Y(5S) Running: Goals, & What has been learned

Title II: Case for Y(5S) Running Sheldon Stone, Syracuse University

What We Hope to Learn

Nature of Y(5S) • One mystery: M(5S)-M(4S) > M(4S)-M(3S)Suggestions of exotic states – Y(5S) mixed with bbg state. (Ono, Sanda & Tornqvist, PRD 34, 186 1986) • Also for charm: $\psi(4030) = \frac{1}{\sqrt{2}} [(c\overline{c})_{3s} + c\overline{c}g], \quad \psi(4160) = \frac{1}{\sqrt{2}} [(c\overline{c})_{3s} - c\overline{c}g]$ What is produced- some answers already B_S Physics Use B_S decays to interpret New Physics found directly at the LHC

Limits on New Physics (NMFV)

- Assume NP in tree decays is negligible
 Use V_{ub}, A_{DK}, S_{ψK}, S_{ρρ}, Δm_d, A_{SL}, fit to η, ρ, h_d, σ_d
 Parameterize as
 1+he^{iσ} = (AB⁰_{d,s}|H^{full}|B⁰_{d,s})/(B⁰_{d,s}|HSM|B⁰_{d,s})
- Limit regions of NP via neutral B mixing
 For D was Are (Are)
- For B_S use ∆m_d/∆m_s measurement

Super B III Workshop, June 14-16, 2006

Some Definitions for B_S decays

CP eigenstates

 $|B_{s}^{Even}(t)\rangle = \frac{1}{\sqrt{2}} (|B_{s}(t)\rangle - |\overline{B}_{s}(t)\rangle), \quad |B_{s}^{Odd}(t)\rangle = \frac{1}{\sqrt{2}} (|B_{s}(t)\rangle + |\overline{B}_{s}(t)\rangle)$ With a time evolution

$$\frac{d}{dt} \left(\frac{\left| B_{s}(t) \right\rangle}{\left| \overline{B}_{s}(t) \right\rangle} \right) = \left(\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} \right) \left(\frac{\left| B_{s}(t) \right\rangle}{\left| \overline{B}_{s}(t) \right\rangle} \right)$$

- Expect Γ_{12} to driven by SM tree level decays, mostly $B_S \rightarrow c\overline{c}s$, $D_S^{+(*)} D_S^{-(*)}$, $J/\psi \eta$
- CP phase ~arg(M₁₂) is very small in SM, arg(V_{tb}V_{ts}*)², so can easily show NP effects
- As usual, mass eigenstates are given by

$$\left|B_{L}(t)\right\rangle = p\left|B_{S}(t)\right\rangle + q\left|\overline{B}_{S}(t)\right\rangle, \quad \left|B_{H}(t)\right\rangle = p\left|B_{S}(t)\right\rangle - q\left|\overline{B}_{S}(t)\right\rangle$$

More Definitions

 $\Gamma = 1/\tau = (1/2)(\Gamma_{H} + \Gamma_{L}), \Delta m = M_{H} - M_{L}, \Delta \Gamma = \Gamma_{L} - \Gamma_{H}$ $\Delta m = 2|M_{12}|, \Delta \Gamma = 2|\Gamma_{12}|\cos\phi, \text{ where}$ $\frac{M_{12}}{\Gamma_{12}} = -\left|\frac{M_{12}}{\Gamma_{12}}\right|e^{i\phi}$

φ is very small in SM, ~λ²η = 0.017
 See Dunietz, Fleischer & Nierste [hep-ph/0012219]

CP Violation in B_S Mixing

Lets consider the decay rate for a B_S to a CP eigenstate state f_{CP}

$$\Gamma(B_{S}(t) \to f_{CP}) \propto e^{-\Gamma_{CP}t} \left[\cosh \frac{\Delta \Gamma}{2} t - \eta_{f} \cos \phi \sinh \frac{\Delta \Gamma}{2} t + \eta_{f} \sin \phi \sin(\Delta m t) \right]$$

•
$$\eta_f$$
 is + for CP+, - for CP -

- Measuring these rates requires good time resolution and flavor tagging to distinguish B_S from B_S
- Alternatively, even with poor time resolution determining ΔΓ gives us a handle on CPV via the cosφ term, after summing B_S & B_S

B_S Oscillation times

Time dependent asymmetries in B_S decays are modulated $\Delta m_S = 17.3^{+0.33}_{-0.18} \pm 0.07$

ps⁻¹ (CDF [hep-ex/0606027])

