

My thanks for speakers to provide me with copies of their talks...

Lots of progress shown, unable to do justice to all in 30 min...

RECEIVER		Para	mete	ers o	f Suj	per-H	B Des	signs	
Seeman	Collider		ξ _y	Ν	β_y^*	S	Е	F	Lumin
	Units			10 ¹⁰	mm	m	GeV	(~Hd)	10 ³⁵
	PEP-II	Normal	0.068	8	11	1.26	3.1	0.84	0.10
	KEKB	Normal	0.065	5.8	6	2.1	3.5	0.76	0.16
	Super- PEP-II	High I low βy	0.12	10	1.7	0.32	3.5	0.81	7
	Super- KEKB	High I low βy	0.28	12	3	0.59	3.5	0.85	8
	Linear SuperB	Single pass	29.	10	0.5	250	4	1.07	10
	SuperB	Bunch shorten	0.14	6	0.4	0.63	4	0.75	10
	SuperB	X'ing angle	0.045	2	0.08	0.5	5	0.8	10

Present workshop dealt with the last scenario

Damping Rings' Status

- 2 Designs: 2.2 km, 3.2 km
 - based on ILC OCS lattice, with ILC-Style IR
 - Tracking studies have begun
- ILC Design with 6.6 km also based on OCS: good acceptance
 - Existence proof of a lattice with good acceptance
 - IR not matched into this one yet
- Beware of wiggler nonlinearities!

7 GeV ring, 2.2 Km

Comparison of Ring Parameters

Biagini		4 GeV			7 GeV		
C (m)		6114.	3251.	2230.	6114.	3251.	2230.
B _w (T)		1.6	1.4	1.4	1.6	1.4	1.4
L _{bend} (m)		5.6	5.6	6.72	11.2	10.6	6.72
N. bends		96	<mark>96</mark>	100	96	<mark>96</mark>	100
B _{bend} (T)		0.078	0.155	0.125	0.136	0.144	0.218
Uo (MeV/tu	rn)	5.7	4.4	3.5	10.7	6.4	7.
N. wigg. cells		8	8	8	6	4	4
τ_{x} (ms)		28.8	19.8	17.	26.	24.	14.5
τ_{s} (ms)		14.4	10.	8.6	13	12.	7.25
ε _x (nm)		0.5	0.38	0.37	0.5	0.565 0.	
σ _E		1.1x10 ⁻³	1.1x10 -3	10 -3	1.3x10 ⁻³	1.32x10 ⁻³	1.35x10 ⁻³
I _{beam} (A)		2.5	2.5	2.5	1.4	1.4	1.4
P _{beam} (MW)		14.	11.	8.8	15.	9.	9.8
P. (MW) (50% U. Witenands, SLAC-PEP eff) Acc. Summary, June 16.		43.5	30	28	-	-	-

	Dynamic Aperture with Magn	of Baseline Lattice etic Errors
Cai	 Tracking of SuperB Ring d This is the latest 6 km ILC Multipole errors specified 	lesigns in progress. DR Design (wiggler, no IR)
	according to PEP-II and SPEAR3 magnets are included	3.5 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3
	 Single-mode model is used for all wigglers Tracking with LEGO in 1024 turns 	2.5 2 0 1.5 1.5
	 Injected beam: ε_x=ε_y=μm-rad 	
U. Wienands, S Acc. Summary,	LAC-PEP-II 10 June 16, 2006	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Collective, Intensity Effects

Pivi, Cai, Heifets, Novokhatski

- ECI: Clearing electrodes and/or surface treatments
 - R&D program in PEP-II/ILC collaboration
 - Different chambers, measurement of SEY after irradiation
- Fast Ion Instability
 - Growth rates potentially O(1 turn)
 - But not a limit in any extant machine
 - (however, HER may see something like this at high pressure!)
- HOM Effects
 - At 6 mm bunch length maybe 1 MW of power into HOMs
 - Vtx chamber particularly vulnerable

equal to the growth rate divided by the angular revolution frequency. Generally speaking, it can vary along the bunch train and distort the optics for bunches in the tail of the train. However, for the damping rings the effect is small, see Table 3.32.

BACABAIN	Polarization
Коор	 Single Siberian Snake most elegant way to create longitudinal polarization at IP.
	 But depolarization time at 4 GeV ≈30 s
	 at 3 GeV: ≈250 s, > beam lifetime, ≈ ok
	 Alternative: 90° spin rotators around IP
	 specific locations prescribed
	 – only works for 1 energy
	 likely a coupling nightmare (or use very long compensated rotator)
	• IR optics should be spin transparent to maintain
U. Wienands, Si	polarization. 15

Acc. Summary, June 16, 2006

<u>Closed spin orbit with the snake</u>

Derbenev, Kondratenko, Skrinsky, 1977

With a partial snake at a magic energy spin is directed longitudinally at IP and also at the snake's location

SuperB Workshop, SLAC, June 14-15, 2006

Seryi

Anti-solenoid for IR

 $\mathbf{Y} \ \mathbf{vs} \mathbf{X}$

without compensation σ_v/ σ_v(0)=32

with its is a compensation by antisolenoid solution $\sigma_y/\sigma_y(0) < 1.01$

Acc. Summary, June 16, 2006

When solenoid overlaps QD0, anomalous coupling increases the IP beam size 30 – 190 times depending on solenoid field shape (green=no solenoid, red=solenoid)

Even though traditional use of skew quads could reduce the effect, the LOCAL COMPENSATION of the fringe field (with a little skew tuning) is the best way to ensure excellent correction over wide range of beam energies

Local correction requires antisolenoid with special shape. The antisolenoid is weak since its integrated strength is much smaller than that of detector solenoid

Beam-Beam Simulations

- Significant progress in simulating the crab waist scheme
 - so far it appears to hold up
 - extant machines & SuperB/SuperKEKB
- Codes are being extended & modified to better simulate this scenario
- Progress in analytic understanding of the beambeam interaction
 - "Universal Luminosity Formula" shows independence on crossing angle under certain conditions.

U. Wienands, SLAC-PEI K2 is the strength of the sextupolar nonlinearity Acc. Summary, June 16, introduced to have crab waist

	<u>To Do List</u>
Raimondi	Goal: have a preliminar done before the next workshop
	1) DR based on PEP Hardware
	2) DR based on Tor Vergata Site (possibly (1)-compatible) Biagini, Wolski, Cai, Wienands
	3) Parameters Studies and Optimization
	Ó Ohmi, Paoloni, Zobov, Shatilov
	4) FF optimization
	Seryi,Raimondi
	5) IR optimization
	Sullivan,Seryi + Detector people
	6) Cost scaling, estimates and optimization
	7) Power requirements
	Seeman
U. Wienands, S. Acc. Summary,	9) Spin handling LAC-PEP-II Koop ³⁷ June 16, 2016) Injector design

	More Issues
UW & Group	 Settle the energy ratio & vtx radius (working decision)! Show the 2.2 km ring can be built & meets the requirements => the larger ones would be simpler. Optimize & make more realistic the FF & the IR design Need an existence proof by tracking that a DR with IR can have sufficient acceptance. A full, 3d, strong-strong simulation of the machine. Instability thresholds should be estimated using the present DR parameters
II Wimmeda S	 Evaluate Rf needs using the ILC s/c rf-cavity parameters Spell out the injection/injector parameters. Detector blank-out due to continuous injection? Do we need a spin-matched IR design?? Feedback issues, how to maintain the beam emittance