Crab crossing and crab waist at super KEKB

K. Ohmi (KEK) Super B workshop at SLAC 15-17, June 2006

Thanks, M. Biagini, Y. Funakoshi, Y. Ohnishi, K.Oide, E. Perevedentsev, P. Raimondi, M Zobov

 ξ_{x} is smaller due to cancellation of tune shift along bunch length

Essentials of super bunch scheme

$$L \sim \frac{N^2}{\theta \sigma_z \sqrt{\varepsilon_y \beta_y}}$$
$$\xi_x \sim \frac{N}{\theta \sigma_z} \sqrt{\frac{\beta_x}{\varepsilon_x}}$$
$$\xi_y \sim \frac{N}{\theta \sigma_z} \sqrt{\frac{\beta_y}{\varepsilon_y}}$$
$$\beta_y > \frac{\sqrt{\varepsilon_x \beta_x}}{\theta}$$

Keep
$$\sqrt{\frac{\beta_y}{\varepsilon_y}}$$
, $\sqrt{\frac{\beta_x}{\varepsilon_x}}$ and $\frac{\sqrt{\varepsilon_x \beta_x}}{\beta_y}$
 $\varepsilon_y \beta_y \to 0$

- Bunch length is free.
- Small beta and small emittance are required.

Short bunch scheme

Keep
$$\varepsilon_x$$
, β_x and $\sqrt{\frac{\beta_y}{\varepsilon_y}}$.
 $\varepsilon_y \beta_y \to 0$
 $L \to \infty$

- Small coupling
- Short bunch
- Another approach: Operating point closed to half integer

$$v_x \to +0.5 \quad \xi_y \to \infty \quad L \to \infty$$

We need L= 10^{36} cm⁻²s⁻¹

- Not infinity.
- Which approach is better?

- Application of lattice nonlinear force
- Traveling waist, crab waist

Nonlinear map at collision point

$$H = a_i x_i + b_{ij} x_i x_j + c_{ijk} x_i x_j x_k$$

 $\mathbf{x} = x_i = (x, p_x, y, p_y, z, \delta(=\Delta E / E))$

$$M = \exp(-:H:)\mathbf{x}^* = \mathbf{x} - [H, \mathbf{x}] + \frac{1}{2}[H, [H, \mathbf{x}]] + \dots$$
$$= a_i + b_{ij}x_j + c'_{ijk}x_jx_k + \dots$$

- 1st orbit
- 2nd tune, beta, crossing angle
- 3rd chromaticity, transverse nonlinearity. zdependent chromaticity is now focused.

Waist control-I traveling focus

$$\mathbf{M} = e^{-:H_I:} \mathbf{M}_0 e^{:H_I:}$$

$$H_{I} = ap_{y}^{2}z$$

$$\overline{y} = y + \frac{\partial H_{I}}{\partial P_{y}} = y + azP_{y} \qquad \overline{\delta} = \delta - \frac{\partial H}{\partial z} = \delta - ap_{y}^{2}$$

• Linear part for y. z is constant during collision.

$$\begin{pmatrix} \overline{\beta} & -\overline{\alpha} \\ -\overline{\alpha} & \overline{\gamma} \end{pmatrix} = T \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} T^{t} = \begin{pmatrix} \beta + \frac{a^{2}z^{2}}{\beta} & \frac{az}{\beta} \\ \frac{az}{\beta} & \frac{1}{\beta} \end{pmatrix} \qquad \alpha = 0$$

$$T = \begin{pmatrix} 1 & az \\ 0 & 1 \end{pmatrix}$$

Waist position for given z

• Variation for s

$$M(s) \begin{pmatrix} \beta + \frac{a^2 z^2}{\beta} & \frac{az}{\beta} \\ \frac{az}{\beta} & \frac{1}{\beta} \end{pmatrix} M^t(s) = \begin{pmatrix} \beta + \frac{(s+az)^2}{\beta} & \frac{s+az}{\beta} \\ \frac{s+az}{\beta} & \frac{1}{\beta} \end{pmatrix}$$

• Minimum β is shifted s=-az

Realistic example- I

- Collision point of a part of bunch with z, <s>=z/2.
- To minimize β at s=z/2, a=-1/2
- Required H

$$H_I = -\frac{1}{2} p_y^2 z$$

• RFQ TM210

$$V = \frac{1}{2\beta^*\beta} \frac{c^2}{\omega^2} \frac{pc}{e}$$

V~10 MV or more

Waist control-II crab waist
(P. Raimondi et al.)

$$\mathbf{M} = e^{-:H_I:} \mathbf{M}_0 e^{:H_I:}$$

$$H_I = axp_y^2$$

$$\overline{y} = y + \frac{\partial H_I}{\partial P_y} = y + axP_y \qquad \overline{p_x} = p_x - \frac{\partial H}{\partial x} = p_x - ap_y^2$$

Take linear part for y, since x is constant during collision.

