
Cost Algorithm for a Super-B Factory

John T. Seeman
SBF Workshop
SLAC
June 15, 2006

PEPH

Prices


- Costs are approximate and can change easily.
- Oku-yen ~ MEuro ~ M\$
- Different geometries have very different estimates.

Overall ring length about 6Km, Collision frequency about 120Hz*10000bunch_trains=1.200MHz

Bunch train stays in the rings for 8.3msec, then is extracted, compressed and focused. After the collision the bunch is reinjected in its ring

Linear Super B schemes with acceleration and energy recovery, to reduce power 2 GeV e+ injection 4 GeV ee- Gun 4GeV e- SC Linac 7GeV e+ e- Dump **Use SC linacs to recover energy** Use lower energy damping rings to 1.5 GeV Linac 2 GeV Linac 1.5 GeV Linac reduce synchrotron radiation No electron damping ring Make electrons fresh every cycle Damping time means time to radiate all energy Why not make a fresh beam if storage time is greater than 1 damping time

Simplified layout in the Small Disruption

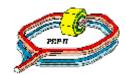
Regime

Collisions every turn

Uncompressed bunches

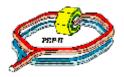
Crossing angle = 2*25

mrad

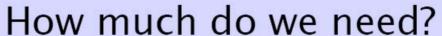

Crabbed Y-Waist

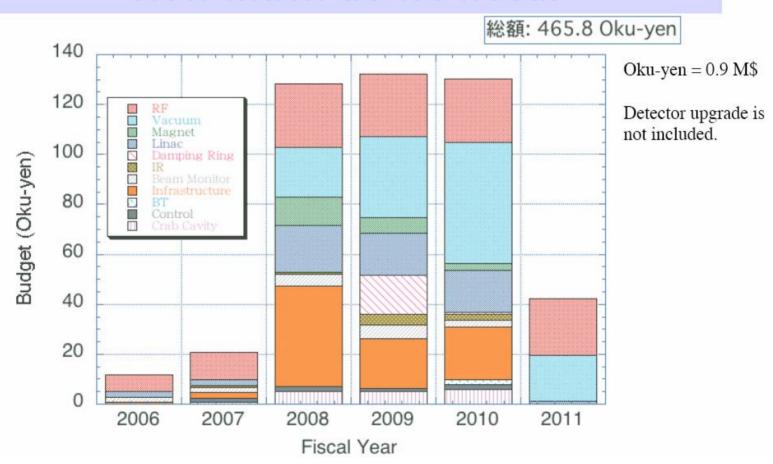
ILC ring & ILC FF

FF IP FF



P. Raimondi




SBF projected cost in 2004 for 15 A on 8 A.

	PEP-II Actual Proposed SBF			
WBS item	(M\$)	(M\$)		
HER Ring	55.0	35		
LER Ring	48.4	30		
Interaction Region	7.3	7		
Injector	16.6	1		
Controls	6.7	2		
Utilities	7.4	5		
Safety and Protection	1.8	1		
Management	7.3	9		
Machine RF	22.9	110		
(add'tnl 42 stations)				
Indirects	3.4	35		
Contingency	-	70		
Sub-total (FY2001 \$)	177	305		
Escalation factor to FY2008	-	1.21		
Total (FY2008 \$)	-	370		

K. Oide at CERN Meeting May 2006

SuperKEKB (May 2006)

• RF 105 M\$

Vacuum112 M\$

Magnet19 M\$

Linac49M\$

Damping Ring15 M\$

• IR 7 M\$

Beam Monitor15\$

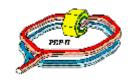
Intrastructure 76 M\$

Beam transport2 M\$

o Control 6 M\$

Crab cavities14 M\$

Total 420 M\$


SuperKEKB: June 2006

Oku-yen

Fiscal Year		2007	2008	2009	2010	2011	
RF		17.6	25.4	25.1	25.1	22.8	116
Vacuum			19.9	32.5	48.7	18.5	120
Magnet			14.1	5.21	5.49	0	24.8
Linac		4.8	18.5	16.8	16.8	1.1	58
Damping Ring			0.2	15.5	1.1	0	16.8
IR		0.6	0.8	4.5	2.1	0	8
Beam Monitor		0.65	5.61	5.86	5.25	0	17.4
Infrastructure		3.4	40	19.9	21	0	84.3
BT		0.1	0.2	0.2	2	0	2.5
Control		2.2	2.1	2.5	2.1	0.5	9.4
Crab Cavity		1	5	5	6	0	17
	0	30.3	132	133	136	42.9	474

Funakoshi

			J. Seeman	5/13/2005
	Note: FY 2005 do			

_	Note: FY 2005 d	ote: FY 2005 dollars. Prices below include contingency.			
	System	ltem	Number	Cost	Sub-total
			of units	per unit	
				(k\$)	(M\$)
)					
	Management	Project management (man-yr)	200	150	30.0
)	Injector	Upgrades	1	5000	5.0
}	Utility	12 KV AC distribution	1	5000	5.0
ļ	Utility	Cooling water	1	5000	5.0
j	Utility	Cable upgrades	1	5000	5.0
ì	Utility	New plumbing	1	5000	5.0
•	Control	Computer upgrades	8	50	0.4
}	Feedback	Transverse feedback	2	2000	4.0
}	Feedback	Longitudinal feedback	2	2000	4.0
)	RF	952 klystrons	42	500	21.0
	RF	RF cavity and cryostat	42	2000	84.0
)	RF	HV power supply	42	900	37.8
}	RF	Circulator	42	150	6.3
ļ	RF	Controls and feedback	42	250	10.5
5	RF	HOM absorbers	42	200	8.4
ì	Magnet	HER dipole modifications	192	15	2.9
•	Magnet	LER dipole modifications	200	15	3.0
}	Magnet	LER new dipoles	200	25	5.0
3	Magnet	New supports	200	10	2.0
)	Vacuum	New LER vacuum system (m)	2100	20	42.0
	Vacuum	New HER vacuum system (m)	2100	20	42.0
?	IR	New SC quads and cyrostats	4	2000	8.0
}	IR .	IR Vacuum system (m)	200	40	8.0
ŀ	IR .	New IR supports	10	200	2.0
5	IR	Controls for SC quads	4	250	1.0
ì	IR	Beam control	2	300	0.6
_	Instrumentation	Position monitor electronics	600	3	1.8
}	Instrumentation	Injection control	2	250	0.5
}	Instrumentation	Collimation	6	800	4.8
)	Instrumentation	Beam abort	2	700	1.4
)				Total =	356.4

Draft: top down cost estimate without specific engineering knowledge

SBF Top Down Cost Estimate: New site	3 km collider		June 6, 2006	
Subsystem	Unit	Number	Cost	Total
	dimension	of	per	cost
		units	unit (M units)	(M units)
Project management, engineering, safety	FTE-years	200	0.10	20.0
Particle e- source	units	1	10.00	10.0
Particle e+ source	units	1	10.00	10.0
Injector linac technical components	GeV	11	3.00	33.0
Injector linac tunnel and facilities	meters	800	0.05	40.0
Injector transport technical components	meters	500	0.03	15.0
Injector transport tunnel and facilities	meters	500	0.03	15.0
Storage ring technical components	meters	5700	0.05	285.0
Storage ring tunnel and facilities	meters	3000	0.05	150.0
RF stations	units	27	4.00	108.0
Final focus technical components	meters	150	0.20	30.0
Total project cost				716.0

This is for illustration only and not an official cost estimate.