SuperKEKB IR Design

Y. Funakoshi (KEK)

Design strategy

- Natural extension of present KEKB
 - the same boundary between KEKB and Belle
 - conventional flat beam scheme

· round beam

• A baseline design of SuperKEKB IR has been completed.

- Details are described in LoI (2004).

Machine parameters

	Present KEKB LER/HER	KEKB Design LER/HER	Super KEKB LER/HER	
β _x * [m]	0.59/0.56	0.33	0.2	
β _y * [mm]	6.5/5.9	10	3	
ε _x [nm]	18/24	18	9	
σ _z [mm]	~8/~7	5	3	
ϕ_{c} [mrad]	11	11	15	
I _{beam} [A] 1.7/1.35		2.6/1.1	10.4/4.4	
L [10 ³⁴ /cm ² /s]	1.63	1	82.5	

Issues of IR Design

Issues	Causes	Measures
Dynamic aperture	Lower beta's at IP.	Place QCS magnets. closer to IP. Damping ring.
Physical aperture	Lower beta's at IP.	Damping ring. Larger crossing angle. (22mrad -> 30mrad)
Heating of IR components	Higher beam currents. Higher power of SR from QCS magnets. Shorter bunch length (HOM).	Under study.
Detector beam background	Higher power and critical energy of SR from QCS magnets. Higher beam currents. QCS closer to the IP. Higher Luminosity.	Under study by Belle Group.

Place QCS magnets closer to IP

IR magnet layout

Required: H/V 4.5/0.52 ×10⁻⁶m

Local correction scheme also in HER?

- HER local chromaticity correction scheme is not compatible with installation of crab cavities in Tsukuba section.
- If we want to install crab cavities in Tsukuba, we can not adopt the local correction scheme in HER.
- We need to wait for the results of the experiment with the crab cavities in Nikko section next year.

New issues

- Horizontal tune very close to halfinteger
 - SR fan
 - Physical aperture in IR
- \cdot Idea of waist control
 - Traveling focus
 - Crab waist

Beam-beam simulation

Estimation of dynamic effects

- Input parameters
 - $\xi_{x0} = 0.152$
 - v_x = variable(0.503)

-
$$\varepsilon_x = 24 \text{ nm}$$

$$- \beta_x^* = 20 \text{ cm}$$

	β _x [cm]	ε _x [μm]	σ _{x'} [mrad]
SAD	2.0	0.125	2.5
B-B 1σ _x , σ _{x'}	2.30	0.128	2.49
B-B 3σ _x , σ _{x'}	4.18	9 x 0.209	3 x 2.23

Fan of SR with dynamic effects

 $9\varepsilon_x$ (3 σ_x , $3\sigma_{x'}$) is taken into account.

 $v_x = .510 -> \sigma_x \sim 1.4 \text{mrad}$ $v_x = .503 -> \sigma_x' \sim 2.5 \text{mrad}$

Power of SR from QCS Magnets

	QCSR	QCSL
Magnet length [m]	0.33	0.42
∆x [mm]	34.5	29.1
G [T/m]	37.2	35.4
B [T]	1.28	1.03
E _b [GeV]	8.0	3.5
I [A]	4.1	9.4
P [kW]	179 (27)	64.6 (10)

(): present KEKB Design

σ_x in IR with dynamic effects

LER IR $\beta_{x}^{*} = 4.78$ cm, $\epsilon_{x} = 98.7$ nm ($\beta_{x,0}^{*} = 40$ cm, $\epsilon_{x0} = 12$ nm)(red) $\beta_{x}^{*} = 4.45$ cm, $\epsilon_{x} = 217$ nm ($\beta_{x,0} = 20$ cm, $\epsilon_{x0} = 24$ nm)(blue)

HER IR $\beta_{x}^{*} = 4.78$ cm, $\epsilon_{x} = 98.7$ nm ($\beta_{x}^{*}_{0} = 40$ cm, $\epsilon_{x0} = 12$ nm)(red) $\beta_{x}^{*} = 4.45$ cm, $\epsilon_{x} = 217$ nm ($\beta_{x}^{*}_{0} = 20$ cm, $\epsilon_{x0} = 24$ nm)(blue)

Parameters of IR quad (LoI)

