### Future Prospects for $\tau$ Physics

#### Michael Roney University of Victoria



# Progress on various fronts...

- Precision measurements of tau properties
- Lepton universality
- Measurements of hadronic currents
- Searches for rare/SM-forbidden decays involving the tau lepton



# Goals of this presentation...

- Summarize subset of results in context of high lumi Super flavour factory (a.k.a. Super-B) – assume 100/ab
- Point out features of a detector and accelerator needed for a  $\tau$  physics program.
- Stimulate discussion on where the  $\tau$  physics community might quantitatively examine the opportunities at a high lumi e+e- machine.



Precision measurements of tau properties: CPT and CP

- Tau lifetime
- Tau mass
- Dipole moments





# BABAR tau lifetime (preliminary)

(Alberto Lusiani TAU04)

### Single method: 2D Decay length





$$\tau_{\tau} = 289.4 \pm 0.91 \pm 0.90$$
 fs



# New World Average $\tau$ lifetime

CLEO, LEP, BABAR: Ignoring ~0.1% level correlations:



$$\tau_{\tau} = (290.15 \pm 0.77)$$
 fs

$$\chi^2$$
/ dof = 2.3/5  
(prob=82%)

# (assuming 0.2% correlations between LEP Lifetimes, $\tau_{\tau} \rightarrow 290.11 \pm 0.79$ fs)



# Future prospects:

- BABAR statistical error can go down ~x3 with 1/ab
- BABAR systematic errors dominated by statistics of control samples, MC statistics, alignment errors, KORALB description of I SR. Might expect improvements ... but this is very tough work and no reliable prognostication, at least until BABAR finalizes its result.
- We do know that using KKMC rather than KORALB would give at least x2 improvement, MC stats scales with data; backgrounds are assessed as 100% of value-additional studies could bring these down conceivably to 0.2%. Stat. error becomes 0.09%.
- Assume a comparable BELLE analysis, with 1/ab each, might see a ~0.15% error from existing B-factories.
- VERY DIFFICULT TO IMPROVE BEYOND THIS BECAUSE OF SYSTEMATICS



# СРТ

• Lifetime:

1<sup>st</sup> CPT on lifetime from BABAR (Lusiani, TAU04)

$$rac{ au_{ au} - au_{ au+}}{ au_{ au-} + au_{ au+}} = [0.12 \pm 0.32] \,\%$$
 preliminary,  
no dedicated systematic studies yet

THIS TEST WOULD BENEFIT FROM HIGH STATISTICS AS MANY SYSTEMATICS WOULD CANCEL

(care needed in selection to avoid known differences in hadronic interaction cross sections for  $\pi$ + &  $\pi$ -)

Statistical error only goes to  $10^{-3}$  with 1/ab and  $10^{-4}$  with 100/ab

~ 2<sup>nd</sup> generation CPT lifetime test: muon CPT lifetime (2±8)x10<sup>-5</sup>



# CPT

• Mass:

OPAL first experiment to publish CPT on mass using 160K tau pair events in Z decays.

 $m_{\tau \pm} - m_{\tau \pm} = (0.0 \pm 3.0) \,\mathrm{MeV}$  $\frac{m_{\tau^+} - m_{\tau^-}}{m_{\tau^-}} = (0.0 \pm 1.8) \times 10^{-4}$  $m_{-}$  $\left|\frac{m_{\tau^+} - m_{\tau^-}}{m_{\tau^-}}\right| < 3.0 \times 10^{-3} @90\% CL$ Dominant systematic error from potential charge asymmetries in the OPAL jet chamber studied with mu-pair events and limited to 0.2% (1MeV). (OPAL comments: result assumes  $\pi$ + and  $\pi$ - have same mass and charge - so assumes CPT) NOTE: Precision mass measurements (~10-4) at threshold do not provide a CPT test.





## CPT

#### • Mass:

BELLE: 0.15MeV systematic error from potential charge asymmetries assessed by comparing response of detector to:

 $\begin{array}{l} D^{0} \rightarrow K^{-}\pi^{+}; \overline{D^{0}} \rightarrow K^{+}\pi - & \text{Care needed in} \\ \Lambda_{c} \rightarrow pK^{-}\pi^{+}; \overline{\Lambda_{c}} \rightarrow \overline{p}K^{+}\pi^{+} \text{interpreting results} \\ D^{+} \rightarrow \phi\pi^{+}; D^{-} \rightarrow \phi\pi^{-} & \text{as CPT assumed in} \\ D^{+}_{s} \rightarrow \phi\pi^{+}; D^{-}_{s} \rightarrow \phi\pi^{-} & \text{for these modes...} \end{array}$ 



## CPT

#### • Mass:

SUPER-B: 100/ab would yield a statistical error of 0.023MeV on the mass difference  $\sim 6 \times$ smaller than 0.15MeV systematic error BELLE now quotes.