- Means B_S oscillations are really fast
- B factories cannot measure time dependent CP violation at the Y(5S)

violation at the Y(5S)– this is the territory of LHCb

LHCb Proper Time Resolution

Super B III Workshop, June 14-16, 2006

Untagged B_S Decays

If we sum over B_S & B
_S for a mixed CP state, such as D_S⁺π⁻, we have

$$\frac{1}{2} \Big[\Gamma(f,t) + \Gamma(\overline{f},t) \Big] = \Gamma_f \propto \exp(-\Gamma_L t) + \exp(-\Gamma_H t)$$
$$\propto 2 \exp(-\Gamma t) \cosh \frac{\Delta \Gamma t}{2}$$
$$\Gamma_f \approx \Gamma - \frac{(\Delta \Gamma)^2}{2\Gamma}$$

Where Γ_f = (1/2)(Γ_H + Γ_L), ΔΓ = Γ_L - Γ_H
 We can measure Γ_f, & Γ_H and possibly Γ_L (fewer states) & therefore ΔΓ

New Physics in $\Delta\Gamma$

- $\Delta\Gamma_{SM}$ due to SM physics can be measured by summing up the common channels for $B_S \& \overline{B}_S$ for the difference between CP+ and CP- states.
- $2B(B_S \rightarrow CP + B_S \rightarrow CP -) = \Delta \Gamma_{SM} / \Gamma$
- Thus it is necessary to measure the *B* for $D_S^{(*)+}D_S^{(*)-}$, $J/\psi \eta$, $J/\psi \phi$, and their angular distributions
- **E**stimates or Measurements of $\Delta\Gamma$
 - ~10% $\Delta\Gamma$, based on $B(B \rightarrow DD_S)$
 - D0: 0.15±0.10±0.04 & CDF: 0.47^{+0.19}_{-0.24}±0.01, not yet meaningful
- These exclusive modes could be measured by a B-factory. See A. Drutskoy [hep-ph/0604061]
- If there is a new physics phase then $\Delta\Gamma = \Delta\Gamma_{SM} \cos\phi$; many
- of these modes are difficult to measure in LHCb, because of the γ from the $D_{\rm S}{}^{*}$ decay

Rare Exclusive Branching Ratios

LHCb will have trouble with modes with more than one γ or π°, e.g. B_S→φγ is doable, as is φφ, and also φη, but not ηη
Key modes include
φγ, and K* γ

φμ+μ⁻

φφ, and also φη

B & B_S Production at the Y(5S)

Brief History Cross Section Measurements Model dependent B_s fractions f_s Methods for model independent f_s

Y(5S) Brief History

 CLEO & CUSB scan in 1985 0.07 fb⁻¹ & 0.12 fb⁻¹ taken on peak

CUSB fit to modified potential model
Almost nothing else learned

Cross-Section Measurements

New Data

CLEO III 2003 0.42 fb⁻¹ at 10881 MeV

BELLE 2005 1.86 fb⁻¹ at 10869 MeV

This is a bit nasty since continuum data is taken almost 300 MeV in CME below & is usually taken at different times. So the continuum subtraction becomes a significant systematic error

- CLEO: 0.301±0.002±0.039 nb (checked using # of tracks 0.8>x>0.6)
- = BELLE: 0.305±0.002±0.0016 nb (checked using J/ ψ rate, assuming it's the same for B & B_S)
- Remarkable agreement, ∆R~0.4

Model Dependent B_S Fractions, f_S

Possible Y(5S) decay modes • $Y(5S) \rightarrow B_{S}^{(*)}\overline{B}_{S}^{(*)}$ ■ Y(5S) \rightarrow B^(*) $\overline{B}^{(*)}$, B^(*) $\overline{B}^{(*)}\pi$, B $\overline{B}\pi\pi$ Something else? Non-bb decays.... Method: Choose a particle that has very different decay rates from $B \& B_{S}$ Ex: D_S $= B(Y(5S) \rightarrow D_S X)/2 = f_S B(B_S \rightarrow D_S X) +$ $\overline{(1-f_S)} B(Y(4S) \rightarrow D_S X)/2$

• Need to get $B(B_S \rightarrow D_S X)$ from theory

Model of D_S Production

■ Account for fragmentation that reduces D_S rate from B_S , CLEO & BELLE use same model $B(B_S \rightarrow D_S X) = (92\pm 11)\%$