_			QC1LE	QC2LE	QC1RE	QC2RE	QC2LP	QC2RP
	Field gradient	T/m	15.5	3.4	12.0	8.8	6.7	3.4
	Pole length	m	0.64	2.0	0.75	0.8	0.6	1.0
С	bore radius	mm	25	50	48	90	80	40
	Current	\mathbf{AT}	3920	3400	11050	28400	17100	1980
	coil turns	/pole	3	8	3	16	15	3
	Current density of							
	Septum conductor	A/mm^2	30	10	70	24	31	15
	Field in the area for							
	couter-circulating beam	Gauss	$0 \sim -0.65$	0~-0.4	0~-1.1	0~-0.35	$0 \sim -0.85$	$0 \sim -0.35$

Table 3.3: Parameters of special quadrupole magnets

$$\sigma_x (mm) \longrightarrow 8$$
 21 10 22 12 16
b/ $\sigma_x \longrightarrow 3.1$ 2.4 4.8 4.1 6.7 2.5

Waist control

- To avoid effects of "Hourglass" effect
 - Traveling focus
 - Sextupole magnets + crab cavities
 - · RF quadruple
 - Energy difference (RF cavity) + chromatic effect
 - Crab waist
 - · Sextuple magnets + crossing angle + small x size

- Traveling Ion Focus (R. Brinkmann, 1995, general idea)

SRF deflectors (the same as for crab crossing) also can be used for arrangement of Traveling Focus (at $l_i >> l_e$), in cooperation with sextupole non-linearity introduced in the final focusing magnets

Traveling Focus allows one to decrease Ni or use bunches of a larger Ei

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Crab waist (SuperB workshop @ LNF)

Basic scheme •crossing angle •small x size •crab waist •Smaller area of interaction

- -> effectively short bunch
- -> smaller beam is needed to keep ξ_y high
- •Smaller beam-beam tuneshift (Hor.)
 - •Cancellation of main and long range force
- •Still crab waist is needed.
 - •Shift of waist points
 - •Harmful effect of crossing angle is partially canceled.

One turn map with sextupoles

•Kick by sextuple (vertical)

$$S_{1} = \begin{pmatrix} 1 & 0 \\ A_{1}x & 1 \end{pmatrix} \qquad A_{1} = K_{2}(S_{1})$$
$$S_{2} = \begin{pmatrix} 1 & 0 \\ A_{2}x & 1 \end{pmatrix} \qquad A_{2} = K_{2}(S_{2})$$

•One turn map (IP -> IP)

Original:

$$\boldsymbol{M}_0 = \boldsymbol{M}_1 \boldsymbol{M}_3 \boldsymbol{M}_2$$

With sextupole kick:

$$M = M_1 S_1 M_3 S_2 M_2 = (M_1 S_1 M_1^{-1}) (M_1 M_3 M_2) (M_2^{-1} S_2 M_2)$$

We assume $(M_2^{-1} S_2 M_2) = (M_1 S_1 M_1^{-1})^{-1} = (M_1 S_1^{-1} M_1^{-1})$
 $M_2 = M_1^{-1}$ and $S_2 = S_1^{-1} (A_2 = -A_1)$

Then,

 $M = M_{1S}M_0M_{1S}^{-1} \quad M_{1S} = M_1S_1M_1^{-1}$

•Phase advance (S₁- >IP) (vertical) : ψ_1

$$\psi_1 = \frac{\pi}{2}$$

•Transformation of S_1

$$M_{1} = \begin{pmatrix} \alpha_{y}^{S1} \sqrt{\frac{\beta_{y0}^{*}}{\beta_{y}^{S1}}} & \sqrt{\beta_{y}^{S1}\beta_{y0}^{*}} \\ -\frac{1}{\sqrt{\beta_{y}^{S1}\beta_{y0}^{*}}} & 0 \end{pmatrix}$$
$$M_{1S} = M_{1}S_{1}M_{1}^{-1} = \begin{pmatrix} 1 & -A_{1}\beta_{y}^{S1}\beta_{y0}^{*}x_{S1} \\ 0 & 1 \end{pmatrix}$$

