-*}\right.$ in four-prongs) 200 Hb .
Since $\pi^{+} n \rightarrow \pi^{+\quad} \mathrm{nK}^{+} \mathrm{K}^{\omega \prime}$, $\pi^{+} \mathrm{nK}^{+} \mathrm{K}^{-} \pi^{\circ}$ and $\pi^{\circ} \mathrm{pK}^{+} \mathrm{K}^{-}$are similar to the above three
reactions, we double this cross section to w 400 po for deuterium
This is the estimate for four-prongs. We therefore scale this cross-section
by $\frac{\sigma(\geqslant 4 \text {-prongs })}{\sigma(4 \text {-prongs })} \approx \frac{16 \mathrm{mb}}{8.84 \mathrm{nb}}=1.8$
to get: $1.8 \times 400=720 \mu \mathrm{~b}$.

Method (2):
Figure Al shows $\sigma\left(\pi^{+} p \rightarrow\right.$ $\bar{K}+$ Anyhhing $)$. The higinest energy on this graph is $8 \mathrm{GeV} / \mathrm{c}$. If we continue the trend to $10 \mathrm{GeV} / \mathrm{c}$ we get $\sim 2 \mathrm{mb}$. Of course, at some point this cross section will reach a maximum,turn over and begin to fall. We shall assume that this happens at or above $10 \mathrm{GeV} / \mathrm{c}$. If the $I=1 \overline{K K}$ system is unpolarized in isotopic spin space, and we make the extreme assumption of neglecting the $I=0 \mathrm{~K} \bar{K}$ system we have to divide by

6 for $K^{t} \mathrm{~K}^{-}$, then multhly by 2 for devterium and we would have $2 / 3 \mathrm{~m}$ as the lomembmit esthate. If, on the other bat, we asome the $I:=0$ KE system is equal to the $I=I, I, O$ mastem we only duide by 4 instead of 6 and we heve an csthace of I mb. If, at the other cxtreme, the kif system is assumed to be pure $I=0$, we would divie by only 2 (to account for $K^{\circ} K^{\circ}$, and have an uperwlimitestimate of 2 wo. These are the extreme Jimits, and the most Itrely case estimate is I mb.

Method (3):
$\sigma\left(\pi^{t} p \rightarrow \pi^{0}+\right.$ Anything $)$ has been measured at 8.5 Gev/e (As) to be $250 \pm 75 \mathrm{Lb}$. If re assume that the enorg dependence here is the same as that for o $\left(\pi^{+} p \rightarrow W\right.$ haything $)$, we would scale this up for $10 \mathrm{Gev} / \mathrm{c}$ as in method (2) above to get o(10Gev/c) a 335 pb . Then doubling this for denterfum would give an estimate of 670 ib.

Conclusion:

The three methods of estimating $\sigma\left(\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+{ }^{-}} \mathrm{K}^{-}+\right.$Anything $)$
yield: (i) ~ $890 \mu \mathrm{~b}$.
(2) from $667 \mu \mathrm{~L}$. to 2 mb ., with a best guess at $\sim 1 \mathrm{mb}$.
(3) $\sim 670 \mu \mathrm{~b}$

For this proposai we round the numbers off and use 1 mb, as the estimate. One-third to one-half of the estimated trigger rate for our experiment will scale linearly with the estimate for this cross-section.

Neferences For Appendix: A
(A1) ABBCCW Collaboration, TBP-7i.
(A2) Gaidos, et at., Nucl. Mys. B32, 10 (1971).
(A3) Krebs, 1970 (Thests).
(A4) Aderholz, et ai. Nucl. Phys. Bll, 259 (1969).

Figure As

APRENDIX B Discussion of Doude-Regge Diagrams
by: K. E. Lassija and E. P. Victiänen
The double Regge exchonge diagrans dram in the tert are expected to contribute strongly wo and possibly domtate cemain regions of phese space. Other contributons are uswaty there, but are harder to ptedict, and do not have the distinctive "signature" wich Labets the donble Regse (particularty diffractiv) conthbutions. The mo theoretical calculations which will be

