Focusing DIRC R\&D

J. Va’vra, SLAC

Collaboration to develop the Focusing DIRC:
I. Bedajanek, J. Benitez, M. Barnyakov, J. Coleman, C. Field, David W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, K. Suzuki, S. Kononov, J. Uher, J. Va’vra

Content

- Prototype design
- Test beam results
- Future steps

Improvements compared to BaBar DIRC

- Timing resolution improved from $\sigma \sim 1.7 \mathrm{~ns}->\sigma \leq 150 \mathrm{ps}$
- Time resolution at this level can help the Cherenkov angle determination for photon path lengths Lpath $\geq 2-3 \mathrm{~m}$
- Time can be used to correct the chromatic broadening
- Better timing improves the background rejection
- Smaller pixel sizes allow smaller detector design, which also reduces sensitivity to the background
- Mirror eliminates effect of the bar thickness

Examples of two "DIRC-like" detectors

TOP counter (Nagoya):

- 2D imaging:

a) x-coordinate
b) $\operatorname{TOP}(\sigma \leq 70 \mathrm{ps})$.

Focusing DIRC prototype (SLAC):

- 3D imaging:
a) x-coordinate
b) y-coordinate
c) $\operatorname{TOP}(\sigma \leq 150 \mathrm{ps})$.

Focusing DIRC prototype design

Design by ray tracing:

- The Focusing DIRC prototype optics was designed using the ray tracing method with a help of the mechanical design program (no Monte Carlo available in early stages !!).
- The focal plane adjusted to an angle convenient for easy work
- Space filled with oil.
- Red line (with oil) - running in the beam
- Green line (no oil) - laser check in the clean room
- Spherical mirror $\mathrm{R}=49.1 \mathrm{~cm}$

Photon path reconstruction

- Each detector pixel determines these photon parameters:
$\theta_{c}, \alpha_{x}, \alpha_{y}, \cos \alpha, \cos \beta, \cos \gamma, L_{\text {path }}, t_{\text {propagation }}, n_{\text {bounces }}$ - for aveerage λ

Initial edsign with a spreadsheet calculation

- Each pad predicts the photon propagation history for average λ of $\sim 410 \mathrm{~nm}$.
- Example - detector slot \#4, pad \#26, beam in position \#1:
$\theta_{\mathrm{c}}=47.662^{\circ}, \mathrm{L}_{\text {path 1 }}=80.447 \mathrm{~cm}, \mathrm{n}_{\text {bounces 1 }}=43, \mathrm{t}_{\text {path 1 }}=4.028 \mathrm{~ns}, \mathrm{~L}_{\text {path 2 }}=913.58 \mathrm{~cm}$, $\mathrm{n}_{\text {bounces } 2}=489, \mathrm{t}_{\text {path } 2}=45.75 \mathrm{~ns}, \mathrm{dT}(\mid$ Peak2 - Peak 1I $)=41.722 \mathrm{~ns}$
- Error in detector plane of 1 mm in y -direction will cause this systematic shift: $\Delta \theta_{\mathrm{c}} \sim 3 \mathrm{mrad}, \Delta \mathrm{L}_{\text {path } 1} \sim 2.2 \mathrm{~mm}, \Delta \mathrm{t}_{\text {path } 1} \sim 11 \mathrm{ps}, \Delta \mathrm{L}_{\text {path } 2} \sim 24.5 \mathrm{~mm}, \Delta \mathrm{t}_{\text {path } 2} \sim 123 \mathrm{ps}$, $\Delta \mathrm{T}$ (IPeak2-Peak1I) ~112ps

Rings from outside bar are well focused

(Jose Benitez independent check of the focusing design)

Cherenkov rings in the detector focal plane:

Rings from bar are blurred in outer slots

(Jose Benitez)

Cherenkov ring image ray traced from inside the bar is blurred in the outer slots - this is a bar effect.

When assigning the parameters, such as $\boldsymbol{\theta}_{\mathrm{c}} \&$ direction cosines, to each pad, it is necessary to average over entire pad

- Bar introduces kaleidoscopic images on the pads
- This effect shows up only in the test beam (in BaBar, one would integrate it out)
- One needs a MC to understand effects like this.