$$\begin{pmatrix} \overline{\beta} & -\overline{\alpha} \\ -\overline{\alpha} & \overline{\gamma} \end{pmatrix} = T \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} T^{t} = \begin{pmatrix} \beta + \frac{a^{2}x^{2}}{\beta} & \frac{ax}{\beta} \\ \frac{ax}{\beta} & \frac{1}{\beta} \end{pmatrix}$$
$$T = \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix}$$

Waist position for given x

• Variation for s

$$M(s) \begin{pmatrix} \beta + \frac{a^2 x^2}{\beta} & \frac{ax}{\beta} \\ \frac{ax}{\beta} & \frac{1}{\beta} \end{pmatrix} M^t(s) = \begin{pmatrix} \beta + \frac{(s+ax)^2}{\beta} & \frac{s+ax}{\beta} \\ \frac{s+ax}{\beta} & \frac{1}{\beta} \end{pmatrix}$$

• Minimum β is shifted to s=-ax

Realistic example- II

- To complete the crab waist, $a=1/\theta$, where θ is full crossing angle.
- Required H

$$H_I = \frac{1}{\theta} x p_y^2$$

• Sextupole strength

$$K_2 = \frac{1}{2} \frac{B''L}{p/e} \approx \frac{1}{\theta} \frac{1}{\beta_y^* \beta_y} \sqrt{\frac{\beta_x^*}{\beta_x}} \qquad K_2 \sim 30-50$$

Not very strong

Crabbing beam in sextupole

- Crabbing beam in sextupole can give the nonlinear component at IP
- Traveling waist is realized at IP.

$$H_{I} = ap_{y}^{2}z$$
$$z^{*} = \sqrt{\frac{\beta(s)}{\beta^{*}}}\zeta(s)x(s)$$

$$K_2 = \frac{1}{2} \frac{B''L}{p/e} \approx \frac{1}{\theta} \frac{1}{\beta_y^* \beta_y} \sqrt{\frac{\beta_x^*}{\beta_x}} \qquad \qquad \mathsf{K}_2 \sim 30\text{-}50$$

Super B (LNF-SLAC)

	Base	PEP-III	
С	3016	2200	
Хз	4.00E-10	2.00E-08	
εγ	2.00E-12	2.00E-10	
βx (mm)	17.8	10	
βy (mm)	0.08	0.8	
σz (mm)	4	10	
ne	2.00E+10	3.00E+10	
np	4.40E+10	9.00E+10	
$\phi/2$ (mrad)	25	14	
ξx	0.0025		
ξγ	0.1		

$$\xi_{y} = \int_{-\infty}^{\infty} \frac{\partial F_{y}}{\partial y} \bigg|_{x=\phi_{z}} \rho(z) \delta(s+z/2) dz ds$$

Luminosity for the super B

- Luminosity and vertical beam size as functions of K2
- L>1e36 is achieved in this weak-strong simulation.

DAFNE upgrade

	DAFNE
С	97.7
εX	3.00E-07
εγ	1.50E-09
βx (mm)	133
βy (mm)	6.5
σz (mm)	15
ne	1.00E+11
np	1.00E+11
$\phi/2$ (mrad)	25
ξx	0.033
ξy	0.2479

Luminosity for new DAFNE

- L (x10³³) given by the weak-strong simulation
- Small v_s was essential for high luminosity

ne	tune	vs	L(K2=10)	15	20
6.00E+10	0.53, 0.58	0.012		4.27	3.79
6.00E+10	0.53, 0.58	-0.01		4.35	3.93
1.00E+11	0.53, 0.58	-0.01	4.07	5.66	5.53
6.00E+10	0.53, 0.58	0.012	σz=10mm	4.32	2.47
6.00E+10	0.53, 0.58	-0.01	σz=10mm	4.65	2.7
6.00E+10	0.057, 0.097	-0.01		5.19(3.3)	
1.00E+11	0.057, 0.097	-0.01		13.21(4.8)	

() strong-strong , horizontal size blow-up

Super KEKB

	SuperKEKB	•	Crab waist		
Хз	9.00E-09	6.00E-09	6.00E-09	6.00E-09	6.00E-09
εγ	4.50E-11	6.00E-11	6.00E-11	6.00E-11	6.00E-11
βx (mm)	200	100	50	100	50
βy (mm)	3	1	0.5	1	0.5
σz (mm)	3	6	6	4	4
νS	0.025	0.01	0.01	0.01	0.01
ne	5.50E+10	5.50E+10	5.50E+10	3.50E+10	3.50E+10
np	1.26E+11	1.27E+11	1.27E+11	8.00E+10	8.00E+10
$\phi/2$ (mrad)	0	15	15	15	15
ξx	0.397	0.0418	0.022	0.0547	0.0298
ξy	0.794->0.24	0.1985	0.179	0.178	0.154
Lum (W.S.)	8E+35	6.70E+35	1.00E+36	3.95E+35	4.80E+35
Lum (S.S.)	8.25E35	4.77E35	9E35	3.94E35	4.27E35

Horizontal blow-up is recovered by choice of tune. (M. Tawada)

Traveling waist

- Particles with z collide with central part of another beam. Hour glass effect still exists for each particles with z.
- No big gain in Lum.!
- Life time is improved.

$$\varepsilon_x$$
=24 nm
 ε_y =0.18nm β x=0.2m
 β y=1mm σ z=3mm

Small coupling

Traveling of positron beam

Increase longitudinal slice

 ϵ_x =18nm, ϵ_y =0.09nm, β_x =0.2m β_y =3mm σ_z =3mm Lower coupling becomes to give higher luminosity.