 Therefore the fixh final state was studiod wing the diagran

DẺagram B.I.I
which also defines the kinematical variables. Additionally u_{2} is the monentum transfer squared from the incjdent π to the outgoing ϕ. The amplitude can then be written as

$$
\begin{equation*}
A\left(s, s_{2}, s_{1}, t_{\pi}, t_{p}\right)=g\left(t_{\pi}\right) R\left(s_{2}, \alpha_{K}\right) A_{K p} \rightarrow \phi \Lambda\left(s_{1}, t_{p}\right), \tag{B.I.1}
\end{equation*}
$$

where $g\left(t_{\pi}\right)$ describes the $K * \pi$ vertex, $R\left(s_{2}, \alpha_{K}\right)$ describes the Reggeized K exchange, and $\left.A_{K_{p}} \rightarrow \phi \Lambda^{\left(s_{1},\right.} t_{p}\right)$ is the amplitude for the subreaction $k p \rightarrow \phi \Lambda$. For ease in programing we actually wrote the arplitude jn tems of u_{2} instead
of the more standard t_{π}. The absolute value of $A\left(s, s_{2}, s_{1}, t_{T}, t_{p}\right.$) integrated over all of phase space with appropriate incident fiur factors inserted gives the total cross section
where do is the relevan phase spoce elemen and where tho absolute value

 by opin fijp, we paramerstacd the t_{p} dependence by an caponental tines $\sqrt{-t_{p}}$ in the amplitube the empnential was assumed to have a stope of 5 and the nomalization was fired by the $\mathrm{kp} \rightarrow$ oh cross-section. Foth of the standard foms for the s, dupendence of the Rogge propagator squared were tried

The couping constant vas taken basically from ${ }^{*}$ decay, requining that at the pole position this match the Regge residue. We used the largest value for $g\left(t_{\pi}\right)^{2} / 4 \pi$, namely 1.66 , which appears in the literature. This doubje Regge contribution to the $\pi N+\mathrm{E}^{*} \phi \Lambda$ reaction was calculated as a function of the incident lab momentum with the result [for these numbers $\left[\frac{1}{2}\left(s_{2}-u_{2}\right)\right]^{2 \alpha_{K}}$ is used] that a poak vajue of 44 mb was found at $12 \mathrm{GeV} / \mathrm{c}$ pion momentum; and, 35 nb and 41 nb were calculated for 10 and $15 \mathrm{GeV} / \mathrm{c}$ momentum. As described in the text, extrapolations from this one particular contribution in Diagram B.I.I were then attempted, some with our experimental colleagues. We would be surprised if actual measurement gave an answer for the process depicted in Diagram B.I. I greatex than 255 nb or less than $\sim 25 \mathrm{mb}$.

In fids calcotation, the standaxd spinless particle ascumption was made. This assumplion genetally bives a good order of magntude cross-cection estimate even for quite complicated processes. lowever, this caleulation is

 cetera. Fon the reaction of zntorest the "two-towno" sub-procases for whith anplicudes mast be used th the calculation are reactions such as $k^{*} n \rightarrow$ bh ork $k^{2 / W} \rightarrow$ d. These processes are virual and mo deta exists. Verious guesses were triod and the rosuits were atrays constront with the ostimates discussed in the text. The extrapolation from K^{*} की to whit the tert used onjy mass scaling. Oux geneyal concluston then is that these estinatcs aro reaconable and should not be off by on order of magnitude.
(IT) $\pi T^{*} \rightarrow \mathrm{H}^{*} \mathrm{~N}:$ Same en important contribution to the Q enhancoment is betieved to be the dffractica dissociation of the inctiont k neson thto a pion and a k^{*} (with subsequent rescattering by the pion from the target nucloon), the pton from crossing considerations must dissociate into KK . Thus
 Fig. B.II.J at the end of this appendix. The amplitudes for each of these are written in prectsely bhe fum indicated in Eq. (B.I.I), wherc the variable
 $A_{K}^{*}+\bar{K}_{p}^{*}$. At the start we assume spinless particles and also that the $\vec{K}^{* O} p+\bar{K}^{*} O_{p}$ scattering amplitude is well approsimated by the amplitude for $K^{-} p \rightarrow K^{-} p$ to lowest order in the quark model. The result of integrating Eq. (B.I.2) over all variables except s_{2} gives the curves shown in Fig. B.II. 2 . In this figure the calculation is compared with somewhat poor dota at $16 \mathrm{GeV} / \mathrm{c}$ pion momentum for $\pi^{+} p \rightarrow\left(\mathrm{~K}^{+} \mathrm{K}^{-} \pi^{+}\right) \mathrm{p}$. An incoherent sum of the two amplitudes for each of the two Regge propagators is shown in this figure, with the solid
 the second fom. In Thgure B. Th. 3 we ohow the separate conthbutions due to K exchage aqd ${ }^{*}$ exomange to the cistriburion in the chective mans squared

 crosemection fron the date th the proposed experiment Given that a kio-

 can be rompand wh the thoretsco calculations of the gre we are doing now which will ajlom one to soy whether on not $\mathrm{x}^{*} \mathrm{p}$ scateran concoves holictay and in which frane Beconse mit (w, in is cleaner (e.g. less possible comfributing diaprams) than any of the atamdandy anatyaed diftactive Regge-bed processes, ft could possibly provade the information that has ben lading to really tie dom the oh dffractive component of the Q meson.