Photon detectors in the prototype ($\sigma \sim \mathbf{7 0} \mathbf{- 1 5 0 p s}$)

Burle MCP PMT (64 pixels):
PiLas single pe calibration:

Hamamatsu MaPMT (64 pixels):
J. Va'vra, Super B-factory workshop, SLAC

6/14/06

Burle 85011-501 MCP-PMT:

Hamamatsu Flat Panel H8500 PMT:

Need a good start signal

- We start TDCs with a pulse from the LINAC RF. However, this pulse travels on a cable several hundred feet long, and therefore it is a subject to possible thermal effects.
- To protect against thermal effects, we have several local Start time counters providing an average timing resolution of σ ~ 35 ps per beam crossing. In addition, averaging over 100 consequtive events, we can correct slow drifts to 10-20ps level.
- However, in practice, the analysis of the prototype data shows that the LINAC RF pulse is the best start, i.e., no local correction is needed.

Test beam setup

- Beam enters bar at 90 degrees.
- Bar can be moved along the bar axis
- Trigger and time ref: accelerator pulse
- Hodoscope measures beam's 2D profile

Definition of a good beam trigger

Single hodoscope hits only:

Run 2
Lead glass:

- Good beam trigger definition: single hit in the hodoscope, good energy deposition in the lead glass, and good quality local start time hit.

1. Start counter 1-Double-quartz counter

Average of 2 pads:

4-pad Burle MCP-PMT:

Local START Counters:

3. Overall average of Start 1, Start 2 and Quantacon counters:
4. Start counter 2-Scintillator counter

Average of 4 pads:

4-pad Burle MCP-PMT :

- Corrections: ADC, hodoscope position and timing drifts.
J. Va'vra, Super B-factory workshop,

Focusing DIRC prototype

Setup in End Station A: movable bar support and hodoscope

Setup in End Station A

Cherenkov ring in the time domain

Pixel \#25, Slot \#4

- Two peaks correspond to forward and backward part of the Cherenkov ring.

Typical distribution of TOP and Lpath

- Measured TOP and calculated photon path length Lpath
- Integrate over all slots \& pixels

Cherenkov Angle resolution in the pixel domain

Occupancy for accepted events in one run, 400k triggers, 28 k events

Cherenkov angle from pixels:

- θ_{c} resolution $\approx 10-12 \mathrm{mrad}$
- Assign angles to each pads averaging over the entire pad for $\lambda=410 \mathrm{~nm}$.
- Clear pixelization effect visible; this would go away if we integrate over variable incident angles or use smaller pixel size
- $\quad \theta_{\mathrm{c}}$ resolution should still improve with better alignment \& better MC simulation

Cherenkov Angle resolution in the time domain

Method:

- Use measured TOP for each pixel
- Combine with calculated photon path in radiator bar - Lpath
- Calculate group index:
$\mathrm{n}_{\mathrm{G}}(\lambda)=\mathrm{c}_{\mathrm{o}} \cdot$ TOP $/$ Lpath
- Calculate phase refractive index $\mathrm{n}_{\mathrm{F}}(\lambda)$ from group index $\mathrm{n}_{\mathrm{G}}(\lambda)$
- Calculate photon Cherenkov angle Θ_{c} (assuming $\beta=1$): $\theta_{c}(\lambda)=\cos ^{-1}\left(1 / n_{F}(\lambda)\right)$
- Resolution of Θ_{c} from TOP is $6-7 \mathrm{mrad}$ for photon path length above $\mathbf{3} \mathbf{~ m}$.
- Expected to improve with better calibration.

Summary of preliminary results:

Θ_{c} resolution from pixels is $\mathbf{1 0 - 1 2} \mathbf{~ m r a d}$.
Θ_{c} resolution from time of propagation (TOP) improves rapidly with path length, reaches plateau at $\sim 7 \mathrm{mrad}$ after 3-4 meters photon path in bar.

Cherenkov angle resolution $=f\left(L_{\text {_ }}\right.$ path $)$

Comments: a) The present TOP-based analysis assumes $\beta=1$,
b) In the final analysis we will combine pixels \& time into a maximum likelihood analysis.

