Focusing DIRC R&D

J. Va'vra, SLAC

Collaboration to develop the Focusing DIRC:

I. Bedajanek, J. Benitez, M. Barnyakov, J. Coleman, C. Field, David W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, K. Suzuki, S. Kononov, J. Uher, J. Va'vra

Content

- Prototype design
- Test beam results
- Future steps

Improvements compared to BaBar DIRC

- Timing resolution improved from $\sigma \sim 1.7 \text{ns} \rightarrow \sigma \leq 150 \text{ps}$
- Time resolution at this level can help the Cherenkov angle determination for photon path lengths Lpath $\ge 2-3m$
- Time can be used to correct the chromatic broadening
- Better timing improves the background rejection
- Smaller pixel sizes allow smaller detector design, which also reduces sensitivity to the background
- Mirror eliminates effect of the bar thickness

Examples of two "DIRC-like" detectors

TOP counter (Nagoya):

- <u>2D imaging:</u>
 - a) x-coordinate
 - b) TOP ($\sigma \leq 70$ ps).

Focusing DIRC prototype (SLAC):

- <u>3D imaging:</u>
 - a) x-coordinate
 - b) y-coordinate
 - c) TOP ($\sigma \le 150$ ps).

Focusing DIRC prototype design

- The Focusing DIRC prototype optics was designed using the ray tracing method with a help of the mechanical design program (no Monte Carlo available in early stages !!).
- The focal plane adjusted to an angle convenient for easy work
- Space filled with oil.
- **Red line** (with oil) running in the beam
- **Green line** (no oil) laser check in the clean room
- Spherical mirror R= 49.1cm

Photon path reconstruction

• Each detector pixel determines these photon parameters: $\theta_c, \alpha_x, \alpha_y, \cos \alpha, \cos \beta, \cos \gamma, L_{path}, t_{propagation}, n_{bounces} - for aveerage \lambda$

Initial edsign with a spreadsheet calculation

- Each pad predicts the photon propagation history <u>for average λ of ~ 410nm</u>.
- <u>Example detector slot #4, pad #26, beam in position #1:</u>

 $\theta_{c} = 47.662^{\circ}, L_{path 1} = 80.447 \text{ cm}, n_{bounces 1} = 43, t_{path 1} = 4.028 \text{ ns}, L_{path 2} = 913.58 \text{ cm}, n_{bounces 2} = 489, t_{path 2} = 45.75 \text{ ns}, dT(|Peak2 - Peak1|) = 41.722 \text{ ns}$

• Error in detector plane of 1mm in y-direction will cause this systematic shift: $\Delta \theta_{c} \sim 3 \text{mrad}, \Delta L_{\text{path 1}} \sim 2.2 \text{mm}, \Delta t_{\text{path 1}} \sim 11 \text{ps}, \Delta L_{\text{path 2}} \sim 24.5 \text{mm}, \Delta t_{\text{path 2}} \sim 123 \text{ps},$ $\Delta T (|\text{Peak2-Peak1}|) \sim 112 \text{ps}$

6/14/06

SLAC

When assigning the parameters, such as θ_c & direction cosines, to each pad, it is necessary to average over entire pad

- Bar introduces kaleidoscopic images on the pads
- This effect shows up only in the test beam (in BaBar, one would integrate it out)
- One needs a MC to understand effects like this.

J. Va'vra, Super B-factory workshop,

Photon detectors in the prototype (σ ~70-150ps)

Burle MCP PMT (64 pixels):

PiLas single pe calibration:

Burle 85011-501 MCP-PMT: 700 σ_{narrow} = (70.6 +/- 1.6) ps

Hamamatsu MaPMT (64 pixels):

Hamamatsu Flat Panel H8500 PMT:

Need a good start signal

- We start TDCs with a pulse from the LINAC RF. However, this pulse travels on a cable several hundred feet long, and therefore it is a subject to possible thermal effects.
- To protect against thermal effects, we have several local Start time counters providing an average timing resolution of σ ~35ps per beam crossing. In addition, averaging over 100 consequtive events, we can correct slow drifts to 10-20ps level.
- However, in practice, the analysis of the prototype data shows that the LINAC RF pulse is the best start, i.e., no local correction is needed.

Test beam setup

- Beam enters bar at 90 degrees.
- Bar can be moved along the bar axis
- Trigger and time ref: accelerator pulse
- Hodoscope measures beam's 2D profile

6/14/06

Definition of a good beam trigger Run 2

Single hodoscope hits only:

• <u>Good beam trigger definition</u>: single hit in the hodoscope, good energy deposition in the lead glass, and good quality local start time hit.

