The SuperB τ /Charm Task Force A Progress Report

David Hitlin Super*B* III SLAC June 16, 2006

The τ /Charm Task Force

- It is beyond a cliché that a (Super) B Factory is also a (Super) τ/charm or (Super)Flavo(u)r Factory
- Thus SuperB can do a great deal of τ/charm physics in addition to B physics
- The question arises as to whether there is a motivation to provide the capability to take data in the 4 GeV region, as well as in the 10 GeV region
 - O That is, are there specific physics topics that substantially benefit from threshold kinematics?
- The purpose of the τ/charm Task Force is to address this question and make recommendations as to whether to include low energy running capability in the SuperB design
 - O The work of the Task Force is proceeding well, but is not yet complete
- The is a progress report: the Task Force has not yet reached any collective conclusions

τ /charm Task Force Members

David Asner, John Back, Jose Bernabéu, Marcello Giorgi, David Hitlin (chair), Antimo Palano, Frank Porter, Patrick Roudeau

Conference calls are held (almost) weekly

- The goal is to produce a set of comparison tables and a recommendation on including the capability of running SuperB at energies below the Y(4S)
 - A related question is whether or not to include the capability of longitudinal polarization of the electron beam to facilitate new physics searches in *τ* physics

Working assumptions

- CLEO-c: .75 fb⁻¹ at ψ (3770) and .75 fb⁻¹ at ψ (4170) by 2008
- BESIII: 20 fb⁻¹ at ψ (3770) and 12 fb⁻¹ at ψ (4170) (8 years)
- □ BABAR+Belle: 2 ab⁻¹ total in ~2009
- □ Super*B*: at E_{cm} =10.58: 10³⁶, 1 year: 15 ab⁻¹ 5 years: 75 ab⁻¹

in 4 GeV region: ~1035; 1 year: 1.5 ab-1

Super*B* sample sizes

E _{cm} (GeV)	4.24	10.58
$\sigma_{ au au}$ (nb)	3.5	0.89
\mathcal{L} (cm ⁻² s ⁻¹)	1.6 x 10 ³⁵	10 ³⁶
au au pairs per Snowmass year	8.4x10 ⁹	1.34x10 ¹⁰

E _{cm} (GeV)	3.77	10.58
$\sigma_{D\overline{D}} or \sigma_{c\overline{c}} ({\sf nb})$	6	.34
L (cm ⁻² s ⁻¹)	1.3 x 10 ³⁵	10 ³⁶
<i>D</i> D (<i>c</i> c̄) pairs per Snowmass year	1.2x10 ¹⁰	5x10 ⁹

David Hitlin

Charm cross section

Charm physics opportunities

Charmed mesons

- Absolute branching fractions
- CKM physics
- Dalitz plots
- O Rare decays
- $\bigcirc D\overline{D}$ mixing
- CP violation
- Charmed baryons
 - $\Lambda_{\rm c}$ Absolute Branching Fractions
 - Form factors
- Precision R scan
- Charmonia
 - Study of J/ ψ , ψ ', χ_{cj}
 - Y(4260), ψ (4160), ψ (4040)

Which topics are better addressed at Ecm~4 GeV, and which at ~10 GeV?

τ physics opportunities

- **QCD** tests + α_s
 - Non-strange spectral function (much better resolution!)
 - Strange spectral function (real measurement, v/a, ...)
 - Second class currents
 - Chiral perturbation theory
- Exclusive decays
 - O Branching ratios
 - Light meson spectroscopy
- Michel parameters
- \Box τ lifetime universality tests
- \Box V_{us} from inclusive decays
- $\square \quad CP \text{ violation in } \tau \text{ production and decay}$
- Rare decays LFV
- Neutral current couplings
- $\square v_{\tau}$ mass

SuperBIII

Which topics are better addressed at Ecm~4 GeV, and which at ~10 GeV?

