

Aerogel RICH & TOP counter for super KEKB

Y.Mazuka Nagoya University

June 14-16, 2006 The 3rd SuperB workshop at SLAC

Introduction

Current BELLE performance

We cannot PID at high momentum region in the forward endcap

Present endcap-ACC is used only for flavor tagging

Further Improvement on π/K separation with the start of super KEKB

PID Target: π/K separation > 4 σ @4GeV/c

Upgrading BELLE Detector

Two new particle ID devices, both RICHes

Endcap: Proximity Focusing Aerogel RICH(A-RICH) Barrel: Time of Propagation Counter(TOP)

June 14-16, 2006

Outline

The 3rd SuperB workshop, SLAC

Y. Mazuka

Endcap: Proximity Focusing A-RICH

Focusing configuration

How to increase the number of photons without degrading the resolution?

Use radiator with gradually increasing refractive index in down stream direction

Results of focusing configuration

Optimization of dual radiator indices

- Measured resolution is in good agreement with expectation
- Wide minimum region allows some tolerances(~0.003) in aerogel production

June 14-16, 2006

Outline

Photon Detectors for A-RICH

- Requirements
 - Working in B=1.5T
 - Pixel size ~5-6mm
 - Good sensitivity to single photon
 - Large effective area
- Candidates
 - HAPD with large effective area
 - MCP-PMT

Photon Detectors for A-RICH; HAPD

<u>demerits</u>

- Low gain (~10⁴)
- High noise rate

<u>merits</u>

- High efficiency
- High energy resolution

Photon Detectors for A-RICH; MCP-PMT

BURLE 85011 MCP-PMT		
photo- cathode	Bi-alkali	<i>demerit</i> • active area <i>merits</i> • High gain • Good time resolution TTS~50psec(single p.e.) Can we use this merit?
MCP	25µm pores, 2 MCPs	
gain	$\sim 0.6 imes 10^6$	
collection efficiency	~ 60%	
dimensions	~ 71mm square	
# of channels	8×8	
pitch	~ 6.45mm	
active area	~52%	

A-RICH with TOF using MCP-PMT

June 14-16, 2006

A-RICH with TOF Beam test results

A-RICH with TOF PID at low momentum

TOF test with pions and protons at 2GeV/c

Photons from PMT window

 π /p are well separated

Even in distance between start counter and MCP-PMT is 65cm, instead of 2.0m in Belle

> A-RICH with TOF using MCP-PMT looks very promising

At this test, π/p separation with MCP-PMT $S_{TOF} \sim 4.8\sigma$ @2GeV/c

Outline

Barrel: TOP counter

The 3rd SuperB workshop, SLAC

Photon Detector for TOP; MCP-PMT

Requirements:

- Good sensitivity to single photon
- TTS~30ps (single photon)
- working in 1.5T

- 3 MCP-PMTs studied:
 - BURLE (25µm pores)
 - BINP (6µm pores)
 - HPK (6 and 10µm pores)

B=0T: all samples have good TTS(~30ps) B=1.5T: BINP and HPK samples have high gain(~10⁶) and good TTS(~30ps)

→ NIM A528 (2004) 763

These samples were round shaped (1ch.)

We've developed square shaped (4ch.)

June 14-16, 2006

MCP-PMT aging

Study of tubes w/ and w/o Al layer

(It reduces collection efficiency by 60%)

HPK w/ AI survives over 13 years of operation! Al layer is necessary

MCP-PMT with GaAsP

Expected performance

bialkali photo-cathode:

- π/K separation at 4GeV/c < 4 σ
- \rightarrow chromatic dispersion

- Higher Q.E.
- At longer wavelength
 - →less dispersion

Y. Mazuka

 π/K separation > 4 σ

GaAsP MCP-PMT development

- Square-shape MCP-PMT with GaAsP photocathode is under development with HPK
- First prototype
 - The same type as previous tubes

- Performance test
 - Gain
 - Time resolution

June 14-16, 2006

GaAsP MCP-PMT performance

- Enough gain(~10⁶) to detect single p.e.
- Good time resolution (TTS~35ps) for single p.e.
- Next
 - Check the performance in detail
 - Life time of GaAsP photo-cathode tube

June 14-16, 2006

Summary

We are studying new types of RICH for super KEKB

Aerogel RICH counter for endcap

- Test the focusing configurations
 - We studied about optimal parameters
- More studies: RICH with TOF (using MCP-PMT)
 - Extend PID ability into low momentum region

TOP counter for barrel

- N Both RICHes(A-RICH, TOP) look very promising ps)
- A π/K separation can be over $4\sigma @4GeV/c$
- ^{- N} But there is still a lot of work to be done!
 - It will reduce the effect of chromatic dispersion

Tasks for practical use

A-RICH

- Photon detectors
 - Develop HAPD & MCP-PMT in parallel
- Readout system
 - ASIC
- Mechanical design
 - Line up of photon detectors and radiators

- MCP-PMT
 - Make practical tube
 - Aging of tube with GaAsP
- Readout system
 - TAC
- Test of prototype
 - Line up of photon detectors and radiators

The 3rd SuperB workshop, SLAC

Backup

June 14-16, 2006

Optimal aerogel thickness

June 14-16, 2006

RICH with TOF

Time resolution of 10 psec has been achieved with HPK MCP-PMT @ Nagoya university.

Time resolution of BURLE MCP-PMT can reach 19 psec for multi photons. More than 2.4 σ for multi photons?

June 14-16, 2006

Setup of beam test

June 14-16, 2006

K/ π separation by TOF

Good performance in lower momentum region
Enable PID under threshold P_c of aerogel

TOP counter MC

June 14-16, 2006

TTS

Cross-talk of MCP-PMT

SL10: cross-talk problem solved by segmenting electrodes at the MCP

June 14-16, 2006

R&D of Readout ASIC for TOP

- Time-to-Analog Converter \rightarrow Time resolution < ~20ps
- Double overlap gates → Less dead time (~100ns)
- 0.35µ CMOS process
- 2nd batch TAC-IC was submitted to VDEC (U. Tokyo)

Readout Electronics

Aerogel RICH readout

- Total ~ 100k channels!
- Readout scheme → pipeline
 - Only record hit information

Basic parameters for the ASIC

- CMOS-FET
- Gain=10V/pc
- Shaping time=0.15µsec
- VGA=1.25~20
- 18 channels/chip
- Power consumption : 5mW/channel

3rd batch was submitted to VDEC (More protection to noise was done)

Shift register

PreampShaperVGAComparatorJune14-16, 2006The 3rd SuperB workshop, SLAC

Y. Mazuka

Design

- Quartz: $255 \text{ cm}^{\text{L}} \times 40 \text{ cm}^{\text{W}} \times 2 \text{ cm}^{\text{T}}$
 - cut at θ =46deg. to reduce chromatic error
- Multi-anode MCP-PMT
 - Linear array (5mm pitch), Good time resolution (<~40ps)
 - Three readout plane

Mechanical design

- Aerogel radiator
 - Hexagonal tiling to minimize aerogel boundary
 - side length, 125 mm
- Photo detector
 - Total PD : 564, 6 sectors
 - Cover 89.0% of area

June 14-16, 2006

Collaborator

I.Adachi, K.Fujita, A.Gorisek, T.Fukushima, D.Hayashi, T.Iijima, K.Inami, T.Ishikawa, H.Kawai, Y.Kozakai, P.Krizan, A.Kuratani, T.Nakagawa, S.Nishida, S.Ogawa, T.Ohshima, R.Pestotnik, T.Seki, T.Sumiyoshi, M.Tabata, Y.Unno