<u>1. Start counter 1 - Double-quartz counter</u>

Average of 2 pads:

Local START Counters:

3. Overall average of Start 1, Start 2 and Quantacon counters:

2. Start counter 2 - Scintillator counter

4-pad Burle MCP-PMT :

• Corrections: ADC, hodoscope position and timing drifts.

6/14/06

J. Va'vra, Super B-factory workshop,

SLAC

Focusing DIRC prototype

Setup in End Station A: movable bar support and hodoscope

Radiator bar

6/14/06

Setup in End Station A

Photodetector backplane

Electronics and cables

Oil-filled detector box:

Start counters, lead glass

J. Va'vra, Super B-factory workshop, SLAC

Mirror

• Two peaks correspond to forward and backward part of the Cherenkov ring.

Typical distribution of TOP and Lpath

- Measured TOP and calculated photon path length Lpath •
- **Integrate over all slots & pixels** •

Cherenkov Angle resolution in the pixel domain

Occupancy for accepted events in one run, 400k triggers, 28k events

ũ.	2	L7	L8	33	34	9 4	50
3	4	٤9	20	35	36	51	52
5	6	21	22	37	38	53	54
7	8	23	24	39	40	55	56
9	U)	25	26	41	42		н
	l2	27	28	43	#	59	60
13	L4	29	30	45	46	61	62
15	16	31	32	47	-18	-01	64

Cherenkov angle from pixels:

- θ_c resolution $\approx 10-12$ mrad
- Assign angles to each pads averaging over the entire pad for $\lambda = 410$ nm.
- Clear pixelization effect visible; this would go away if we integrate over variable incident angles or use smaller pixel size
- θ_c resolution should still improve with better alignment & better MC simulation

6/14/06

J. Va'vra, Super B-factory workshop,

SLAC

Cherenkov Angle resolution in the time domain

SLAC

Method:

- Use measured **TOP** for each pixel
- Combine with calculated photon ٠ path in radiator bar - Lpath
- Calculate group index: ٠ $\mathbf{n}_{\mathbf{G}}(\lambda) = \mathbf{c}_{0} \cdot \mathbf{TOP} / \mathbf{Lpath}$
- Calculate phase refractive index $n_{\rm F}(\lambda)$ ٠ from group index $n_{G}(\lambda)$
- Calculate photon Cherenkov angle Θ_{c} (assuming $\beta = 1$): $\theta_{c}(\lambda) = \cos^{-1}(1/n_{F}(\lambda))$
- **Resolution of \Theta_c from TOP is 6-7mrad** ٠ for photon path length above 3 m.
- Expected to improve with better calibration.

6/14/06

Summary of <u>preliminary</u> results:

- Θ_{c} resolution from <u>pixels</u> is 10-12 mrad.
- **Θ**_c resolution from <u>time</u> of propagation (TOP) improves rapidly with path length, reaches plateau at ~7mrad after 3-4 meters photon path in bar.

Comments: a) The present TOP-based analysis assumes $\beta = 1$,

b) In the final analysis we will combine pixels & time into a maximum likelihood analysis.

SLAC

Geant 4 MC simulation of the prototype

• Data and MC almost agree; still some work needed for pixel-based data analysis

6/14/06

Chromatic behavior of the prototype

• The prototype has a better response towards the red wavelengths, which reduces the Cherenkov angle chromatic contribution to 3-4 mrads (BaBar DIRC has 5.4mrads).

6/14/06

Chromatic effects on the Cherenkov light

• <u>Two parts of the chromatic effects:</u>

- **Production part** (due to $n_{phase} = f(\lambda)$) Red photons "handicaped" by ~200 fsec initially.
- **Propagation part** Red photons go faster than blue photons; <u>color can be tagged by time</u>.

6/14/06

Expected size of the chromatic effect in time domain

- $\Theta_{\text{track}} = 90^{\circ}$ (perpendicular to bar); photons propagate in y-z plane only.
- ~1 ns overall total range typically.
- Need a timing resolution of 150-200ps to parameterize it.

6/14/06

Time spread growth due to chromaticity

• The width increases at a rate of $\sigma \sim 90$ ps/meter of photon path length; the growth is "fueled" by different group velocity of various colors.