Methodology

Measurement capability is mainly evaluated by scaling from existing data sets

- O In, for example, rare decays with little or no anticipated background, scaling is don<u>e as</u> 1/∫∠dt
- When background is expected, as $1/\sqrt{\int \mathcal{L} dt}$
- O Systematic limits are also being considered
 - With high statistics, can trade statistics for reduced systematic errors, but this is difficult to estimate with any degree of precision
- OIn some rare decay cases, naïve scaling by sample size may favor high energy, but background may be better at the ψ (3770)

Rare Charm Decays

The absence of FCNC in kaons lead to the prediction of charm, Large B mixing (a FCNC process) was evidence for heavy top FCNC in charm have so far been less informative, & less studied Short distance charm FCNC are much more highly suppressed by the GIM mechanism than down type quarks due to the large mass difference between up type quarks

$$D^0 \to e^+ e^- \ (\mathcal{B} \sim 10^{-23})$$

SuperB

$$D^0 \to \mu^+ \mu^- (\mathcal{B} \sim 3 \times 10^{-13})$$

$$\begin{array}{c} c \longrightarrow & f^{(i)} \\ s, d & f^{(i)} \\ u \longrightarrow & f^{(i)} \\ u \longrightarrow & f^{(i)} \\ \end{array}$$

The lepton flavor violating mode $D^0 \rightarrow e^{\pm}\mu^{\mp}$ is strictly forbidden. Beyond the Standard Model, New Physics may enhance these, e.g., R-parity violating SUSY:

$$\mathcal{B}(D^{0} \to e^{+}e^{-}) \text{ up to } 10^{-10}$$

$$\mathcal{B}(D^{0} \to \mu^{+}\mu^{-}) \text{ up to } 10^{-6}$$

$$\mathcal{B}(D^{0} \to e^{\pm}\mu^{\mp}) \text{ up to } 10^{-6}$$
Best limits are from BABAR

(Burdman et al., Phys. Rev. D66, 014009). I.Shipsey DIF06

David Hitlin SuperBIII

Charm FCNC Branching Fraction Limits

Theoretical expectations for $\tau - LFV$

$\begin{array}{cccc} \underline{\tau^{-}} & \nu_{\tau} & \underline{\nu_{\mu}} & \underline{\mu^{-}} & \\ W^{-} & W^{-} & \\ & \gamma & \\ & & \mu^{+} & W^{+} \end{array}$	μ^-	τ ⁻ H ⁰ .	μ^+ $\tau^ \tilde{\nu}$ $\tilde{\chi}^ \tilde{\chi}^-$
Model	$\tau \rightarrow l \sim$	$ au \rightarrow \ell \ell \ell$	$\mu^ \neg \gamma$
SM + lepton mixing	10^{-40}	10-14	hep-ph/9810484
SM + lepton mixing SM + left-h. heavy Dirac neutrino	$< 10^{-18}$	$< 10^{-18}$	SJNP25(1977)340
SM + right-h. heavy Majorana neutrino	$< 10^{-9}$	$< 10^{-10}$	PRD66(2002)034008
SM + left and right-h. neutral singlets	$< 10^{-8}$	$< 10^{-9}$	PRD66(2002)034008
mSUGRA + seesaw	$< 10^{-7}$	$< 10^{-9}$	hep-ph/0206110, hep-ph/9911459, etc
SUSY $SU(5)$	$< 10^{-4}$		hep-ph/0303071
SUSY flipped $SU(5)$	$< 10^{-7}$		hep-ph/0304130
SUSY $SO(10)$	$< 10^{-8}$	$< 10^{-10}$	hep-ph/0209303, hep-ph/0304190
SUSY anomalous $U(1)$	$< 10^{-7}$		hep-ph/0308093
neutral SUSY Higgs	$< 10^{-10}$	$< 10^{-7}$	hep-ph/0304081
charged SUSY Higgs triplet		$< 10^{-7}$	hep-ph/0209170
MSSM+nonuniversal soft SUSY breaking	$< 10^{-10}$	$< 10^{-6}$	hep-ph/0305290
Non universal Z' (technicolor)	$< 10^{-9}$	$< 10^{-8}$	PLB547(2002)252
two Higgs doublet III	$< 10^{-15}$	$< 10^{-17}$	hep-ph/0208117
extra dimensions	$< 10^{-11}$		hep-ph/0210021