(Reach 0.15MeV at 2.3/ab)

To fully exploit 100/ab, would need charge asymmetric momentum scales controlled at 10<sup>-5</sup> level. VERY CHALLENGING DETECTOR SYSTEMATICS PROBLEM

Would get CPT test to 2x10<sup>-5</sup> level of sensitivity and would be most sensitive CPT mass difference test after K<sup>0</sup>(10<sup>-18</sup>), proton and electron (10<sup>-8</sup>).



Lepton universality: where are we now

- Neutral current universality: a reminder
- Charged current universality:
  - □ e-mu: in pion decays: ~0.16% level
  - □ In tau decays:
    - 🐨 e-mu: Leptonic BF
    - The mu-tau, Leptonic BF, lifetin



Lepton universality: where are we now?

• Neutral current universality: a reminder





### Lepton universality:

- Charged current
  - e-mu: Leptonic BF
     mu-tau, Leptonic BF, lifetime, mass





### Lepton universality:

• Charged current universality: tau decays

$$\begin{aligned} \boldsymbol{\tau}_{\tau} &= \boldsymbol{\tau}_{\mu} \left( \frac{g_{\mu}}{g_{\tau}} \right)^{2} \left( \frac{m_{\mu}}{m_{\tau}} \right)^{5} \mathcal{B}(\boldsymbol{\tau}^{-} \to e^{-} \bar{\boldsymbol{\nu}}_{e} \boldsymbol{\nu}_{\tau}) \frac{f(m_{e}^{2}/m_{\mu}^{2}) r_{RC}^{\mu}}{f(m_{e}^{2}/m_{\tau}^{2}) r_{RC}^{\tau}} \\ \boldsymbol{\tau}_{\tau} &= \boldsymbol{\tau}_{\mu} \left( \frac{g_{e}}{g_{\tau}} \right)^{2} \left( \frac{m_{\mu}}{m_{\tau}} \right)^{5} \mathcal{B}(\boldsymbol{\tau}^{-} \to \mu^{-} \bar{\boldsymbol{\nu}}_{\mu} \boldsymbol{\nu}_{\tau}) \frac{f(m_{e}^{2}/m_{\tau}^{2}) r_{RC}^{\mu}}{f(m_{\mu}^{2}/m_{\tau}^{2}) r_{RC}^{\tau}} \\ \text{where} \end{aligned}$$
$$\begin{aligned} f(x) &= 1 - 8x + 8x^{3} - x^{4} - 12x \ln x \quad \text{(phase space ratios)} \end{aligned}$$

- □ BR( $\tau \rightarrow evv$ )= (17.824±0.052)% [0.29%]
- □  $BR(\tau \rightarrow \mu \nu \nu) = (17.331 \pm 0.048)\%$  [0.28%] RATIO OF BRANCHING RATIOS:
- $\Box g_{\mu}/g_e = 0.9999 \pm 0.0020$  from tau decays

□ pion decays: 1.0021±0.0016





 $rac{e}{}^{\circ}e-\mu univ:BR(\tau \rightarrow evv) = (17.821 \pm 0.036)\%$  [0.20%]

 $\Box \tau_{\tau} = 290.15 \pm 0.77 \text{ fs} [0.27\%]$ 

 $g_{\mu}/g_{\tau}=0.9982 \pm 0.0021$ 

UVic

B-factories must consider measuring leptonic branching ratios at 0.1% level

- Issues of systematic errors:
  - LEP measurements rely on data control samples for establishing the detector response for electrons and muons: same can be done at B-factories
  - Non-tau backgrounds can be controlled at B-factories: tradeoff statistics for reduced systematics
  - Cross contamination from other tau decays: use of control samples & may require improved simultaneous measurements of some non-leptonic modes
  - Normalization has been a dominant error at Υ(4s): (no. of produced taus entering the BR denominator)
    - <sup>SP</sup> Normalize to N<sub>μμ</sub> but requires  $\sigma(\tau\tau)/\sigma(\mu\mu)$  at <0.1% level and counting N<sub>μμ</sub> at 0.1% level



# Consider ratio of

leptonic branching ratios

- Access Lepton universality... statistical sensitivity... using BELLE figures for yields of e-rho mu-rho decays - ~250k in ~30/fb
- Ratio of BR for 100/ab would have statistics to play-off systematic uncertainties.
- Could reach well below (perhaps x10) better than current 0.2%
- STUDIES WITH CURRENT DATA NEEDED
- Very difficult work understanding lepton ID



