Beam-beam simulations
 with crossing anlge + crab-waist

M. Biagini, M. Zobov, LNF-INFN
P. Raimondi, SLAC/INFN
I. Koop, D. Shatilov, BINP
E. Paoloni, Pisa University/INFN

SuperB III Workshop, SLAC, 14-16 June 2006

BB simulations

- New "crossing angle + crab waist" idea has solved disruption problems related to collisions with high current, small sizes beams \rightarrow back to two "conventional" rings
- With very small emittances and relatively low currents (comparable to present B-Factories values) a Luminosity of $10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ is reachable without large emittance blow-up

Crabbed waist removes bb betratron coupling introduced by the crossing angle
Vertical waist has to be a function of x :
$\mathrm{Z}=0$ for particles at $-\sigma_{\mathrm{x}}\left(-\sigma_{\mathrm{x}} / 2 \theta\right.$ at low current $)$
$Z=\sigma_{x} / \theta$ for particles at $+\sigma_{x}\left(\sigma_{x} / 2 \theta\right.$ at low current $)$
Crabbed waist realized with a sextupole in phase with the IP in X and at $\pi / 2$ in Y

Luminosity considerations

Ineffectiveness of collisions with large crossing angle is illusive!!! Loss due to short collision zone (say $l=\sigma_{z} / 40$) is fully compensated by denser target beam (due to much smaller vertical beam size!)

Number of particles in collision zone: $\delta \mathrm{N}_{2}=\mathrm{N}_{2} \frac{l_{\text {cross }}}{\sigma_{z}} \quad l_{\text {cross }}=2 \sigma_{\mathrm{x}} / \theta$

$$
\begin{aligned}
& \mathrm{L}=\frac{\mathrm{N}_{1} \cdot \delta \mathrm{~N}_{2} \cdot \mathrm{f}_{0}}{4 \pi \sigma_{x} \sigma_{y}} \quad \xi_{1 y}=\frac{\mathrm{r}_{\mathrm{e}} \cdot \delta \mathrm{~N}_{2} \cdot \beta_{\mathrm{y}}}{2 \pi \gamma \sigma_{\mathrm{y}}\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)} \\
& \mathrm{L}=\frac{\gamma \xi_{1 \mathrm{y}} \mathrm{~N}_{1} \mathrm{f}_{0}}{2 \mathrm{r}_{\mathrm{e}} \beta_{\mathrm{y}}}\left(1+\frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}\right) \simeq 2.167 \cdot 10^{34} \frac{\mathrm{E}(\mathrm{GeV}) \cdot \mathrm{I}(\mathrm{~A}) \cdot \xi_{1 \mathrm{y}}}{\beta_{\mathrm{y}}(\mathrm{~cm})} \simeq 1.2 \cdot 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

No dependence on crossing angle! Universal expression: valid for both, head-on and crossing angle collisions!

Tune shifts

Raimondi, Shatilov, Zobov:

(Beam Dynamics Newsletter, 37, August 2005)

$$
\sigma_{x} \rightarrow \sqrt{\sigma_{z}^{2} \tan ^{2}(\theta / 2)+\sigma_{x}^{2}}
$$

$$
\begin{aligned}
& \xi_{x}=\frac{r_{e} \mathrm{~N}}{2 \pi \gamma} \frac{\beta_{x}}{\sqrt{\sigma_{z}^{2} \tan ^{2}(\theta / 2)+\sigma_{x}^{2}}\left(\sqrt{\sigma_{z}^{2} \tan ^{2}(\theta / 2)+\sigma_{x}^{2}}+\sigma_{y}\right)} \\
& \xi_{y}=\frac{\mathrm{r}_{\mathrm{e}} \mathrm{~N}}{2 \pi \gamma} \frac{\beta_{\mathrm{y}}}{\sigma_{\mathrm{y}}\left(\sqrt{\sigma_{z}{ }^{2} \tan ^{2}(\theta / 2)+\sigma_{x}^{2}}+\sigma_{y}\right)}
\end{aligned}
$$

SuperB:

$$
\sqrt{\sigma_{\mathrm{z}}^{2} \tan ^{2}(\theta / 2)+\sigma_{\mathrm{x}}^{2}}=100 \mu \mathrm{~m} \gg \sigma_{\mathrm{x}}=2.67 \mu \mathrm{~m}
$$

$$
\underline{\sqrt{\sigma_{z}^{2} \tan ^{2}(\theta / 2)+\sigma_{x}^{2}}} \simeq 8000!!!
$$

$$
\xi_{\mathrm{x}}=\frac{2 \mathrm{r}_{\mathrm{e}} \mathrm{~N}}{\pi \gamma} \frac{\beta_{x}}{\sigma_{z}^{2} \theta^{2}}=0.002
$$

One dimensional case for $\beta_{y} \gg \sigma_{x} / \theta$

$$
\xi_{y}=\frac{r_{e} N}{\pi \gamma} \frac{\beta_{y}}{\sigma_{y} \sigma_{z} \theta}=0.072
$$ but with crabbed waist for $\beta_{y}<\sigma_{x} / \theta$ also!