Future prospects

David Hitlin

O BR sensitivity: ~1/n for negligible BG case ~1/√n for BG dominated modes

Hadronic D^0, D^{\pm}, D_s^{\pm} decays

Process	CLEO-c	BESIII	B-factory	Super- $B(1)$	Super- $B(5)$	
Normalization Modes						
$D^0 \to K\pi$	1.25%		2.1%			
$D^+ \to K \pi \pi$	1.4%					
$D_s^+ \to KK\pi$	4%					
Cabibbo Favored BF						
$D^{0}[1]$	0.35%/track,1.1	$\%/K_S^0, 2.0\%/\pi^0$				
$D^{+}[1]$	0.35%/track,1.1	$\%/K_S^0, 2.0\%/\pi^0$				
$D_{s}^{+}[1]$	$0.35\%/\mathrm{track}, 1.1$	$\%/K_S^0, 2.0\%/\pi^0$				
CF Dalitz Plots						
$D \to K^- \pi^+ \pi^0$						
$D^+ \rightarrow K^- \pi^+ \pi^+$						
$D_s^+ \to K^- K^+ \pi^+$						
SCS Dalitz Plots						
$D^0 \to \pi \pi \pi^0$						
DCS Dalitz Plots						
$D \to K^+ \pi^- \pi^0$						
Inclusive BF						
$K (D^0, D^+, D_s^+)$						
$\eta \ (D^0, D^+, D_s^+)$	4.0%(sys.)[3]					
$\eta' \ (D^0, D^+, D_s^+)$	4.7%(sys.)[3]					
$\phi (D^0, D^+, D_s^+)$	3.4%(sys.)[3]					
Dalitz Plots -impact						
D^0 (CKM angle $\gamma[4]$)	$6^{o}(sys.)$	$< 2^{o}(sys.)$	7^{o}	$< 3^{o}$	$\sim 1^o$	
D^0 (D had BF)	okay[5]	okay[5]				
D^+ (D had BF)	okay[5]	okay[5]				
D_s^+ (D had BF)	okay[5]	okay[5]				
SCS BF						
$D^0 \to \pi \pi$	3%[6]					
$D^0 \to \pi \pi \pi^0$	3%[6]					
$D^0 \to \pi \pi \pi^0 \pi^0[6]$	6%					
$D^+ \to \pi \pi^0$	5%[6]					
$D^+ \to \pi \pi^0 \pi^0$	6%[6]					
DCS BF						
$D^0 \to K^0 \pi^0$						-
$D^+ \to K^0 \pi^+$						L

SuperBIII

David Hitlin

David Asner

Exclusive semileptonic decays

Process	CLEO-c	BESIII	B-factory	Super- $B(1)$	Super- B (5)	Comment
$D^0 \to K \ell \nu $ (BF)		0.2%[7]	0.75%			Vcs
$D^+ \to K \ell \nu $ (BF)		0.3%[7]				Vcs
$D \to K \ell \nu \; (\alpha_{pole})$						Vcs
$D \to K \ell \nu \ (m_{pole})$						Vcs
$D \to (K^*, K\pi) \ell \nu $ (BF)						Vcs
$D \to (K^*, K\pi) \ell \nu \ (\alpha_{pole})$						Vcs
$D \to (K^*, K\pi) \ell \nu \ (m_{pole})$						Vcs
$D^0 \to \pi \ell \nu $ (BF)	2.3%	0.4%[7]	2.8%			Vcd , Vub
$D^+ \to \pi \ell \nu $ (BF)		0.8%[7]				Vcd , Vub
$D \to \pi \ell \nu \; (\alpha_{pole})$						Vcd , Vub
$D \to \pi \ell \nu \ (m_{pole})$						Vcd , Vub
$D \to (\eta, \rho, \omega, \pi\pi) \ell \nu $ (BF)						Vcd , Vub
$D \to (\eta, \rho, \omega, \pi\pi) \ell \nu \; (\alpha_{pole})$						Vcd , Vub
$D \to (\eta, \rho, \omega, \pi\pi) \ell \nu \ (m_{pole})$						Vcd , Vub
$D_s \to \phi \ell \nu $ (BF)		1.2%[7]				
$D_s \to \eta \ell \nu $ (BF)						
$D_s \to (\eta, \phi) \ell \nu \; (\alpha_{pole})$						
$D_s \to (\eta, \phi) \ell \nu \ (m_{pole})$						
$D_s \to (K, K^*, K\pi) \ell \nu $ (BF)						
$D_s \to (K, K^*, K\pi) \ell \nu \; (\alpha_{pole})$						
$D_s \to (K, K^*, K\pi) \ell \nu \ (m_{pole})$						

David Asner

Semileptonic, leptonic decays

			*	v		
Process	CLEO-c	BESIII	B-factory	Super- $B(1)$	Super- B (5)	Comment
$D \to \ell X \ (BF)$						
$D \to \ell X \ (e, \mu \text{ spectra})$						
$D \to \nu X \ (BF)$						
$D \to \nu X \ (\nu \text{ spectrum})$						
$D_s \to \ell X \ (BF)$						
$D_s \to \ell X \ (e, \mu \text{ spectra})$						

