Beampipe design

F.Raffaelli

Framework for Geant4 Interaction Region simulation

G.Calderini, M.Marchiori, M.Mazur, E.Paoloni

1) Beampipe design

F.Raffaelli

Some figures of merit

Power dissipation Beam Pipe Radius
T Inlet
T MAX raise
Water speed

1 KW
O(1 cm)
8 C
3 C
< $5 \mathrm{~m} / \mathrm{s}$

Negative pressure

A possible design

Pipe Inner Radius 1 cm

"Uniform" Water Jacke \dagger (8 flat channels)

Single channel area $=2.35 \mathrm{~mm}^{2}$ Channel width $=300 \mathrm{um}$

To dissipate 1KW with water specific heat and thermal conductivity

Flow: $4.2 \mathrm{~m} / \mathrm{s}$ (OK)

Peek (plastic) jacket

Requires channel 1 -side coating to prevent erosion
(7um Ni and/or BerylCoatD)

$\begin{array}{ll}\text { Gold foil } & 4 \mathrm{um} \\ \text { Berillium } & 300 \text { um } \\ \text { Peek layer } & 500 \text { um } \\ \text { Water } & 300 \text { um } \\ \text { Ni coating } & 7 \mathrm{um}\end{array}$
Total

For comparison:

BaBar:	$\mathrm{R}=27.9 \mathrm{~mm}$ SuperB	$\mathrm{R}=10 \mathrm{~mm}$
Total material	32 mm Layer1)	$0.1 \% \times 0$

with a boost of $\beta \gamma 0.28$

Alternative design

6-8 external lines
Reduced material (no water jacket)
No coating, gold foil only
Non-homogeneous temperature distribution Non-homogeneous material thickness

R beam-pipe $=1 \mathrm{~cm}$ 500 um $\mathrm{Be}+4$ um Au
 R lines $=1 \mathrm{~mm}$

Thickness $\mathrm{Al}=150 \mathrm{um}$

Status:

the beam pipe thickness and radius are obviously crucial for performance

We think we can reach 1-1.5 cm of radius with a thickness of (0.5-0.75) \% X0

A different design could provide an even lower average thickness, at the expense of a strong non-uniformity.

For this reason is presently not one of the favoured scenarios, but nevertheless needs to be further investigated and improved

Update with the Geant4 simulation framework

Already in production:

- γ production (Beamsstrahlung) from Guinea Pig
- pairs production in beam-beam

Still at the design phase:

- radiative BhaBhas interaction in the downstream region of the pipe
- bremmstrahlung in the incoming beams
these two are extremely important but have been postponed since require a detailed layout of the IR

This mockup is used to determine occupancy due to the backgrounds

2 outer layers (SVT-like, wedges, just example)

1) Beamsstrahlung photon production

Simulation with Guinea-Pig of γ production in the beambeam interaction. A list of photon energy \& directions is obtained. The photon list is fed to Geant4 simulation
~20000 photons produced per bunch crossing, with energy < 20 Kev

KeV
They are focused around the downstream beams...

... but ...

SuperB Ital. ILC Ver. C

It becomes a problem with bent orbits
The downstream region will need to be modeled carefully

Pressure may also be critical
Beam-gas event @ 1nTorr

2) Beamsstrahlung pairs production

Simulation with Guinea-Pig of pairs production in the beam-beam interaction. A list of e^{+}, e^{-}tracks is obtained and fed to the Geant4 simulation

~90 tracks produced per bunch crossing, with $\mathrm{Pt}<25-30 \mathrm{Mev}$

In layer1

$O(1.4$ hits/BX)

In layer1

$B x=600 \mathrm{MHz}$
Area $=62.8 \mathrm{~cm}^{2}$

Pitch $=50 \mathrm{um} \times 50 \mathrm{um}$
$=410^{4}$ channels $/ \mathrm{cm}^{2}$

Readout window $=1 u s$

$O(1.4$ hits/BX)

$\mathrm{O}\left(14 \mathrm{MHz} / \mathrm{cm}^{\wedge} 2\right)$

$\mathrm{O}(350 \mathrm{~Hz} /$ chann $)$

Occupancy=3.5 10-4

To do next:

evaluation of radiative BhaBha effects on the detector evaluation of incoming bremmsstrahlung

These studies need a more defined layout interaction region