"Crabbed" waist optics

Sextupole lens

Anti-sextupole Iens

Appropriate transformations from first sextupole to IP and from IP to anti-sextupole:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{x}}=\left(\begin{array}{cc}
\mathrm{u}_{\mathrm{x}} & 0 \\
-\mathrm{F}_{\mathrm{x}}^{-1} & \mathrm{u}_{\mathrm{x}}{ }^{-1}
\end{array}\right) \quad \tilde{\mathrm{T}}_{\mathrm{x}}=\left(\begin{array}{cc}
\mathrm{u}_{\mathrm{x}}^{-1} & 0 \\
-\mathrm{F}_{\mathrm{x}}^{-1} & \mathrm{u}_{\mathrm{x}}
\end{array}\right) \quad \tilde{\mathrm{T}}_{\mathrm{x}} \mathrm{~T}_{\mathrm{x}}=\left(\begin{array}{cc}
1 & 0 \\
-2 \mathrm{u}_{\mathrm{x}} \mathrm{~F}_{\mathrm{x}} & 1
\end{array}\right) \\
& \mathrm{T}_{\mathrm{y}}=\left(\begin{array}{cc}
\mathrm{u}_{\mathrm{y}} & \mathrm{~F}_{\mathrm{y}} \\
-\mathrm{F}_{\mathrm{y}}{ }^{-1} & 0
\end{array}\right) \quad \tilde{\mathrm{T}}_{\mathrm{y}}=\left(\begin{array}{cc}
0 & \mathrm{~F}_{\mathrm{y}} \\
-\mathrm{F}_{\mathrm{y}}{ }^{-1} & \mathrm{u}_{\mathrm{y}}
\end{array}\right) \quad \tilde{\mathrm{T}}_{\mathrm{y}} \mathrm{~T}_{\mathrm{y}}=\left(\begin{array}{cc}
-1 & 0 \\
-2 \mathrm{u}_{\mathrm{y}} \mathrm{~F}_{\mathrm{y}}^{-1} & -1
\end{array}\right)
\end{aligned}
$$

Synchrotron modulation of ξ_{y}

 (Qualitative picture) Head-on collision.

Relative displacement from a bunch center

Conclusion: one can expect improvements of lifetime of halo-particles!
ξ_{y} increase caused by hourglass

effect I. Koop et al, BINP

Dependence of ξ_{y} on β_{y} for constant beam sizes at IP

SuperB parameters

Horizontal Plane

Vertical Plane

Collisions with uncompressed beams
Crossing angle $=2 * 25 \mathrm{mrad}$
Relative Emittance growth per collision about $1.5^{*} 10^{-3}$ $\varepsilon_{y}{ }^{\text {out }} / \varepsilon_{y}{ }^{\text {in }}=1.0015$

GuineaPig modifications

- With the large crossing angle scheme and long bunches the actual collision region is very short
- The code solves Poisson equation for all the volume occupied by the particles \rightarrow very long computing time, not needed!
- Modification of the code to perform fields calculation in the collision region only
- Computing time was reduced by a factor 10 !!

E. Paoloni, Pisa GuineaPig modified

Luminosity vs Number of particles /bunch

Crab-waist simulations

- The new idea is being checked by several beam-beam codes:
- Guinea-Pig: strong-strong , ILC centered
- BBC (Hirata): weak-strong
- Lifetrack (Shatilov): weak-strong with tails growths calculation
- Ohmi: weak-strong (strong-strong to be modified for long bunches and large angles)

Ohmi's weak-strong code

Luminosity

Vertical blow-up

K2 is the strength of the sextupolar nonlinearity introduced to have crab waist

DAФNE (M.Zobov, LNF)