Process	CLEO-c	BESIII[7]	B-factory	Super- $B(1)$	Super- $B(5)$	Comment
$D \to \mu \nu$	9%[9]	2%				f_D, f_B
$D \to e \nu$	1e-3[9]	(e-5,e-6)				NP
$D_s \to \mu \nu$	9%[9]	2%				f_{D_s}, f_{B_s}
$D_s \to \tau \nu$		1.5%				f_{D_s}, f_{B_s}, NP
$D_s \to e\nu$						NP
$D \rightarrow ee$	3e-6[8]	3e-8				
$D \to \mu \mu$	3e-6[8]	3e-8				
$D \to e\mu$	3e-6[8]	3e-8				

SuperBIII

David Hitlin

David Asner

Rare decays

Process	CLEO-c[8]	BESIII[7]	B-factory	Super- $B(1)$	Super- $B(5)$	Comment	
Radiative							
$D \rightarrow \rho \gamma$	4e-6	(e-5, e-6)					
$D \rightarrow \omega \gamma$	2e-5	(e-5, e-6)					
$D \to \phi \gamma$	1e-5	(e-5, e-6)					
$D \to K^* \gamma$	3e-5	(e-5, e-6)					
$D \rightarrow \gamma \gamma$	3e-6	5e-8					
Leptonic							
$D \rightarrow ee$	3e-6	3e-8					
$D \rightarrow \mu \mu$	3e-6	3e-8					
$D \rightarrow e\nu$	1.5e-5[9]						
$D_s \rightarrow e\nu$							
GIM suppressed							
$D^0 \rightarrow \pi^0 ee$	1e-5	5e-8					
$D^0 \rightarrow \pi^0 \mu \mu$		5e-8					
$D^0 \rightarrow nee$	2.5e-5	1e-7					
$D^0 \rightarrow n \mu \mu$	2.000	1e-7					
$D^0 \rightarrow K^0_{eee}$	1.8e-5	1e-7					
$D^0 \rightarrow K^0_{-} \mu \mu$	1.00 0	1e-7					
$D^+ \rightarrow hee$	4e-6[10]	36-8					
$D^+ \rightarrow huu$	40-0[10]	30-8					
$\frac{D}{1 \text{ FV}}$	-	96-0					
$D \rightarrow e \mu$	30-6	30-8					
$D^{0} \rightarrow \pi^{0} e \mu$	56-0	50-8					
$D^{0} \rightarrow neu$		10.7					
$D^{0} \rightarrow K^{0} e \mu$		10.7					
$D^+ \rightarrow heu$		20.8					
$D \rightarrow ne\mu$		36-0					
D^+ $b^+ c^+$	$2.4 \times 6[10]$	2. 9					
$D^+ \rightarrow he^+e^+$ $D^+ \rightarrow hu^+u^+$	2.4e-0[10]	30-8					
$D^+ \rightarrow h\mu^+\mu^+$		30-8					
$D^+ \rightarrow he^+\mu^+$ $D^+ = V^- + +$		36-8					
$D_s^+ \rightarrow K^- e^+ e^+$ $D_s^+ \qquad V^- e^+ e^+$							
$D_s^+ \rightarrow K^- \mu^+ \mu^+$ $D_s^+ \rightarrow K^- \mu^+ \mu^+$							
$D_s^+ \to K^- e^+ \mu^+$							Davi

David Hitlin

David Asner

Charm mixing, CP, T violation, $\Lambda_{\rm c}$

Process	CLEO-c	BESIII	B-factory[11]	Super- $B(1)$	Super- $B(5)$	Comment	
Time Dependent							
hadronic (95% C.L.)							
$x'^{2}/2$	-	-	< 0.016%				
y'	-	2	< 1%				
$\delta_{K\pi}$	-	-	-				
CP eigenstate (1σ)							
y y	-	-	2e-3				
A_{Γ}	-	-	2e-3				
Semileptonic (95% C.L.)							
R_M	-	-	4e-4				
Dalitz Plots (95% C.L.)							
x			0.5%				
y			0.3%				
Quantum Correlation[12]							
x	2.5%		-	-	-	-	
y	1.2%		=		-	-	
$\cos \delta_{K\pi}$	0.13		-	-	-	-	

Process	CLEO-c	BESIII	B-factory	Super- $B(1)$	Super- B (5)	Comment
Cabibbo Favoured						
SCS						
DCS						
Mixing						
Dalitz-plots						
T-odd Correlations						