Chromatic broadening of a single pixel

Slot 4, single pixel #26,

- **Total photon path lengths: Peak 1:**
 - Lpath ~1.25 m in bar

Peak 2:

– Lpath ~9.70 m in bar

When one substracts the chromatic broadening from peak 1, one gets expected **MCP-PMT resolution**

 $\Delta TOP = TOP_measured (\lambda) - TOP_expected (\lambda = 410 nm) [ns]$

- An average photon with a color of λ ~410 nm arrives at "0 ns offset" in dTOP/Lpath space. A photon of different color, arrives either early or late.
- The overall expected effect is small, only FWHM ~10mrad, or σ ~ 4 mrads.

6/14/06

• One can see expected size in the data, approximately.

6/14/06

Method #1: Spreadsheet calculation of $d\theta_c$ vs d(TOP/Lpath).

All slots, all pads, position 1, Peak 2 only:

• An improvement of ~1.5 mrads.

6/14/06

Status of chromatic corrections - preliminary

J.V., 5.15.2006 **Cherenkov angle resolution = f(L_path)** 16 14 Angular resolution [mrad] 12 10 **BaBar DIRC: 9.6** 8 6 Pixels 4 TOP ▲ TOP - correct with pixels Pixels - correct with TOP 2 Pixels - spreadsheet correction Pixels - empirical correction 0 10 2 8 0 6 Photon path in the bar L_path [meters]

- A slight improvement of ~1-2 mrads for long Lpath.
- Apply the chromatic correction to longer photon paths only

6/14/06

How many photoelectrons per ring?

- $\langle N_{pe} \rangle \sim 8-10$ for 90° inc. angle
 - With a hermetic configuration and other Burle improvements in the MCP-PMT design, we could achieve a factor of 1.5-2 improvement, perhaps.
- BaBar DIRC has N_{pe}~20 at a track incident angle of 90°

J. Va'vra, Super B-factory workshop,

SLAC

Upgrades for the next run in July

New 256-pixel Hamamatsu MaPMT H-9500

- 256 pixels (16 x 16 pattern).
- Pixel size: 2.8 mmx2.8 mm; pitch 3.04 mm
- 12 stage MaPMT, gain $\sim 10^6$, bialkali QE.
- Typical timing resolution $\sigma \sim 220$ ps.
- Charge sharing important

We made a small adaptor board to connect pads in the following way:

- Large rectangular pad: 1x4 little ones
- This tube was now installed to slot 3

6/14/06

J. Va'vra, Super B-factory workshop,

SLAC

"Open area" 1024-pixel Burle MCP 85021-600

Burle will connect pads as follows:

- Large rectangular pad: 2x8 little ones
- Small margin around boundary
- Nominally 1024 pixels (32 x 32 pattern)
- Pixel size: ~1.4mm x 1.4mm
- Pitch: 1.6 mm
- This tube will be in slot 4 in next run

A future if Super B-factory exists

Single-photon timing resolution

Hamamatsu C5594-44

- Burle MCP-PMT 85012-501 (open area) ۲
- 10 µm MCP hole diameter
- 64 pixel devices, pad size: 6 mm x 6 mm. ۲
- Small margin around the boundary •
- **Use Phillips CFD discriminator** ۲
- All tests performed with PiLas red laser • diode operating in single photoelectron mode by adding filters.

Ortec VT120A with a 6dB att.

6/14/06

J. Va'vra, Super B-factory workshop, **SLAC**

37

time (ns)

1.4

1.2

#111 Timing resolution = **f**(**N**_{photoelectrons})

- Achieved $\sigma \sim 12 \text{ ps for N}_{pe} > 20$ with the Hamamatsu C5594-44 amplifier, while the amplifier is operating in a <u>saturated mode</u>. Very similar results achieved with Ortec 9306 amp. Did not investigate the linear mode yet (att. before amplifier). Can use the saturated mode only if Npe is constant.
- However, with a slower VT120A, get worse result: $\sigma \sim 23$ ps for N_{pe} >20
- **Resolution is** $\sigma_t \sim \sigma_A / (ds_o/dt)_{t=0}$, where σ_A is the noise, and $(ds_o/dt)_{t=0}$ is the slope at the zero-crossing point of CFD
- In the "10ps timing resolution domain," the amplifier speed is crucial.

6/14/06

Timing results at B = 15 kG

- Single photoelectrons
- 10µm hole 4-pad MCP-PMT
- Ortec VT-120A amp

It is possible to reach a resolution of σ~50ps at 15kG.