> J. Va'vra, Super B-factory workshop,
> SLAC

Geant 4 MC simulation of the prototype

- Data and MC almost agree; still some work needed for pixel-based data analysis

Chromatic behavior of the prototype

Bialkali QE

J.V.

Track perpendicular to bar in the middle of BaBar

- The prototype has a better response towards the red wavelengths, which reduces the Cherenkov angle chromatic contribution to 3-4 mrads (BaBar DIRC has 5.4mrads).

Chromatic effects on the Cherenkov light

1) Production part: $\quad \cos \theta_{c}=1 /\left(n_{\text {phase }} \beta\right), n_{\text {phase }}=f(\lambda)$
2) Propagation part: $v_{\text {group }}=c_{0} / n_{\text {group }}=c_{0} /\left[n_{\text {phase }}-\lambda * \mathrm{dn}_{\text {phase }} / \mathrm{d} \lambda\right]$

$$
\mathrm{n}_{\text {phase }}(\text { red })<\mathrm{n}_{\text {phase }}(\text { blue })=>\mathbf{v}_{\text {group }}(\text { red })>\mathbf{v}_{\text {group }}(\text { blue })
$$

- Two parts of the chromatic effects:
- Production part (due to $\left.n_{\text {phase }}=f(\lambda)\right)$ - Red photons "handicaped"by ~ 200 fsec initially.
- Propagation part - Red photons go faster than blue photons; color can be tagged by time.

Expected size of the chromatic effect in time domain

- $\Theta_{\text {track }}=\mathbf{9 0}^{\boldsymbol{\circ}}$ (perpendicular to bar); photons propagate in y-z plane only.
- $\sim 1 \mathrm{~ns}$ overall total range typically.
- Need a timing resolution of $\mathbf{1 5 0} \mathbf{- 2 0 0}$ ps to parameterize it.

Time spread growth due to chromaticity

- The width increases at a rate of $\sigma \sim 90 \mathrm{ps} /$ meter of photon path length; the growth is "fueled" by different group velocity of various colors.

Chromatic broadening of a single pixel

Slot 4, single pixel \#26,

$$
\begin{aligned}
\text { dTOP/Lpath }[\mathrm{ns} / \mathrm{m}]= & {[\text { TOP/Lpath }(\lambda)-} \\
& \text { TOP/Lpath }(\lambda=410 \mathrm{~nm})]
\end{aligned}
$$

- An average photon with a color of $\lambda \sim 410 \mathrm{~nm}$ arrives at " 0 ns offset" in dTOP/Lpath space. A photon of different color, arrives either early or late.
- The overall expected effect is small, only FWHM $\sim 10 \mathrm{mrad}$, or $\sigma \sim 4 \mathrm{mrads}$.

Do we see this effect in the data?

Data (position 1, peak 2):

- One can see expected size in the data, approximately.

Method \#1: Spreadsheet calculation of $\mathbf{d} \theta_{c}$ vs d(TOP/Lpath).

All slots, all pads, position 1, Peak 2 only:

Cher. Angle (pixel) [deg]

- An improvement of $\mathbf{\sim 1 . 5}$ mrads.

Status of chromatic corrections - preliminary

- A slight improvement of $\mathbf{\sim 1 - 2}$ mrads for long Lpath.
- Apply the chromatic correction to longer photon paths only

How many photoelectrons per ring?

- $\left\langle\mathrm{N}_{\mathrm{pe}}\right\rangle \sim$ 8-10 for 90° inc. angle
- With a hermetic configuration and other Burle improvements in the MCP-PMT design, we could achieve a factor of 1.5-2 improvement, perhaps.
- BaBar DIRC has $\mathrm{N}_{\mathrm{pe}} \sim 20$ at a track incident angle of 90°

Upgrades for the next run in July

New 256-pixel Hamamatsu MaPMT H-9500

- 256 pixels (16×16 pattern).
- Pixel size: 2.8 mmx 2.8 mm ; pitch 3.04 mm
- 12 stage MaPMT, gain $\sim 10^{6}$, bialkali QE.
- Typical timing resolution $\sigma \sim 220 \mathrm{ps}$.
- Charge sharing important