Process	CLEO-c	BESIII	B-factory	Super- $B(1)$	Super- $B(5)$	Comment
$\Lambda_c \to p K \pi$	-	-				
$\Lambda_c \to \Lambda \ell \nu$	20	-				
$\Lambda_c \to \ell X$	-	-				

David Hitlin

CKM

Process	CLEO-c	BESIII	B-factory	Super- $B(1)$	Super- B (5)	Comment
$ V_{cd} $	2%					
$ V_{cs} $						
$ V_{cb} $						
$ V_{ts} $						
$ V_{td} $						
$ V_{ub} $						
CKM angle α						
$\int \pi \pi \pi^0$ Dalitz pl	ot					
$ ho\pi$						
ho ho						
CKM angle β						
tree						
penguin						
CKM angle γ						
ADS						
GLW						
Dalitz						
4-Body						

David Asner

D⁰ Dalitz plot examples

	Resonance	Current $(\%)$	CLEO-c	BESIII	B factory	Super B	$\operatorname{Super} B$
					total	1 year	5 years
	ρ^+	$76.5 \pm 1.8 \pm 2.5$	± 0.40	± 0.08	± 0.12	± 0.04	± 0.02
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$ ho^0$	$23.9 \pm 1.8 \pm 2.1$	± 0.40	± 0.08	± 0.12	± 0.04	± 0.02
	ρ^{-}	$32.3 \pm 2.1 \pm 1.3$	± 0.47	± 0.09	± 0.14	± 0.05	± 0.02
	NR	$2.7 \pm 0.9 \pm 0.2$	± 0.20	± 0.04	± 0.06	± 0.02	± 0.01
	Resonance	Current (%)	CLEO-c	BESIII	B factory	SuperB	SuperB
					total	1 year	5 years
	$K^{*+}\pi^-$	$0.34 \pm 0.13^{+0.36}_{-0.05}$	± 0.04	± 0.01	± 0.01	± 0.003	± 0.001
	$\bar{K}^0 ho^0$	$26.7 \pm 1.1^{+0.9}_{-2.8}$	± 0.36	± 0.07	± 0.07	± 0.03	± 0.01
	$\bar{K}^0\omega$	$0.81 \pm 0.19^{+0.18}_{-0.10}$	± 0.06	± 0.01	± 0.01	± 0.005	± 0.002
0 0 0	$K^{*-}\pi^+$	$66.3 \pm 1.3^{+2.4}_{-4.3}$	± 0.42	± 0.08	± 0.09	± 0.03	± 0.01
$D^0 \rightarrow K^0_{\rm s} \pi^- \pi^0$	$K^0 f_0(980)$	$4.2 \pm 0.5^{+1.1}_{-0.4}$	± 0.16	± 0.03	± 0.03	± 0.01	± 0.005
J	$K^0 f_2(1270)$	$0.36 \pm 0.22^{+0.32}_{-0.19}$	± 0.07	± 0.01	± 0.01	± 0.005	± 0.002
	$K^0 f_0(1370)$	$9.8 \pm 1.4^{+2.6}_{-3.6}$	± 0.45	± 0.09	± 0.09	± 0.03	± 0.02
	$K_0^*(1430)^-\pi^-$	$7.2 \pm 0.7^{+1.4}_{-1.3}$	± 0.23	± 0.04	± 0.05	± 0.02	± 0.01
	$K_2^*(1430)^-\pi^-$	$1.1 \pm 0.2^{+0.5}_{-0.3}$	± 0.06	± 0.01	± 0.01	± 0.005	± 0.002
	$K^*(1680)^-\pi^-$	$2.3 \pm 0.5^{+0.7}_{-1.4}$	± 0.16	± 0.03	± 0.03	± 0.01	± 0.005
	NR	$0.7 \pm 0.7^{+2.11}_{-0.63}$	± 0.23	± 0.04	± 0.05	± 0.02	± 0.01