# CP-violation via Dipole Moments

- Baryon asymmetry requires non-SM sources of CPV thus motivating searches for evidence of CPV outside the SM
- Electric Dipole Moment, d, is T,P-odd (so under CPT CP-odd):  $d \neq 0 \rightarrow CPV$  $d \vec{E} \cdot \vec{S}$  interaction for spin- $\frac{1}{2}$  particle relativistically:

$$H_{T,P-odd} = -d \cdot \vec{E} \cdot \vec{S} / S \quad \rightarrow \quad \mathbf{L} = -d \frac{i}{2} \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$$



# CP-violation via Dipole Moments

- EDM can be generalized to Z-fermion and gluon-fermion interactions giving rise to weak dipole (WDM) and chromoelectric dipole moments of fermions
- Neutron EDM: |d<sub>n</sub>|<6x10<sup>-26</sup> e cm (90%CL) [Harris et al, PRL 82, 904 (1999)]
- Electron EDM via Tl (paramagnetic):  $|d_e| < 1.6 \times 10^{-27}$  e cm (90%CL)

[Regan et al, PRL 88, 071805 (2002)]

(cf SM:  $|d_n^{KM}| \sim 10^{-34} \text{ cm } \& |d_e^{KM}| < 10^{-38} \text{ cm}$ )

• In general, dipole moment has s dependence and is complex. (For electron and neutron EDM results, s=0 and EDM is real)



#### CP-violation via τ Dipole Moments OPAL, ALEPH, BELLE

 $e^{+}(\vec{p})e^{-}(-\vec{p}) \rightarrow \tau^{+}(\vec{k},\vec{S}_{+})\tau^{-}(-\vec{k},\vec{S}_{-})$  in CM

Spin-density matrix squared: (Bernreuther et al PRD 48,1993)

$$M_{PROD}^{2} = M_{SM}^{2} + \text{Re}(d_{\tau})M_{Re}^{2} + \text{Im}(d_{\tau})M_{Im}^{2} + |d_{\tau}|^{2}M_{d^{2}}^{2}$$

$$M_{SM}^{2} = \frac{e^{4}}{E_{\tau}^{2}} \begin{cases} E_{\tau}^{2} + m_{\tau}^{2} + k^{2} \left[ (\hat{k} \cdot \hat{p})^{2} (1 + \vec{S}_{+} \cdot \vec{S}_{-}) - \vec{S}_{+} \cdot \vec{S}_{-} \right] + 2(\hat{k} \cdot \vec{S}_{+})(\hat{k} \cdot \vec{S}_{-})(k^{2} + (E_{\tau} - m_{\tau})^{2}(\hat{k} \cdot \hat{p})^{2}) \\ + 2E_{\tau}^{2} \left( \hat{p} \cdot \vec{S}_{+} \right) (\hat{p} \cdot \vec{S}_{-}) - 2E_{\tau}(E_{\tau} - m_{\tau})(\hat{k} \cdot \hat{p}) \left[ (\hat{k} \cdot \vec{S}_{+})(\hat{p} \cdot \vec{S}_{-}) + (\hat{k} \cdot \vec{S}_{-})(\hat{p} \cdot \vec{S}_{+}) \right] \\ M_{Re}^{2}, M_{Im}^{2} \text{ interference terms between SM and CPV amplitudes} \\ M_{Re}^{2}: CP-odd; T-odd (CPT-even) \qquad M_{Im}^{2}: CP-odd; T-even (CPT-odd) \end{cases}$$

$$M_{\rm Re}^{2} = 4 \frac{e^{3}}{E_{\tau}} k \left[ -\left(m_{\tau} + (E_{\tau} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}\right) (\vec{S}_{+} \times \vec{S}_{-}) \cdot \hat{k} + E_{\tau} (\hat{k} \cdot \hat{p}) (\vec{S}_{+} \times \vec{S}_{-}) \cdot \hat{p} \right]$$
$$M_{\rm Im}^{2} = 4 \frac{e^{3}}{E_{\tau}} k \left[ -\left(m_{\tau} + (E_{\tau} - m_{\tau})(\hat{k} \cdot \hat{p})^{2}\right) (\vec{S}_{+} \times \vec{S}_{-}) \cdot \hat{k} + E_{\tau} (\hat{k} \cdot \hat{p}) (\vec{S}_{+} - \vec{S}_{-}) \cdot \hat{p} \right]$$



# CP-violation via $\tau$ Dipole Moments

Optimal observables with maximum sensitivity to  $d_{\tau}$ :

$$O_{\rm Re} = \frac{M_{\rm Re}^2}{M_{\rm SM}^2} \quad [\text{similarly for Im}(d_{\tau})]$$