We made a small adaptor board to connect pads in the following way:

2D scan:

- Large rectangular pad: 1x4 little ones

6/14/06
J. Va'vra, Super B-factory workshop,

SLAC

"Open area" 1024-pixel Burle MCP 85021-600

Burle will connect pads as follows:
1024-pad Burle MCP $-->$ make it a 64 -pad device

- Large rectangular pad: 2x8 little ones
- Small margin around boundary
- Nominally 1024 pixels (32×32 pattern)
- Pixel size: $\sim 1.4 \mathrm{~mm} \times 1.4 \mathrm{~mm}$
- Pitch: 1.6 mm
- This tube will be in slot 4 in next run

A future if Super B-factory exists

Single-photon timing resolution

Hamamatsu C5594-44 1.5 GHz BW, 63x gain

- Burle MCP-PMT 85012-501 (open area)
- $10 \mu \mathrm{~m}$ MCP hole diameter
- 64 pixel devices, pad size: $6 \mathrm{~mm} \times 6 \mathrm{~mm}$.
- Small margin around the boundary
- Use Phillips CFD discriminator
- All tests performed with PiLas red laser diode operating in single photoelectron mode by adding filters.

Ortec VT120A with a 6 dIB att.

6/14/06
J. Va'vra, Super B-factory workshop, SLAC

Timing resolution $=\mathbf{f}\left(\mathbf{N}_{\text {photoelectrons }}\right)$

- Achieved $\sigma \sim 12$ ps for $\mathbf{N}_{\mathrm{pe}}>20$ with the Hamamatsu C5594-44 amplifier, while the amplifier is operating in a saturated mode. Very similar results achieved with Ortec 9306 amp . Did not investigate the linear mode yet (att. before amplifier). Can use the saturated mode only if Npe is constant.
- However, with a slower VT120A, get worse result: $\sigma \sim 23$ ps for $\mathbf{N}_{\mathrm{pe}}>20$
- Resolution is $\sigma_{\mathrm{t}} \sim \sigma_{\mathrm{A}} /\left(\mathrm{ds}_{\mathrm{o}} / \mathrm{dtt}\right)_{\mathrm{t}=0}$, where σ_{A} is the noise, and $\left(\mathrm{ds}_{\mathrm{o}} / \mathrm{dt}\right)_{\mathrm{t}=0}$ is the slope at the zero-crossing point of CFD
- In the "10ps timing resolution domain," the amplifier speed is crucial.

Timing results at $\mathbf{B}=\mathbf{1 5} \mathbf{k G}$

- Single photoelectrons
- 10 $\mu \mathrm{m}$ hole 4-pad MCPPMT
- Ortec VT-120A amp
- It is possible to reach a resolution of $\sigma \sim 50 \mathrm{ps}$ at 15kG.

Conclusions

- New R\&D on the Focusing DIRC shows promising results.
- I believe, the final results will be better than I presented.
- We have a new photon detector solution working at 15 kG yielding a very impressive timing resolution.
- More running in July:
- rectangular pixel geometry to minimize the pixilization effects
- add more pixels
- More running next year:
- push QE to red wavelengths via multi-alkali photocathodes.
- test new electronics schemes (TDC \& ADC vs. CFD \&TDC)

Backup slides

Various approaches to imaging methods

BaBar DIRC: x \& y \& TOP

- $\mathrm{x} \& \mathrm{y}$ is used to determine the Cherenkov angle
- TOP iw used to reduce background only

Focusing DIRC prototype: $x \& y \& T O P$

- $\mathrm{x} \& \mathrm{y}$ is used as in BaBar DIRC
- TOP can be used to determine the Cherenkov angle for longer photon paths (gives a better result)
- Requires large number of pixels

TOP counter: $\mathrm{x} \&$ TOP

- x \& TOP is used to determine the Cherenkov angle
- TOP could be used for an ordinary TOF
- In principle, more simple, however, one must prove that it will work in a high background environment