John Back

David Hitlin

SuperBIII

D branching fractions

Channel	BABAR or Belle present	BABAR+Belle final 2 ab ⁻¹	Super <i>B</i> 1 year 15 ab^{-1}	Super <i>B</i> 5 years 75 ab^{-1}
$D^+ \to \pi^+ \pi^0 \ (10^{-3})$	$1.22\pm 0.1\pm 0.08\pm 0.08$	$\pm 0.02 \pm 0.08 \pm$	$\pm 0.009 \pm 0.080 \pm$	$\pm 0.004 \pm 0.080$:
$D^+ \to K^+ \pi^0 \ (10^{-4})$	$2.46 \pm 0.46 \pm 0.24 \pm 0.16$	$\pm 0.11 \pm 0.24 \pm$	$\pm 0.042 \pm 0.24 \pm$	$\pm 0.019 \pm 0.24 \pm$
$D_s \to \phi \pi^+$	$0.0481 \pm 0.0052 \pm 0.0038$	$\pm 0.0012 \pm 0.0032$	$\pm 0.0004 \pm 0.0032$	$\pm 0.0002 \pm 0.003$
$D^0 \to e^+ e^-$	$< 1.2 \times 10^{-6}$	$<0.3\times10^{-6}$	$<0.11\times10^{-6}$	$<0.05\times10^{-6}$
$D^0 \to \mu^+ \mu^-$	$< 1.3 \times 10^{-6}$	$<0.3\times10^{-6}$	$<0.12\times10^{-6}$	$<0.05\times10^{-6}$
$D^0 \to e^\pm \mu^\mp$	$< 0.81 \times 10^{-6}$	$< 0.2 \times 10^{-6}$	$<0.07\times10^{-6}$	$< 0.03 \times 10^{-6}$

Limits are all 90% C.L.

SuperB

David Hitlin Su

SuperBIII

D branching ratios

David Hitlin

Channel	BABAR or Belle present	BABAR+Belle final 2 ab ⁻¹	Super B 1 year 15 ab^{-1}	Super B 5 years 75 ab^{-1}
$\frac{D_s^* \rightarrow D_s \pi^0}{D_s^* \rightarrow D_s \gamma}$	$0.062 \pm 0.005 \pm 0.006$	$\pm 0.0011 \pm 0.0056$	$\pm 0.0004 \pm 0.0056$	$\pm 0.0002 \pm 0.0056$
$\frac{D^{*0} \rightarrow D^0 \pi^0}{D^{*0} \rightarrow D^0 \gamma}$	$1.74 \pm 0.02 \pm 0.13$	$\pm 0.004 \pm 0.09$	$\pm 0.0016\pm 0.08$	$\pm 0.0007 \pm 0.08$
$\frac{D_s \rightarrow \mu \nu}{D_s \rightarrow \phi \pi}$	$0.136 \pm 0.017 \pm 0.006$	$\pm 0.0056 \pm 0.0060$	$\pm 0.0020 \pm 0.0059$	$\pm 0.0009 \pm 0.0059$
$\frac{D^0 \rightarrow \pi^- e^+ \nu}{D^0 \rightarrow K^- e^+ \nu}$	$0.0809 \pm 0.0080 \pm 0.0032$	$\pm 0.0030 \pm 0.0018$	$\pm 0.0011 \pm 0.0013$	$\pm 0.0005 \pm 0.0013$
$\frac{D^0 \rightarrow \pi^- \mu^+ \nu}{D^0 \rightarrow K^- \mu^+ \nu}$	$0.0677 \pm 0.0078 \pm 0.0047$	$\pm 0.0029 \pm 0.0030$	$\pm 0.0011 \pm 0.0026$	$\pm 0.0005 \pm 0.0025$
$\frac{D^0 \rightarrow \phi \gamma}{D^0 \rightarrow K^+ K^-}$	$0.0631 \pm 0.0016 \pm 0.00033$	$\pm 0.0003 \pm 0.0003$	$\pm 0.00012 \pm 0.0002$	$\pm 0.00005 \pm 0.0002$
$\frac{D^0 \rightarrow \phi \pi^0}{D^0 \rightarrow K^+ K^-}$	$0.194 \pm 0.006 \pm 0.009$	$\pm 0.0012 \pm 0.0085$	$\pm 0.0004 \pm 0.0084$	$\pm 0.0002 \pm 0.0084$
$\frac{D^0 {\rightarrow} \phi \eta}{D^0 {\rightarrow} K^+ K^-}$	$0.0359 \pm 0.0114 \pm 0.0018$	$\pm 0.0023 \pm 0.0015$	$\pm 0.0008 \pm 0.0014$	$\pm 0.0004 \pm 0.0014$