Super B III Workshop, June 14-16, 2006

Measurements of f_S Using D_S Yields

- Now use $B(D_S \rightarrow \phi \pi) = (3.5\pm0.4)\%$ See [hep-ph/0605134]
- CLEO D_S: f_{S} = (21.8±3.5^{+8.5}_{-4.2})% PRL 96, 022002 (2006)
- BELLE D_S: f_S= (21.2±1.8±5.5)% hep-ex/0605110

Measurement of f_S Using ϕ Yields

• Here we need $B(B_S \rightarrow \phi X)$ Use CLEO-c inclusive yields for $B(D^{\circ} \rightarrow \phi X) = (1.0 \pm 0.10 \pm 0.10)\%$ $B(D^+ \rightarrow \phi X) = (1.0 \pm 0.10 \pm 0.20)\%$ $B(D_{S} \rightarrow \phi X) = (15.1 \pm 2.1 \pm 1.5)\%$ Preliminary [hep-ph/0605134] From $B(B \rightarrow \phi X) = (3.5 \pm 0.3)\%$, ascertain that most of ϕ 's arise from B \rightarrow D & D_S $\rightarrow \phi$ • Predict that $B(B_S \rightarrow \phi X) = (14.9 \pm 2.9)\%$

Measurement of f_s Using ϕ Yields -data

CLEO inclusive φ yields, for x<0.5, R₂<0.25

 $f_{S} = (27.5 \pm 3.2^{+14.6}_{-6.1})\%$

Measurement of f_s Using D^o Yields

 Same model of B & B_S decay, predicts B(B_S→D° X) = (8±7)%
 BELLE D°: f_S= (18.7±3.6±6.7)% hep-ex/0605110

Other Methods

CLEO: Measure B meson yield • Use $B \rightarrow D^{(*)}(\pi \text{ or } \rho)$, $B \rightarrow J/\psi K(*)$ Total of 53±9 events σ=0.177±0.030±0.016 nb,

Translates to f_s=0.41±0.10±0.10

Summary of f_S Measurements

Plot shows statistical & systematic errors added linearly Average takes into account the correlated systematic errors on Y(5S)cross-section Recall, model dependences

Model Independent Methods for f_s

Use complete B_S mixing by measuring the ratio of like-sign dilepton events to opposite sign events. (A similar idea is used for finding the B_S production rate at hadron colliders, but with larger errors.)

 Count the number of events with single, double, triple and possibly quadruple D_S mesons

(See R. Sia & S. Stone [hep-ph/0604201])

Other Y(5S) Measurements

- Compared to Y(4S) there is very little to report
 Production largest for B*B*, consistent with models

 BB/B*B* < 22% @ 90% cl
 - $\blacksquare BB^*/B^*\overline{B}^* = (24\pm9\pm3)\%$
- B_S* mass
 - M(B_S*)-M(B*)=(87.6±1.6±0.2) MeV
 - M(B_S*)-M(B_S)=(45.7±1.7±0.7) MeV consistent as expected from Heavy Quark Symm. with M(B*)-M(B) =45.78±0.35 MeV

Beam constrained mass with Suitable cuts on ΔE

Exclusive B_s decays from CLEO

All candidates are in the $B_{s}^{*}\overline{B}_{s}^{*}$ final state = B_SB_S*/ B_S*B_S* <0.16 @ 90% cl $= B_{S}\overline{B}_{S} / B_{S}^{*}\overline{B}_{S}^{*}$ <0.16 @ 90% cl For D_S decay modes use $\phi \pi$,

Super B III Workshop, June 14-16, 2006

K*°K+ & K° K+

Exclusive B_s decays from Belle

B_s*B_s*/all B_s= (94⁺⁶₋₉)%
Total of 20±5 events
Note that CLEO has 33±9 events/fb⁻¹, while Belle has 11±3 events/fb⁻¹, is CLEO more efficient, or is this just low statistics?

Rare Exclusive B_S Decays (Belle)

Decay mode	Yield, ev.	Backg., ev.	Eff. (%)	$UL (10^{-4})$	PDG $UL (10^{-4})$
$B_s \to \gamma \gamma$	0	0.5	20.0	0.56	1.48
$B_s \to \phi \gamma$	1	0.15	5.9	4.1	1.2
$B_s \rightarrow K^+ K^-$	2	0.14	9.5	3.4	0.59
$B_s \rightarrow D_s^+ D_s^-$	0	0.02	0.020	710.	-
$B_s \to D_s^{*+} D_s^{}$	1	0.01	0.0099	1270.	-
$B_s \rightarrow D_s^{*+} D_s^{*-}$	0	< 0.01	0.0052	2730.	-