Mean values, integrated over phase space ( $\phi$ ) spanning kinematic variables:

$$\langle O_{\text{Re}} \rangle \propto \int O_{\text{Re}} M_{\text{Prod}}^2 d\phi = \int M_{\text{Re}}^2 d\phi^{0 \text{ over all p.s.}} + \text{Re}(d_\tau) \int \frac{\left(M_{\text{Re}}^2\right)^2}{M_{\text{SM}}^2} d\phi + \text{Im}(d_\tau) \int \frac{\left(M_{\text{Re}}^2 M_{\text{Hm}}^2\right)}{M_{\text{SM}}^2} d\phi$$
  
$$\therefore \text{Re}(d_\tau) = \frac{\langle O_{\text{Re}} \rangle}{\langle O_{\text{Re}}^2 \rangle}$$

In practice, phase space dependent detector acceptance,  $\eta(\phi)$  must be taken into account:

$$\langle 0_{\text{Re}} \rangle \propto \int \eta(\phi) 0_{\text{Re}} M_{\text{Prod}}^2 d\phi$$
  
So MC is used to extract relation between  $\langle 0_{\text{Re}} \rangle$  and  $\text{Re}(d_{\tau})$ :  
 $\langle 0_{\text{Re}} \rangle = a_{\text{Re}} \text{Re}(d_{\tau}) + b_{\text{Re}}$ 

# BELLE, PLB, 551 (2003) -0.4



CP-violation via  $\tau$  Dipole Moments

- •The tau direction can be determined in hadronic decays up to a 2-fold ambiguity that can be broken with a vertex detector.
- •The tau spins are estimated from measured momentum of tau decay products:
- $\Gamma \propto 1 + \vec{h} \cdot \vec{S}$   $\vec{h}$  polarimeter vector depends on 4-momenta of daughters & tau flight direction; most likely spin direction maximizes  $\vec{h} \cdot \vec{S}$ .





## CP-violation via τ Dipole Moments BELLE

| $Re(d_{	au})$            | $e\mu$ | $e\pi$ | $\mu\pi$ | $e\rho$ | $\mu  ho$ | $\pi  ho$ | ho ho | $\pi\pi$ |
|--------------------------|--------|--------|----------|---------|-----------|-----------|-------|----------|
| Mismatch of distribution | 0.80   | 0.58   | 0.70     | 0.11    | 0.15      | 0.21      | 0.16  | 0.06     |
| Charge asymmetry         | 0.00   | 0.01   | 0.01     | 0.01    | 0.01      | 0.01      | -     | 2.22     |
| Background variation     | 0.43   | 0.12   | 0.07     | 0.07    | 0.08      | 0.03      | 0.04  | 0.05     |
| Momentum reconstruction  | 0.16   | 0.09   | 0.24     | 0.04    | 0.06      | 0.06      | 0.04  | 0.45     |
| Detector alignment       | 0.02   | 0.02   | 0.01     | 0.00    | 0.01      | 0.01      | 0.02  | 0.03     |
| Radiative effects        | 0.09   | 0.04   | 0.02     | 0.01    | 0.01      | 0.02      | 0.00  | 0.16     |
| Total                    | 0.93   | 0.60   | 0.74     | 0.14    | 0.18      | 0.22      | 0.17  | 0.48     |

Systematic errors for  $Re(d_{\tau})$  and  $Im(d_{\tau})$  in units of  $10^{-16}e$  cm.

# Need to have MC match data in kinematic distributions & backgrounds; momentum scale



## CP-violation via τ Dipole Moments BELLE

| Mode       | $Re(d_{\tau}) ~(10^{-16}e{\rm cm})$ | $Im(d_{\tau}) \ (10^{-16} e{\rm cm})$ |
|------------|-------------------------------------|---------------------------------------|
| $e\mu$     | $2.25 \pm 1.26 \pm 0.93$            | $-0.41 \pm 0.22 \pm 0.46$             |
| $e\pi$     | $0.43 \pm 0.64 \pm 0.60$            | $-0.22 \pm 0.19 \pm 0.45$             |
| $\mu\pi$   | $-0.41 \pm 0.87 \pm 0.74$           | $0.15 \pm 0.19 \pm 0.44$              |
| e ho       | $0.00 \pm 0.36 \pm 0.14$            | $-0.01 \pm 0.14 \pm 0.13$             |
| $\mu ho$   | $0.04 \pm 0.42 \pm 0.18$            | $-0.02 \pm 0.14 \pm 0.10$             |
| $\pi ho$   | $0.34 \pm 0.25 \pm 0.22$            | $-0.22 \pm 0.13 \pm 0.16$             |
| ho ho      | $-0.08 \pm 0.25 \pm 0.17$           | $-0.12 \pm 0.14 \pm 0.11$             |
| $\pi\pi$   | $0.42 \pm 1.17 \pm 0.48$            | $0.24 \pm 0.34 \pm 0.42$              |
| Mean value | $0.115\pm0.170$                     | $-0.083 \pm 0.086$                    |