SuperBIII

Frank Porter

D⁰ mixing, CP violation

David Hitlin

$$\begin{aligned} x &\equiv \frac{\Delta m}{\Gamma}, \qquad y \equiv \frac{\Delta \Gamma}{2\Gamma}, \qquad R_{\text{mix}} \equiv \frac{x^2 + y^2}{2} \\ Y &\equiv \frac{\tau^0}{\langle \tau \rangle} - 1, \quad \Delta Y \equiv \frac{\tau^0}{\langle \tau \rangle} A_{\tau}, \quad \tau^0 = \tau \left(D^0 \to K^- \pi^+ \right), \quad \langle \tau \rangle = \frac{\tau \left(D^0 \to CP + \right) + \tau \left(\bar{D}^0 \to CP + \right)}{2}, \\ A_{\tau} &= \langle \tau | H_D | D^0 \rangle \end{aligned}$$

Channel	BABAR or Belle	BABAR+Belle final	SuperB 1 year	SuperB 5 years
	present	2 ab^{-1}	15 ab^{-1}	$75 \ {\rm ab}^{-1}$
$R_{\rm mix}$ (semi-leptonic)	$0.0023 \pm 0.0012 \pm 0.0004$	$\pm 0.00025 \pm 0.00025$	$\pm 0.00009 \pm 0.00024$	$\pm 0.00004 \pm 0.00024$
$ \begin{array}{c} Y \ (\%) \\ (K^-\pi^+, K^-K^+, \pi^+\pi^-) \end{array} $	$0.8 \pm 0.4 \pm 0.45$	$\pm 0.09 \pm 0.3$	$\pm 0.03 \pm 0.3$	$\pm 0.014 \pm 0.3$
$\begin{array}{l} \Delta Y \ (\%) \\ (K^{-}\pi^{+}, K^{-}K^{+}, \pi^{+}\pi^{-}) \end{array}$	$-0.8 \pm 0.6 \pm 0.2$	$\pm 0.13 \pm 0.2$	$\pm 0.05 \pm 0.2$	$\pm 0.021 \pm 0.2$

SuperBIII

Frank Porter

τ decay

Process	Current	BESIII	B-factory	Super- $B(1)$	Super- $B(5)$	Comment
$B(\tau^- \to \mu^- \gamma)$	$< 6.8 \times 10^{-8}$					
$B(\tau^- \to e^- \gamma)$	$< 1.1 \times 10^{-7}$					
$B(\tau^- \to e^- e^+ e^-)$	$< 2.0 \times 10^{-7}$					
$B(\tau^- \to \mu^- \mu^+ \mu^-)$	$< 1.9 \times 10^{-7}$					
$B(\tau^- \to \mu^- e^+ e^-)$	$< 1.9 \times 10^{-7}$					
$B(\tau^- \to \mu^- \mu^+ e^-)$	$< 2.0 \times 10^{-7}$					
$B(\tau^- \to e^- \pi^+ \pi^-)$	$< 1.2 \times 10^{-7}$					
$B(\tau^- \to \mu^- \pi^+ \pi^-)$	$< 2.9 \times 10^{-7}$					
$B(\tau^- \to \mu^- K_S^0)$	$< 4.9 \times 10^{-8}$					
$B(\tau^- \to e^- K_S^{0})$	$< 5.6 \times 10^{-8}$					
$A_{CP}(\tau^- \to K^- \pi^0 \nu)$						

SuperBIII

David Hitlin

David Hitlin

τ EDM limits with a polarized beam

 $A_{NT} = -\alpha_{-}\alpha_{+}\frac{\pi\beta}{4(3-\beta^{2})}\frac{2m_{\tau}}{e}d_{\tau}^{\gamma}$

Polarized:

Unpolarized

$$A_N^{\mp} = \frac{\sigma_L^{\mp} - \sigma_R^{\mp}}{\sigma_L^{\mp} + \sigma_R^{\mp}} = \alpha_{\mp} \frac{3\pi}{8(3 - \beta^2)} \gamma \beta \frac{2m_{\tau}}{e} d_{\tau}^{\gamma}$$

where
$$\sigma_L^{\mp} = \int_0^{2\pi} d\phi_{\pm} \left[\int_0^{2\pi} d\phi_{\mp} \frac{d^2 \sigma^S}{d\phi_{\pm} d\phi_{\pm}} \Big|_{Pol(e^-)} \right]$$

Y(4S)