Expected performance of the prototype

- Present BaBar DIRC:
$-2.7 \sigma \pi / \mathrm{K}$ separation at $4 \mathrm{GeV} / \mathrm{c}$
- Focusing DIRC prototype:
$-2.7 \sigma \pi / \mathrm{K}$ separation at $5 \mathrm{GeV} / \mathrm{c}$
- Focusing DIRC assumptions:
- optics to remove the bar thickness
- similar efficiency as BaBar DIRC
- improvements in the tracking accuracy
- x\&y pixels are used for Lpath <3-4 m.
- TOP is used for Lpath $>3-4 \mathrm{~m}$.
- The chromatic error is not improved by timing - $1-2$ mrads effect.
- Change a pixel size from the present $6 \times 6 \mathrm{~mm}$ to $3 \times 12 \mathrm{~mm}$

Present BaBar DIRC : Error in $\boldsymbol{\theta}_{\text {c }}$

Nucl.Instr.\&Meth., A502(2003)67

- Per photon:

- $\Delta \theta_{\text {track }} \sim 1 \mathrm{mrad}$
- $\Delta \theta_{\text {chromatic }} \sim 5.4 \mathrm{mrad}$
- $\Delta \theta_{\text {transport along the bar }} \sim 2-3 \mathrm{mrad}$
- $\Delta \theta_{\text {bar thickness }} \sim 4.1 \mathrm{mrad}$
- $\Delta \theta_{\text {PMT pixel size }} \sim 5.5 \mathrm{mrad}$
- Total: $\Delta \theta_{c}{ }^{\text {photon }} \sim 9.6 \mathrm{mrad}$
- Per track $\left(\mathrm{N}_{\text {photon }} \sim 20-60 /\right.$ track $):$ $\Delta \theta_{c}^{\text {track }}=\Delta \theta_{c}{ }^{\text {photon } / \sqrt{ } N_{\text {photon }} \otimes \Delta \theta_{\text {track }}}$
~ 2.4 mrad on average

Distribution of detectors on the prototype

Cherenkov Ring Image in Detector plane

- 3 Burle MCP-PMT and 2 Hamamatsu MaPMT detectors (~320 pixels active).
- Only pads around the Cherenkov ring are instrumented (~200 channels).

Modifications for the next run in July

- Add 32 new channels in slot 1
- Slot 1 will have Burle MCP-PMT with $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ pads
- Slot 3 will have a new Hamamatsu MaPMT with rectangular pads
- Slot 4 will have a new Burle MCP-PMT with rectangular pads
- Better TDC calibration over larger TDC range
- Some improvements in timing of Hamamatsu MaPMTs

Focusing DIRC electronics

SLAC Amplifier:

Amplifier output from

SLAC CFD \& TAC:

Overall chain:

CFD analog pulse out

Phillips TDC calibration

- Is it stable in time ? How often we have to measure this?
- The differential linearity measured with the calibrated cables. May have to automatize process with a precision digital delay generator if we get convinced.

Focusing DIRC detector - "ultimate" design

B. Ratcliff, Nucl.Instr.\&Meth., A502(2003)211

- Goal: 3D imaging using x, y and TOP, and wide bars.
- The detector is located in the magnetic field of 15 kG .

Chromatic broadening on the level of one pixel

Cherenkov photons:
Slot 4, single pixel \#26,

- The largest chromatic effect is in the position 1
- Peak 1: ~81cm photon path length Peak 2: ~930cm photon path length
- Measure time-of-propagation (TOP)
- Calculate expected TOP using average $\lambda=410 \mathrm{~nm}$.
- Plot $\Delta \mathrm{TOP}=\mathrm{TOP}_{\text {measured }}-\mathrm{TOP}_{\text {expected }}$
- Many corrections needed:
- MCP cross-talk
- thermal time drifts
- cable offsets (PiLas)
- TDC calibration(PiLas)
- geometry tweaks
- Observe a clear chromatic broadening of the Peak 2 photons.
Δ TOP $=$ TOP_measured $(\lambda)-$ TOP_expected $(\lambda=410 \mathrm{~nm})[\mathrm{ns}]$

