Beam-beam simulations with crossing anlge + crab-waist

> M. Biagini, M. Zobov, LNF-INFN P. Raimondi, SLAC/INFN I. Koop, D. Shatilov, BINP E. Paoloni, Pisa University/INFN

SuperB III Workshop, SLAC, 14-16 June 2006

BB simulations

- New "crossing angle + crab waist" idea has solved disruption problems related to collisions with high current, small sizes beams → back to two "conventional" rings
- With very small emittances and relatively low currents (comparable to present B-Factories values) a Luminosity of 10³⁶ cm⁻² s⁻¹ is reachable without large emittance blow-up

in X and at $\pi/2$ in Y

Luminosity considerations

Ineffectiveness of collisions with large crossing angle is illusive!!! Loss due to short collision zone (say $1=\sigma_z/40$) is fully compensated by denser target beam (due to much smaller vertical beam size!)

Number of particles in collision zone:
$$\delta N_{2} = N_{2} \frac{I_{cross}}{\sigma_{z}}$$
 $I_{cross} = 2\sigma_{x} / \theta$

$$L = \frac{N_{1} \cdot \delta N_{2} \cdot f_{0}}{4\pi\sigma_{x}\sigma_{y}}$$

$$\xi_{1y} = \frac{r_{e} \cdot \delta N_{2} \cdot \beta_{y}}{2\pi\gamma\sigma_{y}(\sigma_{x} + \sigma_{y})}$$

$$L = \frac{\gamma\xi_{1y}N_{1}f_{0}}{2r_{e}\beta_{y}} \left(1 + \frac{\sigma_{y}}{\sigma_{x}}\right) \approx 2.167 \cdot 10^{34} \frac{E(GeV) \cdot I(A) \cdot \xi_{1y}}{\beta_{y}(cm)} \approx 1.2 \cdot 10^{36} cm^{-2}s^{-1}$$

No dependence on crossing angle! Universal expression: valid for both, head-on and crossing angle collisions!

I. Koop et al, BINP

Tune shifts

Raimondi, Shatilov, Zobov: (Beam Dynamics Newsletter, 37, August 2005) $\sigma_{x} \rightarrow \sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}}$

$$\xi_{x} = \frac{r_{e}N}{2\pi\gamma} \frac{\beta_{x}}{\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} \left(\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} + \sigma_{y}\right)}}{\xi_{y} = \frac{r_{e}N}{2\pi\gamma} \frac{\beta_{y}}{\sigma_{y} \left(\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} + \sigma_{y}\right)}}{\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} + \sigma_{y}\right)}}$$
SuperB: $\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} = 100 \ \mu m \gg \sigma_{x} = 2.67 \ \mu m$

$$\frac{\sqrt{\sigma_z^2 \tan^2(\theta/2) + \sigma_x^2}}{\sigma_y} \approx 8000 \, \text{!!!}$$
One dimensional case for $\beta_y >> \sigma_x/\theta$
but with crabbed waist for $\beta_y < \sigma_x/\theta$ also!
$$\xi_x = \frac{2r_e N}{\pi \gamma} \frac{\beta_x}{\sigma_z^2 \theta^2} = 0.002$$

$$\xi_y = \frac{r_e N}{\pi \gamma} \frac{\beta_y}{\sigma_y \sigma_z \theta} = 0.072$$
I. Koop et al, BINF

"Crabbed" waist optics

Appropriate transformations from first sextupole to IP and from IP to anti-sextupole:

$$\begin{split} T_{x} = & \begin{pmatrix} u_{x} & 0 \\ -F_{x}^{-1} & u_{x}^{-1} \end{pmatrix} \quad \tilde{T}_{x} = \begin{pmatrix} u_{x}^{-1} & 0 \\ -F_{x}^{-1} & u_{x} \end{pmatrix} \qquad \tilde{T}_{x} T_{x} = \begin{pmatrix} 1 & 0 \\ -2u_{x}F_{x}^{-1} & 1 \end{pmatrix} \\ T_{y} = & \begin{pmatrix} u_{y} & F_{y} \\ -F_{y}^{-1} & 0 \end{pmatrix} \qquad \tilde{T}_{y} = \begin{pmatrix} 0 & F_{y} \\ -F_{y}^{-1} & u_{y} \end{pmatrix} \qquad \tilde{T}_{y} T_{y} = \begin{pmatrix} -1 & 0 \\ -2u_{y}F_{y}^{-1} & 1 \end{pmatrix} \end{split}$$

Relative displacement from a bunch center

Conclusion: one can expect improvements of lifetime of halo-particles! I. Koop et al, BINP

ξ_y increase caused by hourglass effect I. Koop et al, BINP

Dependence of ξ_{y} on β_{y} for constant beam sizes at IP

SuperB parameters

Horizontal Plane

Vertical Plane

Collisions with uncompressed beams Crossing angle = 2*25mrad Relative Emittance growth per collision about $1.5*10^{-3}$ $\varepsilon_{y}^{out}/\varepsilon_{y}^{in}=1.0015$

GuineaPig modifications

- With the large crossing angle scheme and long bunches the actual collision region is very short
- The code solves Poisson equation for all the volume occupied by the particles → very long computing time, not needed !
- Modification of the code to perform fields calculation in the collision region only
- Computing time was reduced by a factor 10!!