J. Bernabéu, G.A. González-Sprinberg, J. Vidal

$$\sigma_{R}^{\mp} = \int_{0}^{2\pi} d\phi_{\pm} \left[\int_{0}^{2\pi} d\phi_{\mp} \frac{d^{2}\sigma^{S}}{d\phi_{\pm} d\phi_{\pm}} \Big|_{Pol(e^{-})} \right]$$

Polarized beam limits	BABAR+Belle	Super <i>B</i>	Super <i>B</i>
	Total (2 fb ⁻¹)	1 year	5 years
$\Re e(d_T^{\gamma})$ e-cm	<10 ⁻¹⁹	<3.4x10 ⁻²⁰	<1.5x10 ⁻²⁰

CP violation in τ decay

Interference between F_v and F_s due to CP violation would show up as a difference in decay angle distribution of τ^- and τ^+

CP violation in τ decay

Unpolarized τ 's

• Measure \mathcal{B} 's of τ decays with two or more hadrons

$$\mathcal{B}(\tau^{-} \to \pi^{-} \pi^{0} v_{\tau}) \neq \mathcal{B}(\tau^{+} \to \pi^{+} \pi^{0} \overline{v}_{\tau})$$

Interpretation of any observed CPV requires understanding of inelastic final state interactions

• Measure *CP* or *T*-violating correlations in $\tau^+ \tau$ decays

Polarized τ 's

Search for *T*-odd rotationally invariant products, e.g.

$$W_{e^{-}} \cdot \left(p_{\pi^{+}} \times p_{\pi^{0}} \right)$$

in $\tau^{\scriptscriptstyle +}$ and τ decays such as

$$\tau^- \to \pi^- \pi^0 \nu_{\tau}, \tau^- \to K^- \pi^0 \nu_{\tau}, \tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}, \tau^- \to K^- \pi^+ \pi^- \nu_{\tau}$$

• Search for T-odd correlation between τ polarization and μ polarization in $\tau^- \rightarrow \mu^- \overline{\nu_{\mu}} v_{\tau}$ decay

David Hitlin

CP violation in τ decay

□ Y.S. Tsai, Phys Rev D55, 3172 (1995) O Longitudinal polarization $w_{e^{-}} = \frac{N_{e^{-} \to} - N_{e^{-} \leftarrow}}{N_{e^{-}}} \qquad w_{e^{+}} = \frac{N_{e^{+} \to} - N_{e^{-} \leftarrow}}{N_{e^{+}}}$ 0.75 The τ polarization is $P = \frac{w_{e^-} + w_{e^+}}{1 + w_{e^-} w_{e^+}}$ W_e-0.9 0.5 0.8

O For
$$w_{e^-} = 0.8$$
, $w_{e^+} = 0$: $P = 0.8$
while for
 $w_{e^-} = 0.8$, $w_{e^+} = 0.6$: $P = 0.945$
O For $w_{e^-} = 0.9$, $w_{e^+} = 0$: $P = 0.9$
while for
 $w_{e^-} = 0.9$, $w_{e^+} = 0.9$: $P = 0.994$
David Hitlin SuperBIII June 16, 2006

SuperBIII

28

0.99

0.95

Comparison of τ /charm and SuperB

- □ BEPCII $\mathcal{L}=10^{33}$ SBF $\mathcal{L}=10^{36}$ SBF(4GeV) $\mathcal{L} \cong 10^{35}$
- FOM for measuring CPV in τ decay (Tsai): *z* component of τ polarization averaged over cross section: FOM = $\mathcal{L} \times (w_{e^-} + w_{e^+}) \times \sqrt{1 - a^2} a^2 (1 + 2a)$, where $a = 2m_{\tau}/\sqrt{s}$

For equal longitudinal polarization

Machine	FOM/FOM BEPCII		
BESIII@ $\sqrt{s} = 4 \text{ GeV}$	1		
SBF @ Ŷ(4 <i>S</i>)	178		
SBF @ \sqrt{s} =4 GeV	100		

David Hitlin

Longitudinal polarization at the IP

- Producing longitudinal polarization at the IP requires a series of systems, which must be designed in from the start
 Longitudinally polarized e⁻ source (90% polarization)
 - O Rotate e⁻ spin to vertical and inject into e⁻ ring
 - O Lattice must be designed to avoid depolarizing resonances
 - O Rotate e⁻ spin to longitudinal before IP and restore to transverse after IP

Conclusion

The Task Force will complete the tables in the next few weeks, will then identify specific physics topics of interest, and then evaluate the merits of running in the 4 GeV region and the additional capital cost, if any, for doing so

David Hitlin