#### State-of-the-art: but soon systematics limited







Weak Electric Dipole Moment

Measured by OPAL and ALEPH at Z

Im  $(d_{\tau}^{W}) = (-0.45 \pm 5.57) \times 10^{-18} \text{ cm}$ Re  $(d_{\tau}^{W}) = (-0.59 \pm 2.49) \times 10^{-18} \text{ cm}$ 



CP-violation via τ Dipole Moments at a Super-Flavour Factory with Polarized Beam

Ananthanarayan and Rindani(PRL73,1215 1994;PRD51 5996 1995) proposed using tunable longitudinal polarized beam that can be reliably flipped:

- measure distribution of CP-odd observable for both polarization states and take the difference. This enhances the sensitivity.
- For experiment: the real beauty is the potential to cancel systematic errors limiting the methods without polarization



CP-violation via 
$$\tau$$
 Dipole Moments  
at a Super-Flavour Factory with  
Polarized Beam  
 $e^+(\vec{p})e^-(-\vec{p}) \rightarrow \tau^+(\vec{k},\vec{s}_+)\tau^-(-\vec{k},\vec{s}_-) \rightarrow \vec{B}(\vec{q}_B)\vec{\nu}_{\tau} + A(\vec{q}_A)\nu_{\tau}$  in CM  
 $0_1 = \frac{1}{2} \Big[ \hat{p} \cdot (\vec{q}_B \times \vec{q}_A) + \hat{p} \cdot (\vec{q}_A \times \vec{q}_B) \Big] = |q_1^+| |q_1^-|\sin(\phi_+ - \phi_-)$  CPT even  $\propto \text{Re}(d_{\tau})$   
 $0_2 = \frac{1}{2} \Big[ \hat{p} \cdot (\vec{q}_B + \vec{q}_A) + \hat{p} \cdot (\vec{q}_A + \vec{q}_B) \Big] = q_z^+ + q_z^-$  CPT odd  $\propto \text{Im}(d_{\tau})$   
 $\text{Re}(d_{\tau}) = \frac{1}{c_{AB}^1} \frac{e}{\sqrt{s}} (\langle 0_1(P) \rangle - \langle 0_1(-P) \rangle)$   
 $P = \frac{P_{e^-} - P_{e^+}}{1 - P_{e^-}P_{e^+}}$  is the effective beam polarization  
 $c_{AB}^1$  is the correlation relating the EDM and observable  
for decay mode combination AB.



CP-violation via  $\tau$  Dipole Moments with Polarized Beam

Ananthanarayn & Rindani tabulated  $d_{\tau}$  1sigma values for  $2\times10^{-7}$  tau pairs for three hadronic modes for P=0.71

|            | $c_{AB} \ { m GeV^2}$ | $\sqrt{\langle O_1^2 \rangle} \ { m GeV^2}$ | $ \delta \operatorname{Re} d_{	au}^{\gamma}  \ e \ \operatorname{cm}$ |
|------------|-----------------------|---------------------------------------------|-----------------------------------------------------------------------|
| $\pi\pi$   | $1.72 \times 10^{3}$  | 3.46                                        | $2.61 \times 10^{-19}$                                                |
| $\pi  ho$  | $1.34 \times 10^3$    | 2.38                                        | $1.68\times10^{-19}$                                                  |
| $\rho\rho$ | $7.62 	imes 10^2$     | 1.48                                        | $1.33\times10^{-19}$                                                  |

assuming BELLE's efficiencies and purities and 100/ab:  $\sigma(\text{Re}(d_{\tau}))=5\times10^{-21}\text{e-cm}$  combining these channels



CP-violation via  $\tau$  Dipole Moments In light of d<sub>e</sub><1.6x10<sup>-27</sup> e-cm limit is  $\sigma(\text{Re}(d_{\tau}))=O(10^{-20})$ e-cm interesting? If d<sub>e</sub> ~  $e\frac{m_{\ell}}{\Lambda^2}$  then d<sub>t</sub><sup>MIN</sup> ~ 3554d<sub>e</sub>  $\rightarrow$  d<sub>e</sub>(equiv)=3x10<sup>-24</sup>e-cm missing by ~x2000, less if  $\Lambda$  is different, but > factor 10 'unnatural'.

> In multi-Higgs models  $d_{\ell} \sim e \frac{m_{\ell}^{3}}{\Lambda^{4}}$ in this case,  $d_{\tau}^{\text{MIN}} \sim 4 \times 10^{10} d_{e} \rightarrow d_{e}$  (equiv)=3x10<sup>-31</sup>e-cm sensitive to values of  $\Lambda$  of >~60GeV. i.e. not sensitive to new physics in this scenerio if scale is higher,

Leptoquark models (Bernreuther et at, PLB 391, 413 (1997) give:  $d_e: d_\mu: d_\tau = m_\mu^2 m_e: m_c^2 m_\mu: m_\tau^2 m_\tau = 1: 14 \times 10^6: 4 \times 10^{12}$ Models exist that make this interesting if  $d_\tau \neq 0$  and  $d_e$  still unseen, VERY interesting but...