•Twiss Parameters @ IP

$$\begin{pmatrix} \beta_{y}^{*} & -\alpha_{y}^{*} \\ -\alpha_{y}^{*} & \gamma_{y}^{*} \end{pmatrix} = M_{1S} \begin{pmatrix} \beta_{y0}^{*} & -\alpha_{y0}^{*} \\ -\alpha_{y0}^{*} & \gamma_{y0}^{*} \end{pmatrix} M_{1S}^{t}$$
$$= \begin{pmatrix} \beta_{y0}^{*} + \frac{(A_{1}\beta_{y}^{S1}\beta_{y0}^{*}x_{S1})^{2}}{\beta_{y0}^{*}} & -A_{1}\beta_{y}^{S1}x_{S1} \\ -A_{1}\beta_{y}^{S1}x_{S1} & \frac{1}{\beta_{y0}^{*}} \end{pmatrix}$$

 $\Delta \mathbf{S} = A_1 \beta_y^{S1} \beta_{y0}^* x_{S1}$

•Phase advance (S₁- >IP) (vertical) : ψ_1

 $\psi_1 = \pi$

•Transformation of S_1

$$M_{1} = \begin{pmatrix} -\sqrt{\frac{\beta_{y0}^{*}}{\beta_{y}^{S1}}} & 0\\ -\frac{\alpha_{y0}^{S1}}{\sqrt{\beta_{y}^{S1}\beta_{y0}^{*}}} & -\sqrt{\frac{\beta_{y}^{S1}}{\beta_{y0}^{*}}} \end{pmatrix}$$
$$M_{1S} = M_{1}S_{1}M_{1}^{-1} = \begin{pmatrix} 1 & 0\\ -A_{1}\frac{\beta_{y}^{S1}}{\beta_{y0}^{*}}x_{S1} & 1 \end{pmatrix}$$

•Twiss Parameters @ IP

$$\begin{pmatrix} \beta_{y}^{*} & -\alpha_{y}^{*} \\ -\alpha_{y}^{*} & \gamma_{y}^{*} \end{pmatrix} = M_{1S} \begin{pmatrix} \beta_{y0}^{*} & -\alpha_{y0}^{*} \\ -\alpha_{y0}^{*} & \gamma_{y0}^{*} \end{pmatrix} M_{1S}^{t} \\ = \begin{pmatrix} \beta_{y0}^{*} & -A_{1}\beta_{y}^{S1}x_{S1} \\ -A_{1}\beta_{y}^{S1}x_{S1} & \frac{1}{\beta_{y0}^{*}} \end{pmatrix}$$

SX strength and phase advance (hor.)

•Traveling focus with crab

•Phase advance (S₁->IP) (hor.): ψ_{1x}

 $\psi_{1x} = n\pi$

•Crab angle at $S_1: \phi_S$

$$\phi_S = \sqrt{rac{eta_x^{S1}}{eta_x^*}}\phi_c$$

7

•Required shift of waist

$$\Delta s = \frac{z}{2}$$
$$z\phi_s = x_{s1}$$
$$\frac{x_{s1}}{2\phi_s} = A_1 \beta_y^{s1} \beta_y^* x_{s1}$$

•Required K2 value of S_1

•Crab waist

•Phase advance $(S_1 - > IP)$ (hor.): ψ_{1x}

 $\psi_{1x} = n\pi$

•Horizontal Position at $S_1 : x_{S1}$

$$x_{S1} = \sqrt{\frac{\beta_x^{S1}}{\beta_x^*}} x^*$$

•Required shift of waist

$$\Delta s = \frac{x^*}{2\phi_c} = A_1 \beta_y^{S1} \beta_y^* x_{S1}$$

•Required K2 value of S_1

$$K2(S1) = A_1 = \frac{1}{2\phi_c} \frac{1}{\beta_y^{S1} \beta_y^*} \sqrt{\frac{\beta_x^*}{\beta_x^{S1}}} \quad \text{same} \quad K2(S1) = A_1 = \frac{1}{2\phi_c} \frac{1}{\beta_y^{S1} \beta_y^*} \sqrt{\frac{\beta_x^*}{\beta_x^{S1}}}$$

same

Issues

- Effectiveness of the traveling focus and crab waist schemes at KEKB or SuperKEKB
 - Beam-Beam simulation
 - Geometrical luminosity with traveling focus
- \cdot Lattice design
 - Studies under way
- Effects of the other nonlinear terms of SX (Sx³)
 - To be studied
- How to localize SX nonlinearity in the presence of the beam-beam kick
 - To be studied

Effectiveness of waist control on KEKB or SuperKEKB performance

- Results of beam-beam simulations
 Traveling focus
 - No remarkable improvement in the luminosity (K. Ohmi, Y. Ohnishi)
 - \cdot The beam lifetime may be improved.
 - Crab waist
 - With the present KEKB parameters, a remarkable improvement is expected.
 - · At SuperKEKB, a higher luminosity would be obtained, if very small β_x^* and β_y^* are realized.