Comparisons with Models

Unitarized Quark Model

0.10 (b) (5S)0.08 B[°] B[°] ₽ .0.06 B° B ∆R 0.04 0.02 0.00 10.60 10.80 1100 11.20 0.10 (c) 0.08 ° 0.06 H 0.04 B, B, B, B, 0.02 B_s B 0.00 10.40 10.60 11.00 11.20 10.80 Energy(GeV)

UQM predicts $\Delta R \sim 0.4$, f_s=38%, $B_{S}^{*}\overline{B}_{S}^{*}$ large **QHM** predicts $\Delta R \sim 0.7$, f_s=21%, B_S*B_S* large Other models: Martin & Ng, Z

- Phys. C 40, 133 (1988)
- Byers [hepph/9412292

Quark Hybrid Model

Yields: B factory

- In 500 fb⁻¹ there will be ~6.6x10⁷ total B_S+B_S produced
- Estimate from Drutskoy that in the current Belle detector they will find ~75 $D_{S}^{(*)+}D_{S}^{(*)-}$ events (using $D_S \rightarrow \phi \pi$, K*K & K°K⁺) in 50 fb⁻¹, so ~500 fb⁻¹ may be necessary. Here backgrounds may not be a problem... There will be $J/\psi \phi$, $J/\psi \eta^{(\prime)} \sim 3.5/fb^{-1}$ Assume trigger will be ~100% efficient, so not mode dependent, unlike LHCb

Expected Yields for LHCb

Mode	Yield (2 fb ⁻¹)	S/B
$B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$	131,000	8.3
$B_s \rightarrow \eta_c (h^-h^+h^-h^+)\phi (K^+K^-)$	3,000	1.7
B_s →J/ψ(μ ⁻ μ ⁺) η(γγ)	8,500	0.5
B _s \rightarrow J/ψ(μ ⁻ μ ⁺) η(π ⁺ π ⁻ π ⁰ (γγ))	3,000	0.3
B _s \rightarrow J/ψ (μ ⁻ μ ⁺) η'(π ⁺ π ⁻ η (γγ))	2,200	0.5
$B_{s} \rightarrow D_{s}(K^{+}K^{-}\pi^{-}) D_{s}(K^{+}K^{-}\pi^{+})$	4,000	3.3

My guess: this will accumulated sometime in 2009
LHCb sensitivities: σ(φ)=0.02 rad, σ(ΔΓ/Γ)=0.01

Conclusions

- About 23% of the Y(5S) decays to B_S^(*)B_S^(*) this crosssection is ~0.07 nb. The estimate is model dependent & not good enough for precision branching ratio measures
- Model independent means exist to measure the B_S yield when enough data is accumulated [hep-ph/0604201]
- Most of the B_S rate is produced via B_S*B_S*
- A useful measurement of ΔΓ_{SM} can be carried out with a large data sample that will be complimentary to the LHCb measurement of ΔΓ via time dependent measurements using lifetimes giving a handle on cosφ, the non-SM phase.
- Measurement of some absolute B_S branching ratios would be very useful for other experiments
- Some rare decay modes can be usefully measured in the LHCb era, especially if they have more than one neutral particle
- LHCb will measure time-dependent CPV in the B_S system

CP Violation in B_S Mixing

Lets consider the decay rate for a B_S to a final state f, A_f=<f|B_S>

$$\Gamma(B_s(t) \to f) = \mathcal{N}_f |A_f|^2 \frac{1 + |\lambda_f|^2}{2} e^{-\Gamma t}$$

$$\times \left[\cosh \frac{\Delta \Gamma t}{2} + \mathcal{A}_{\rm CP}^{\rm dir} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma t}{2} + \mathcal{A}_{\rm CP}^{\rm mix} \sin(\Delta m t) \right]$$

$$\lambda_{f} = \frac{q}{p} \frac{A_{f}}{A_{f}} \quad \text{For CP eigenstates} \quad \lambda_{f} = \frac{q}{p} \frac{A_{f}}{A_{f}} = \eta_{f} e^{-i\phi}$$
$$\mathcal{A}_{CP}^{dir} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}, \qquad \mathcal{A}_{CP}^{mix} = -\frac{2 \operatorname{Im} \lambda_{f}}{1 + |\lambda_{f}|^{2}} \quad \text{and} \quad \mathcal{A}_{\Delta\Gamma} = -\frac{2 \operatorname{Re} \lambda_{f}}{1 + |\lambda_{f}|^{2}}$$

Measuring these rates requires good time resolution

Super B III Workshop, June 14-16, 2006