- Hirata's BBC code simulation (weak-strong, strong beam stays gaussian, weak beam has double crossing angle)
- $N_{p}=2.65 \times 10^{10}, 110$ bunches
- $I_{b}=13 \mathrm{~mA}$ (present working current)
- $\sigma_{x}=300 \mu \mathrm{~m}, \sigma_{y}=3 \mu \mathrm{~m}$
- $\beta_{x}=0.3 \mathrm{~m}, b_{y}=6.5 \mathrm{~mm}$
- $\sigma_{z}=25 \mathrm{~mm}$ (present electron bunch length)
- $\theta=2 \times 25 \mathrm{mrad}$
- $Y_{\text {IP }}=y+0.4 /\left(\theta^{*} x^{*} y^{\prime}\right)$ crabbed waist shif \dagger
- $L_{0}=2.33 \times 10^{24}$ (geometrical)
- $L(110$ bunches, 1.43 A$)=7.7 \times 10^{32}$
- $L_{\text {equil }}=6 \times 10^{32}$

(Geometric) Luminosity

Takes into account both bb interactions and geometric factor due to crab waist

Vertical Tails

(max amplitude

 after 10 damping times)

M.Zobov, LNF

Luminosity vs bunch current for 2 different working points

Present WP:
 $v_{\mathrm{x}}=0.11$
 $v_{y}=0.19$

Possible WP:
 $v_{\mathrm{x}}=0.057 v_{\mathrm{y}}=$ 0.097

M.Zobov, LNF

Luminosity with shorter bunch, smaller σ_{x}

110 bunches

M.Zobov, LNF

With the present achieved beam parameters (currents, emittances, bunchlenghts etc) a luminosity in excess of 10^{33} is predicted.
With $2 A+2 A L>2^{*} 10^{33}$ is possible
Beam-Beam limit is way above the reachable currents

Luminosity scan

M. Zobov

D.Shatilov, BINP

Beam-Beam Tails

Without Crab Waist

With Crab Waist
dafne2_3_wsx25
 Greatly reduced
(A is the amplitude in number of beamsize σ)

$$
A_{y}=45
$$

Bunch core blowup also reduced

Beam size and tails vs Crab-waist

Simulations with beam-beam code LIFETRAC
Beam parameters for DAФNE2
An effective "crabbed" waist map at IP:

$$
\begin{aligned}
& y=y_{0}+\frac{V}{\theta} x y_{0}^{\prime} \\
& y^{\prime}=y_{0}^{\prime}
\end{aligned}
$$

Optimum is shifted from the "theoretical" value $\mathrm{V}=1$ to $\mathrm{V}=0.8$, since it scales like $\sigma_{z} \theta / \operatorname{sqrt}\left(\left(\sigma_{z} \theta\right)^{2}+\sigma_{x}{ }^{2}\right)$
D.N. Shatilov, BINP

Some resonances

(present with crossing angle only)

SC Wigglers

Wigglers off

DAФNE Wigglers
DAФNE Wigglers
Very weak luminosity dependence from damping time given the very small beam-beam blow-up

Preliminary results on Super PEPII M. Zobov, D. Shatilov

First approach with new parameters, weak-strong code

$$
=1.65 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$$
\begin{aligned}
& \varepsilon_{x}=20 \mathrm{~nm} \\
& \varepsilon_{y}=0.2 \mathrm{~nm} \\
& \sigma_{x}=14.4 \mu \mathrm{~m} \\
& \sigma_{y}=0.4 \mu \mathrm{~m} \\
& \sigma_{z}=10 \mathrm{~mm} \\
& \sigma_{E}=7 \times 10^{-4} \\
& \beta_{x}=10 \mathrm{~mm} \\
& \beta_{y}=0.8 \mathrm{~mm} \\
& v_{s}=0.03 \\
& c_{s}=2.2 \mathrm{~km} \\
& f_{c o l}=238 \mathrm{MHz} \\
& \theta=2 \times 14 \mathrm{mrad} \\
& \tau_{x}=35 \mathrm{~ms} \\
& \mathrm{~N}_{1}=1.3 \times 1{ }^{2} 11 \\
& \mathrm{~N}_{2}=4.4 \times 10^{10} \\
& I_{1}=5 \mathrm{~A} \\
& \mathrm{I}_{2}=1.7 \mathrm{~A}
\end{aligned}
$$

Tune scan for Super-PEPII

No dependence on tunes

Synchrobetatron resonances

Conclusions

- The "crossing angle with crab waist" scheme has shown big potentiality and exciting results \rightarrow LNF, Pisa, BINP and KEKB physicists are working on the bb simulation with different codes to explore its properties and find the best set of parameters
- This scheme is promising also for increasing luminosity at existing factories, as DAФNE, KEKB and possibly PEPII