Measurements of hadronic

- Probes of QCD Currents
- Non-strange decays
  - Comprehensive survey
  - □ Starting to probe small branching ratio modes
  - CVC problem...  $\rho^+$  vs  $\rho^0$ : more data from B-factories may help
- Strange decays

 $\square$  Access  $V_{us}$  and  $m_s\,$  : simultaneous fit

Significant improvements expected at existing B-factories, because of systematic errors, not clear there is role for 100/ab



### Lepton Flavour Violation in tau decays

- LFV not forbidden by SM gauge symmetry
  - its forbidden in SM with massless neutrinos
  - but it's expected in many SM-extensions
- Many new tau lepton flavour violating decays from BELLE and BABAR (summary only here)
- Well motivated searches: complementary to potential LHC discoveries:

Limits (or discovery!) will better constrain theories



lepton-mass dependent couplings
parameter space in some models touch current limits
different sensitivity to 2-body & 3-body decays which mode will be discovered first is unknown (and important to help disentangle what we'll see at LHC!)





For minimal SM extentions that include non-zero neutrino masses and mixing, LFV is also expected and would be a background for (REALLY) new physics.
Rates mercifully low: so no 'real' SM background to worry us.



... many orders below experimental sensitivity!

•SM definitively ruled out if LFV discovered

compiled by S. Banerjee for NovO5 LHC Flavour Workshop



| Channel                            | BaB                           | ar                     | Belle                       |                        |  |
|------------------------------------|-------------------------------|------------------------|-----------------------------|------------------------|--|
|                                    | $B_{ m UL}^{90} \; (10^{-7})$ | $\mathcal{L}(fb^{-1})$ | $B_{\rm UL}^{90}~(10^{-7})$ | $\mathcal{L}(fb^{-1})$ |  |
| $	au  ightarrow \mu \gamma$        | 0.7                           | 232.2                  | 3.1                         | 86.3                   |  |
|                                    | PRL95(200                     | 5)41802                | PRL92(2004)171802           |                        |  |
| $	au  ightarrow e \gamma$          | 1.1                           | 232.2                  | 3.9                         | 86.7                   |  |
|                                    | hep-ex/050801                 | 2 (sub PRL)            | PLB613(2                    | 005)20                 |  |
| $	au  ightarrow \mu \mu \mu$       | 1.9                           | 91.5                   | 2.0                         | 87.1                   |  |
|                                    | PRL92(2004                    | 4)121801               | PLB589(2004)103             |                        |  |
| $\tau \rightarrow eee$             | 2.0                           | 91.5                   | 3.5                         | 87.1                   |  |
|                                    | PRL92(2004                    | 4)121801               | PLB589(2004)103             |                        |  |
| $\tau \to \ell \ell \ell$          | (1-3)                         | 91.5                   | (2-4)                       | 87.1                   |  |
|                                    | PRL92(2004                    | 4)121801               | PLB589(2004)103             |                        |  |
| $\tau \to \ell h h'$               | (1-5)                         | 221.4                  | (2-16)                      | 158.0                  |  |
|                                    | PRL95(2005                    | 5)191801               | NPB(Proc)144(2005)173       |                        |  |
| $	au 	o \ell \pi^0 / \eta / \eta'$ |                               | ī                      | (2-10)                      | 153.8                  |  |
|                                    |                               |                        | PLB622(2005)218             |                        |  |
| $\tau \to \ell K^0_S$              | 1                             |                        | (0.5-0.6)                   | 281                    |  |
|                                    |                               |                        | hep-ex/0509014              |                        |  |

compiled by S. Banerjee for Nov05 LHC Flavour Workshop



•What are the limitations in the existing bounds? HOW FAR CAN WE GO?

TAKE BABAR  $\tau \rightarrow \ell \gamma$  and  $\tau \rightarrow \ell \ell \ell$  analyses as examples. (arguments hold for BELLE analyses)

•Briefly summarize the current state of affairs vis a vis limitations on experimental bounds

Projection scenerios for 1/ab and 100/ab...



Start with  $\tau \rightarrow \ell \gamma$ : sensitivity is 1.2E-7 @90%CL (same for e&  $\mu$ ) (i.e. expected upper limit assuming no signal; same for  $\ell = e, \mu$ )

two independent  $\tau \rightarrow \mu \gamma$  Babar analyses arrive at same sensitivity (Belle analysis within ~ x2 of these when lumi normalized)

Analyses are optimized using MC to achieve the best expected UL. Schematically:



# **LFV** in tau decays Ingredients for calculating $BR_{90}^{UL}$ includes backgrounds:

*e.g.* in the absence of signal, for large  $N_{bkg}$  :  $N_{90}^{UL} \sim 1.64 \times \sqrt{N_{bkg}}$ 

For N<sub>bkg</sub>~0 and no events observed,  $N_{90}^{UL} \sim 2.3$  or 2.4 (Feldman&Cousins):

Reducing background below a handful of events doesn't greatly improve the expected limit if alot of signal efficiency is lost in the process.