Effect of crab waist at KEKB \cdot H=25 x p_y^2 . present KEKB

is expected with the crab waist.

Super KEKB (K. Ohmi, F. Tawada)

	SuperKEKB	Crab waist			
εx	9.00E-09	6.00E-09	6.00E-09	6.00E-09	6.00E-09
εγ	4.50E-11	6.00E-11	6.00E-11	6.00E-11	6.00E-11
βx (mm)	200	100	50	100	50
βy (mm)	3	1	0.5	1	0.5
σz (mm)	3	6	6	4	4
vs	0.025	0.01	0.01	0.01	0.01
ne	5.50E+10	5.50E+10	5.50E+10	3.50E+10	3.50E+10
np	1.26E+11	1.27E+11	1.27E+11	8.00E+10	8.00E+10
φ/2 (mrad)	0	15	15	15	15
ξx	0.397	0.0418	0.022	0.0547	0.0298
ξy	0.794->0.33	0.1985	0.179	0.178	0.154
Lum (W.S.)	8E+35	6.70E+35	1.00E+36	3.95E+35	4.80E+35
Lum (S.S.)	8.25E35	4.77E35	9E35(v)	3.94E35	4.27E35
	↑		↑		

SuperKEKB design

SuperKEKB alternative

Study of crab waist optics

- Estimation of sextupole strength
- · Optics design (under way)
 - Optics requirements
 - · Phase advance $S_1 \rightarrow IP$
 - $N\pi$ (horizontal)
 - $(2N+1)/2 \pi$ (vertical)
 - \cdot High β_y and β_x at S_1
 - \cdot S₁->S₂: connected with I or -I transformer
 - Dynamic aperture with crab waist
 - \cdot To be studied

Estimation of SX strength

	KEKB (LER)	SuperKEKB
φ _c [mrad]	11	15
β _y * [mm]	6.5	3
β _γ ^{S1} [m]	100	100
β _x * [m]	0.59	0.2
β _x ^{S1} [m]	5	5
K2(S1)	27.9	22.2

$$K2 = \frac{B''L}{B\rho}$$

LER

KEKB (LER)

Modified optics (LER) example

Possible choice of S₂ location

KEKB (HER)

Summary

- A baseline design of SuperKEKB IR has been completed (LoI).
- Dynamic aperture of HER is still marginal and more studies are needed.
- The present design luminosity of 8.3 x 10³⁵ is obtained with a combination of head-on collision and horizontal tune of .503.
- With this tune, the physical aperture around IP and SR fan of QCS are serious and without solving these problem, the design luminosity would not be realized.

Summary [cont ' d]

- As new ideas, we have considered two schemes of "traveling focus" and "crab waist".
- The beam-beam simulation showed that a luminosity gain by the traveling focus is small, although the beam lifetime may be improved.
- On the other hand, the luminosity gain from the crab waist seems big even with the present KEKB parameters.
- We are studying the optics of the crab waist and are considering a beam test of this scheme.

Comments on crab waist with very small beta 's and emittance

- K. Ohmi's simulation showed that a higher luminosity is obtained by using the crab waist with very small beta's and conventional tunes.
- However, I haven't considered this possibility seriously, since the dynamic (physical) aperture problem seemed serious.
- M. Biagini's talk showed that the dynamic aperture issue is within a range of study if combined with very small emittance.
 - More studies on dynamics aperture issue are needed.
 - · Optimization of various parameters
 - \cdot Injection scheme
 - \cdot Effects of machine errors (and beam-beam)
- We will consider the crab waist scheme as an alternative option of SuperKEKB.