Conclusions

- New R&D on the Focusing DIRC shows promising results.
- I believe, the final results will be better than I presented.
- We have a new photon detector solution working at 15kG yielding a very impressive timing resolution.
- More running in July:

rectangular pixel geometry to minimize the pixilization effectsadd more pixels

• More running next year:

- push QE to red wavelengths via multi-alkali photocathodes.
- test new electronics schemes (TDC & ADC vs. CFD & TDC)

Backup slides

Various approaches to imaging methods

BaBar DIRC: x & y & TOP

- x & y is used to determine the Cherenkov angle
- TOP iw used to reduce background only

Focusing DIRC prototype: x & y & TOP

- x & y is used as in BaBar DIRC
- TOP can be used to determine the Cherenkov angle for longer photon paths (gives a better result)
- Requires large number of pixels

TOP counter: x & TOP

- x & TOP is used to determine the Cherenkov angle
- TOP could be used for an ordinary TOF
- In principle, more simple, however, one must prove that it will work in a high background environment

J. Va'vra, Super B-factory workshop,

У

X

TOP

Expected performance of the prototype

- <u>Present BaBar DIRC:</u>
 2.7σ π/K separation at 4GeV/c
- <u>Focusing DIRC prototype:</u>
 2.7σ π/K separation at 5GeV/c
- Focusing DIRC assumptions:
 - optics to remove the bar thickness
 - similar efficiency as BaBar DIRC
 - improvements in the tracking accuracy
 - x&y pixels are used for Lpath <3-4 m.
 - TOP is used for Lpath > 3-4m.
 - The chromatic error is not improved by timing -1-2mrads effect.
 - Change a pixel size from the present 6 x 6 mm to 3 x 12 mm

Present BaBar DIRC : Error in θ_c

Nucl.Instr.&Meth., A502(2003)67

- <u>Per photon:</u>
- $\Delta \theta_{\text{track}} \sim 1 \text{ mrad} \\- \Delta \theta_{\text{chromatic}} \sim 5.4 \text{ mrad} \\- \Delta \theta_{\text{transport along the bar}} \sim 2-3 \text{ mrad} \\- \Delta \theta_{\text{bar thickness}} \sim 4.1 \text{ mrad}$
- $\Delta \theta_{\text{PMT pixel size}} \sim 5.5 \text{ mrad}$
- Total: $\Delta \theta_c^{\text{photon}} \sim 9.6 \text{ mrad}$
- <u>Per track</u> (N_{photon}~20-60/track): $\Delta \theta_{c}^{track} = \Delta \theta_{c}^{photon} / \sqrt{N_{photon}} \otimes \Delta \theta_{track}$

~ 2.4 mrad on average

Distribution of detectors on the prototype

- 3 Burle MCP-PMT and 2 Hamamatsu MaPMT detectors (~320 pixels active).
- Only pads around the Cherenkov ring are instrumented (~200 channels).

6/14/06

Modifications for the next run in July

Add

- Add 32 new channels in slot 1
- Slot 1 will have Burle MCP-PMT with 6 mm x 6 mm pads
- Slot 3 will have a new Hamamatsu MaPMT with rectangular pads
- Slot 4 will have a new Burle MCP-PMT with rectangular pads
- Better TDC calibration over larger TDC range
- Some improvements in timing of Hamamatsu MaPMTs

Focusing DIRC electronics

SLAC

Phillips TDC calibration

• Is it stable in time ? How often we have to measure this ?

• The differential linearity measured with the calibrated cables. May have to automatize process with a precision digital delay generator if we get convinced.

6/14/06

Focusing DIRC detector - "ultimate" design

B. Ratcliff, Nucl.Instr.&Meth., A502(2003)211

- Goal: 3D imaging using x,y and TOP, and wide bars.
- The detector is located in the magnetic field of 15 kG.

6/14/06

Chromatic broadening on the level of one pixel

Slot 4, single pixel #26,

Cherenkov photons:

- The largest chromatic effect is in the position 1
- Peak 1: ~81cm photon path length
 Peak 2: ~930cm photon path length
- Measure time-of-propagation (TOP)
- Calculate expected TOP using average $\lambda = 410$ nm.
- Plot $\Delta TOP = TOP_{measured} TOP_{expected}$
- Many corrections needed:
 - MCP cross-talk
 - thermal time drifts
 - cable offsets (PiLas)
 - TDC calibration(PiLas)
 - geometry tweaks
- Observe a clear chromatic broadening of the Peak 2 photons.

 $\Delta TOP = TOP_measured (\lambda) - TOP_expected (\lambda = 410 nm) [ns]$

6/14/06