This is why typically these analyses often have a few expected background

events:

e.g. for  $\tau \to \mu \gamma$ 

|           | Tag:              | e         | $\mathrm{e}\gamma$ | $\mu$     | h         | $h\gamma$ | 3h        | all       |
|-----------|-------------------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|
| $2\sigma$ | Selected          | 1         | 0                  | 1         | 0         | 1         | 1         | 4         |
| signal    | Expected          | 1.1       | 0.1                | 1.9       | 0.5       | 1.8       | 0.9       | 6.2       |
| ellipse   | from Data         | $\pm 0.2$ | $\pm 0.1$          | $\pm 0.3$ | $\pm 0.1$ | $\pm 0.3$ | $\pm 0.2$ | $\pm 0.5$ |
|           | $\varepsilon(\%)$ | 1.27      | 0.18               | 1.31      | 0.89      | 2.56      | 1.22      | 7.42      |



**LFV in tau decays**  $\tau \rightarrow \mu \gamma$ If nothing is done to modify the analysis, but only more data is collected, its trivial to project the expectations: they just scale ~  $\sqrt{N_{bkg}}$  / L which for large  $N_{bkg}$  scales as  $1/\sqrt{L}$ . This gives a worst case scenerio for expected limits with 1/ab of  $5.7 \times 10^{-8}$  @90%CL from Babar. If one were to combine Babar & Belle assuming comparable sensitivities, this drops to  $\sim 4 \times 10^{-8}$  for  $\sim 1/ab$  per exp't. For 100/ab, this goes to  $\sim 6x10^{-9}$  for 100/ab



#### LFV in tau decays $\tau \rightarrow \mu \gamma$

Other extreme is if analysis developed with no efficiency loss but all background is solely the irreducible background from  $\tau\tau \rightarrow \tau, \mu\nu\gamma\gamma$ .

Tight region of phase space where neutrinos carry-off ~no momentum. Babar analysis sees ~3 in  $10^9$  MC tau decays events of this nature in signal region from this source. This represents ~1/5 of the Babar background.





**LFV in tau decays**  $\tau \rightarrow \mu \gamma$ The limit is then determined by a scaling this reduced background by the luminosity. This gives a best case scenerio for expected limits with irreducible backgrounds of ~2x10<sup>-8</sup> for 1/ab (Babar+Belle) this goes to ~2x10<sup>-9</sup> for 100/ab.

NB: Not clear how to do this without some efficiency losses. •dropping mu-tag - large efficiency. loss •using lifetime information? •more refined tagging analysis Backgrounds with 100/ab would scale to ~2700 events. Irreducible backgrounds ~ hundreds of events.

(note: if no background at all and assume a 10% efficiency, limit is ~10<sup>-10</sup>.)



**LFV in tau decays**  $\tau \rightarrow e \gamma$ Similar analysis of electron mode: background of 1.9 events, eff=4.7% for 232/fb

1/ab yields expected 90%CL UL 7x10<sup>-8</sup> Babar alone
 ~4-5x10<sup>-8</sup> for Babar and BELLE combined

 100/ab with as-is Babar analysis yields ~6x10<sup>-9</sup> 90%CL expected UL
 In this case, 50% is irreducible background
 A fictitious analysis that only has this background
 with same efficiency would yield a limit of ~4x10<sup>-9</sup> @90%CL

NB: Not clear how to do this without some efficiency losses. •using lifetime information? •more refined tagging analysis Backgrounds with 100/ab would scale to ~800 events.

Irreducible backgrounds ~ 400events.



One way to further reduce 'irreducible' background is to improve mass and energy resolution. Optimistically, this might be achieved if the EM Calorimeter granularity increases: photon direction is a resolution limiting factor. Note:  $\mu\gamma$  mass resolution is now 8.9MeV, energy resolution is 45MeV, so room for improvement.