From a more Eundamenal theoretical viewpoint the study of this reaction may also prove very reveaing. Diffractive Regge Deck processes appear certain to exist, but what should be done when two diagrans as in Fig. B.II., contribute in the same range of kinematic variables? Our expectation from the duality principle is that both diagrams in Fig. B. II. 1 should be replaced by a single dual amplitude since the variable $s_{\mathrm{KK}}{ }^{*}$ is the same for each diagram. In the appropriate kinematical limits this amplitude would be equivalent to the diffractive diagrans of Fig. B.II.I. Since this process does not have a contribution from the rucleon exchange amplitude as js the case in conventionally studied Reggeizedmeck reactions the data may give a good hint to theorists on how to proceed with deducing the true amplitude. A good way to proceed initially, then, is by fitting the data with the two contributions discussed on p. 6 of the text.

Figure B.II. 1

sumpay

1．）Title of Examiment Study of the $\mathrm{F}^{-4} \mathrm{k}$－syeten produced in

$$
\pi^{+} d+K^{+} \mathrm{K}+\mathrm{Xa} \text { at } 10 \mathrm{GeV} / \mathrm{c}
$$

2．）Spokesmen：W．I．Keman and／on A．Seidi
Experimenters：Bame Tretitotion
E．W．Amdereon

H．B．Craviey
A．Eirestone
W．I．Keman
D．L．Parker

J．Chapman
Lowa State，Wiverioty and $\rightarrow 4$
Ares Laboratory，Lnde
$\therefore \quad$ In⿻丷木大 1977

：

B．P．Roe University of Michigan
\because

J．Vander Velae
$"$

A．Seidl

Plus at least two postdoctoral physicists．
3．）Sumary：
We propose to measure the cross－section for $\pi^{+} n \rightarrow K^{+} \phi^{\circ} \Lambda^{\circ}$ ．If this cross－ section is large enough to yield $\geqslant 400$ events we will use this data to study the percentage violstion of the OZI rule in thjs one final state．The events $\pi^{+} N+\phi^{\circ} p$ will be used to try to evaluate $g_{\text {ghin．}}$ ．Searches ior high mass mesons which decay into two or more kaons will be made．Phase shift studies of the reaction $\pi \pi \rightarrow K^{-1} K^{-}$will be made and the mass range will be extended beyond that available in the Argonme EMS experiment＊．

4．）Equipment Reguired for the Exineriment
LASS spectrometar including detection system and the on－line data acquisition ＊See for example Refercnces 14 and 16 ．

system.

- Liquid devterium target.

Existing beam line 20/21.
5.) Estimate of time reguirements:
$\pi^{+} \mathrm{d}$ at $10 \mathrm{Gev} / \mathrm{c}$ Run $\$ 1 \quad 100$ hours at 100 pps .
If this yields sufficient events in the $\mathrm{K}^{+} \phi^{\circ} \mathrm{A}^{0}$ final state so that the OZI cests ave possible then a subsequent run to be made.
$\mathrm{n}^{+} \mathrm{d}$ at $10 \mathrm{GeV} / \mathrm{C}$ Run $\# 2 \quad 400$ hours at 100 pps .
In adiation we will require 150 to 200 hours of low repetition rate
for apparatus checks, trigger checks, alignment, etc. (Some of this time may 1
in conjunction with other tests, tuming, etc. Thjs would have to be negotiated between the experiments, SLAC operations, etc.)
6.) Data Analysis:
a.) On-linc: We will require the LASS Computer System, including the link to the $370 / 168$ computer complex for data logging, experiment control and monitoring.
b.) Off-1ine: The reconstruction of the data from Run \#1 will require the equivalent of 2140 hours on the $370 / 168$. We request from SLAC
(1) the "minimal services" described in step 1 , Appendix A, of "Interim Charging Policy for Triplex..." dated March 23, 1976 , and (2) that $\because 10 \%$ of our reconstruction be processed at SLAC for data checks (~ 15 huuss). The remaining reconstruction and data analysis for Run "1 will be done at our home institutions.

Available Computers:
University of Michigan \quad Amdahl 470
PDP10 (HEP group)
Iowa State University
IBM 370/158 and 360/65
PDP 11/45 (HEP group)

If run $\#_{2}$ is carried out we hope to refine the trigger so that the computing requiremonts for this are significantly less than a factor of 4 higher than those for Run $\left.{ }^{\prime \prime}\right]$ with the sharing algorithm to be essentially the same as that described for Rum \#1.