Why the crab crossing and crab waist improve luminosity?

- Beam-beam limit is caused by an emittance growth due to nonlinear beambeam interaction.
- Why emittance grows?
- Studies for crab waist is just started.

Weak-strong model

- 3 degree of freedom
- Periodic system
- Time (s) dependent

$$H(x, p_x, y, p_y, z, p_z; s) = H'(J_1, \varphi_1, J_2, \varphi_2, J_3, \varphi_3; s)$$

$$\varphi(s+L) = \varphi(s) + 2\pi v$$

Solvable system

- Exist three J's, where H is only a function of J's, not of ϕ 's.
- For example, linear system.
- Particles travel along J. J is kept, therefore no emittance growth, except mismatching.

$$\frac{dJ}{ds} = -\frac{\partial H}{\partial \varphi} = 0 \qquad J = \text{const}$$
$$\frac{d\varphi}{ds} = \frac{\partial H(J)}{\partial J} \qquad \oint d\varphi = 2\pi v (J)$$

• Equilibrium distribution

$$\psi(J) \approx \exp\left(-\frac{J_1}{\varepsilon_1} - \frac{J_2}{\varepsilon_2} - \frac{J_3}{\varepsilon_3}\right) \quad \varepsilon: \text{ emittance}$$

One degree of freedom

- Existence of KAM curve
- Particles can not across the KAM curve.
- Emittance growth is limited. It is not essential for the beam-beam limit.

- Schematic view of equilibrium distribution
- Limited emittance growth

More degree of freedom Gaussian weak-strong beam-beam model

• Diffusion is seen even in sympletic system.

Linear coupling for KEKB

• Linear coupling (r's), dispersions, (η, ζ=crossing angle for beam-beam) worsen the diffusion rate.

M. Tawada et al, EPAC04

Two dimensional model

- Vertical diffusion for ξ =0.136
- $D_C << D_{\gamma}$ for wide region (painted by black).
- No emittance growth, if no interference. Actually, simulation including radiation shows no luminosity degradation nor emittance growth in the region.
- Note KEKB $D_{\gamma}=5x10^{-4}$ /turn DAFNE $D_{\gamma}=1.8x10^{-5}$ /turn

3-D simulation including bunch length ($\sigma_z \sim \beta_y$) Head-on collision

Contour plot

•Good region shrunk drastically.

•Synchrobeta effect near vy~0.5.

Global structure of the diffusion rate.

Fine structure near $v_x=0.5$

• Good region is only $(v_x, v_y) \sim (0.51, 0.55)$.

(0.7, 0.51)20 17.5 15 0.002 12.5 0.0015 20 0.001 10 0.0005 150 7.5 20 $10 \, \mathrm{mux}$ 15 5 (0.51, 0.7)10 nuv 5 (0.51, 0.51)2.5 2.5 5 7.5 10 12.5 15 17.5 20

Reduction of the degree of freedom.

• For vx~0.5, x-motion is integrable.

(work with E. Perevedentsev)

$$\lim_{x \to 0.5+} D_{C,y} = 0$$

if zero-crossing angle and no error.

 $L \propto \frac{1}{\Delta v_x + (\text{crossing angle}) + (\text{coupling}) + (\text{fast noise})}$

• Dynamic beta, and emittance

$$\lim_{v_x \to 0.5+} \langle x^2 \rangle < \sigma_{x,0}^2 \qquad \qquad \lim_{v_x \to 0.5+} \langle p_x^2 \rangle = \infty$$

• Choice of optimum v_x

Crab waist for KEKB

- H=25 x p_y².
- Crab waist works even for short bunch.

Why the sextupole works?

- Nonlinear term induced by the crossing angle may be cancelled by the sextupole.
- Crab cavity $\exp(-:F:) = \exp(-:\theta p_x z:) \exp(:\theta p_x z:) = 1$
- Crab waist

 $\exp(-:F:) = \exp(-:\theta p_x z:) \exp(-K_2:xp_y^2:) = \dots$ Need study

$$\exp(:F:)M_{BB}\exp(-:F:)$$

Conclusion

- Crab-headon Lpeak=8x10³⁵. Bunch length 2.5mm is required for L=10³⁶.
- Small beam size (superbunch) without crab-waist. Hard parameters are required $\epsilon_x=0.4$ nm $\beta_x=1$ cm $\beta_y=0.1$ mm.
- Small beam size (superbunch) with crab-waist.
 If a possible sextupole configuration can be found, L=10³⁶ may be possible.
- Crab waist scheme is efficient even for shot bunch scheme.