#### **LFV** in tau decays $\tau \rightarrow \ell \ell \ell$ and $\tau \rightarrow \ell h h'$

Situation different for these neutrinoless 3-prong decays because there is no significant irreducible background analogous QED radiative decays are suppressed by  $\alpha^2$  and lepton masses... negligible effect Backgrounds are at O(1) event per mode: level.

| Decay mode                       | $e^-e^+e^-$          | $\mu^+e^-e^-$        | $\mu^-e^+e^-$        |
|----------------------------------|----------------------|----------------------|----------------------|
| Efficiency [%]                   | $7.3\pm0.2$          | $11.6\pm0.4$         | $7.7\pm0.3$          |
| $q\overline{q}$ bgd.             | 0.67                 | 0.17                 | 0.39                 |
| QED bgd.                         | 0.84                 | 0.20                 | 0.23                 |
| $\tau^+\tau^-$ bgd.              | 0.00                 | 0.01                 | 0.00                 |
| $N_{\rm bgd}$                    | $1.51\pm0.11$        | $0.37\pm0.08$        | $0.62\pm0.10$        |
| $N_{\rm obs}$                    | 1                    | 0                    | 1                    |
| $\mathcal{B}^{90}_{\mathrm{UL}}$ | $2.0 \times 10^{-7}$ | $1.1 \times 10^{-7}$ | $2.7 \times 10^{-7}$ |
| Decay mode                       | $e^+\mu^-\mu^-$      | $e^-\mu^+\mu^-$      | $\mu^-\mu^+\mu^-$    |
| Efficiency [%]                   | $9.8\pm0.5$          | $6.8 \pm 0.4$        | $6.7\pm0.5$          |
| $q\overline{q}$ bgd.             | 0.20                 | 0.19                 | 0.29                 |
| QED bgd.                         | 0.00                 | 0.19                 | 0.01                 |
| $\tau^+\tau^-$ bgd.              | 0.01                 | 0.01                 | 0.01                 |
| $N_{\rm bgd}$                    | $0.21\pm0.07$        | $0.39\pm0.08$        | $0.31\pm0.09$        |
| $N_{\rm obs}$                    | 0                    | 1                    | 0                    |
| <b>19</b> 90                     | 1.9 10=7             | 2 2 10-7             | 1.0 + 10-7           |



UVic

**LFV in tau decays**  $\tau \rightarrow \ell \ell \ell$  and  $\tau \rightarrow \ell h h'$ With no change to the analyses:

- 1/ab yields expected 90%CL UL  $\sim$ 3-9x10<sup>-8</sup> 1 expt
- 100/ab with as-is Babar analysis yields
   ~3-9×10<sup>-9</sup> 90%CL expected UL

In this case, there is no 'irreducible' background, so in principle, the expected limits could scale with close to the luminosity...

Such a fictitious analyses that keeps only hand full of background events for same efficiency would yield very strong limits:



| BR 90%CL<br>UL (x10 <sup>-9</sup> )          | projections<br>from: | 100/ab<br>same analysis | 100/ab<br>same bkgnd/eff |
|----------------------------------------------|----------------------|-------------------------|--------------------------|
| $\tau \rightarrow \mu \mu \mu$               | Babar/Belle          | 6                       | 0.2                      |
| $\tau \rightarrow eee$                       | Babar                | 6                       | 0.2                      |
| $\tau {\rightarrow} \ell \ell \ell$          | Babar                | 3 - 9                   | 0.1 - 0.3                |
| $\tau \rightarrow \ell hh'$                  | Babar                | 5 - 25                  | 0.2 - 1.1                |
| $\tau \rightarrow \ell \pi^0 / \eta / \eta'$ | Belle                | 8 - 40                  | 0.3 - 1.5                |
| $\tau \rightarrow \ell K^0{}_S$              | Belle                | ~3                      | ~0.2                     |

# probe modes at O(10<sup>-10</sup>) under this same background/efficiency scenerio







Vic 🔮

# $(\tau \rightarrow \mu \gamma)$ and $S_{\phi K_S}$

SUSY SU(5) GUT: Flavour changing right-handed currents  $\Rightarrow$ Correlations between CP asymmetry in b-s penguins and  $\tau \rightarrow \mu \gamma$ 





## Detector/Machine requirements

- Polarized beam needed for EDM
- as low machine backgrounds as possible...
- Hermetic detector with extreme geometrical uniformity and alignment controlled
- Charge symmetric detector
- vertex detector design with lifetime tagging in mind: what systematic errors need to be controlled
- tracker with dE/dx & extreme control of momentum scale and resolution
- dedicated PID
- calorimeter with high granularity (& consider longitudinal sampling to address hadronic split-offs- channel cross feed)
- calorimeter needs excellent energy scale control
- muon system with high pi/mu discrimination
- TRIGGER: dedicated Level 1 trigger lines that ensure interesting tau analyses are not compromised



# Summary

- With full 1/ab data set from Belle & Babar
  - Probe LFV to  $O(10^{-8})$
  - □ Probe lepton universality of O(10<sup>-4</sup>)??
  - **EDM**
  - CPT tests
  - □ ms and Vus from strange decays of the tau
- With full 100/ab data set from Super-B factory
  - Probe LFV to  $O(10^{-9}) O(10^{-10})$
  - Probe lepton universality of  $O(10^{-xx??})$
  - EDM to  $10^{-20}$  ecm
  - CPT tests to  $10^{-4-5?}$