E. Paoloni, Pisa GuineaPig modified

Luminosity vs Number of particles /bunch

Crab-waist simulations

- The new idea is being checked by several beam-beam codes:
 - Guinea-Pig: strong-strong , ILC centered
 - BBC (Hirata): weak-strong
 - Lifetrack (Shatilov): weak-strong with tails growths calculation

torage rings

 Ohmi: weak-strong (strong-strong to be modified for long bunches and large angles)

Ohmi's weak-strong code

Luminosity

Vertical blow-up

K2 is the strength of the sextupolar nonlinearity introduced to have crab waist

$DA\Phi NE(M.Zobov, LNF)$

- Hirata's BBC code simulation (weak-strong, strong beam stays gaussian, weak beam has double crossing angle)
- $N_p = 2.65 \times 10^{10}$, 110 bunches
- I_b = 13 mA (present working current)
- $\sigma_x = 300 \ \mu m$, $\sigma_y = 3 \ \mu m$
- $\beta_x = 0.3 \text{ m}$, $b_y = 6.5 \text{ mm}$
- $\sigma_z = 25 \text{ mm}$ (present electron bunch length)
- $\theta = 2 \times 25 \text{ mrad}$
- $Y_{IP} = y+0.4/(\theta * x * y')$ crabbed waist shift
- $L_0 = 2.33 \times 10^{24}$ (geometrical)
- $L(110 \text{ bunches}, 1.43\text{ A}) = 7.7 \times 10^{32}$
- $L_{equil}=6\times10^{32}$

(Geometric) Luminosity

Takes into account both bb interactions and geometric factor due to crab waist

(max amplitude after 10 damping times)

Vertical Size Blow-up

Luminosity vs bunch current for 2 different working points

Present WP: $v_x = 0.11$ $v_y = 0.19$

Possible V	NP:
$v_{x} = 0.057$	$v_v =$
0.097	, , , , , , , , , , , , , , , , , , ,

Luminosity with shorter bunch, smaller σ_x

With the present achieved beam parameters (currents, emittances, bunchlenghts etc) a luminosity in excess of 10³³ is predicted. With 2A+2A L> 2*10³³ is possible Beam-Beam limit is way above the reachable currents

Luminosity scan

Vertical Size blow-up scan

M. Zobov

D.Shatilov, BINP

Beam-Beam Tails

Without Crab Waist

With Crab Waist

Beam size and tails vs Crab-waist Simulations with beam-beam code LIFETRAC Beam parameters for DAPNE2

An effective "crabbed" waist map at IP:

$$y = y_0 + \frac{V}{\theta} x y'_0$$
$$y' = y'_0$$

Optimum is shifted from the "theoretical" value V=1 to V=0.8, since it scales like $\sigma_z \theta/sqrt((\sigma_z \theta)^2 + \sigma_x^2)$ D.N. Shatilov, BINP

Some resonances

Vertical blow-up

Luminosity

Preliminary results on Super PEPIIM. Zobov, D. Shatilov
$$\varepsilon_x = 20 \text{ nm}$$

 $\varepsilon_y = 0.2 \text{ nm}$
 $\sigma_x = 14.4 \ \mu\text{m}$
 $\sigma_y = 0.4 \ \mu\text{m}$
 $\sigma_y = 0.4 \ \mu\text{m}$
 $\sigma_z = 10 \ \text{mm}$
 $\sigma_z = 0.3 \ \text{mm}$
 $\sigma_z = 0.3 \ \text{mm}$
 $\sigma_z = 0.3 \ \text{mm}$
 $\sigma_z = 2.2 \ \text{km}$
 $f_{col} = 238 \ \text{MHz}$
 $\theta = 2 \times 14 \ \text{mrad}$
 $\tau_x = 35 \ \text{ms}$
 $N_1 = 1.3 \times 10^{11}$
 $N_2 = 4.4 \times 10^{10}$
 $I_1 = 5 \ \text{A}$
 $I_2 = 1.7 \ \text{A}$

Tune scan for Super-PEPII

Synchrobetatron resonances

Tails growth

$$v_x = 0.5325, v_y = 0.5775$$

 $v_x = 0.54, v_y = 0.5825$

M.Zobov, D.Shatilov

Conclusions

- The "crossing angle with crab waist" scheme has shown big potentiality and exciting results
 → LNF, Pisa, BINP and KEKB physicists are working on the bb simulation with different codes to explore its properties and find the best set of parameters
- This scheme is promising also for increasing luminosity at existing factories, as $DA\Phi NE$, KEKB and possibly PEPII