Dynamic aperture for "ideal" lattice with FF (3 Km, 7 GeV)olski

Frequency map analysis, sextupoles tuned for 0 chromaticity

	SBF 4 GeV	SBF 7 GeV	
C (m)	3251.	3251.	
В _w (Т)	1.4	1.4	
L _{bend} (m)	5.6	10.6	
N. bends	96	96	
B _{bend} (T)	0.155	0.144	
Uo (MeV/turn)	4.4	6.4	
N. wigg. cells	8	4	
τ _x (ms)	19.8	24.	
τ _s (ms)	10.	12.	
ε _x (nm)	0.38	0.565	
σ _E	1.1x10 ⁻³	1.32x10 ⁻³	cm σ _ε =0.85x10∹
I _{beam} (A)	2.5	1.4	
P _{beam} (MW)	11.	9.	

Total Wall Power (60% transfer eff.): 32 MW

SuperKEKB Budget Profile

Spare slides

Fan of SR

- Consideration of the particle distribution in the phase space
- \cdot Effects of dynamic- β and dynamic-emittance
 - These effects are very large with the horizontal tune very close to the half integer.
- · We took $9\epsilon_x$ (3 σ_x , $3\sigma_{x'}$) into consideration.

Enlargement of SR fan due to dynamic effects

	without dyna	amic effects	with dynamic effects		
Source point	QCSRE(Arc side) HER QCSLE(Arc side) LER		QCSRE(Arc side) HER	QCSLE(Arc side) LER	
Observation point	Exit of QC1RE	Exit of QC1LE	Exit of QC1RE	Exit of QC1LE	
$\varepsilon_{\rm x}[{\rm nm}]$	2	24	58		
$\gamma_{x}^{*} (1/\beta_{x}^{*}) [/m]$	5		22.5		
Distance from a source point [m]	2.87	1.94	2.87	1.94	
∆x[mm] COD	5.2	5.5	5.2	5.5	
$\Delta x[mm]$ 3 σ_{x} , 3 $\sigma_{x'}$	5.1	5.4	17.7	18.3	
∆x[mm] Total	10.3	10.9	22.9	23.8	

 $\xi_{\rm x} = 0.1, \, v_{\rm x} = .510$

IP σ_x , σ_x , from beam-beam simulation (Ohmi, Ohnishi)

Summary

- Backscattering of QCS-SR is not serious, but strongly depends on IR chamber configuration
- Vacuum level is very important
 - > Original design (5x10⁻⁷ Pa) is serious \rightarrow BGx25 > w/ further effort (2.5x10⁻⁷ Pa) \rightarrow BGx18 -30%
- Increasing of Touschek origin BG
 - > Smaller bunch size & higher bunch currents are reason
 - Might be reduced by further study
- Radiative Bhabha origin BG can be suppressed
- Beampipe radius 1.5cm → 1cm
 - Further simulation study of shower particles into SVD is important

From KEKB to SuperKEKB Synchrotron Radiation (SR) (2)

KEKB

- The exact path of the SR from QCS and its spread were not strictly taken into account in the first design.
- This caused a high temperature at unexpected portions of a vacuum chamber.
 - Deformation of vacuum chamber
 - Motion of magnets.

SuperKEKB

- The design of QC magnets in the Lol looks trying to give a sufficient clearance for the SR down to QC2.
- The design of the beam duct layout also tried to avoid the SR.
- However, the design should be checked against the fact that the two beams and the SR don't lie in the same plane.

From KEKB to SuperKEKB Detector Background

KEKB

- Back scattering of the SR from QCS by a HER Al beam duct became a noise source. (Cu has a smaller cross section of the back scattering than that of Al.)
- Shields against the detector background should have been incorporated from the first design.

SuperKEKB

- Chamber material: Cu (cooling, shielding, small back scatter of SR)
- Beam ducts avoid the SR down to 8m (HER downstream) and 5m (LER downstream) from IP.
- Shield should be taken into consideration from the first design.

From KEKB to SuperKEKB Higher Order Mode (HOM) (1)

KEKB

- The HOM power turned into heat in IR is, in the unit of the loss factor, around 474 V/nC. (Estimated from the temperature rise of cooling water)
- Heat up of the bellows will be unacceptable level in Super KEKB

SuperKEKB

- Extrapolation from KEKB gives as a heat by HOM about 100kW ×(bunch length factor).
- Is the compact HOM absorber possible?
- The cooling for HOM will be a big problem.
- The comb type bellows is expected to be durable.

