SuperB Damping Rings

M. Biagini, LNF-INFN P. Raimondi, SLAC/INFN A. Wolski, Cockroft Institute, UK SuperB III Workshop, SLAC, 14-16 June 2006

SuperB Rings

- SuperB rings have same characteristics as the ILC Damping Rings, that is:
 - Short damping times (τ_s < 10 sec)
 - Small emittance ($\varepsilon_x < 1 \text{ nm}$)
 - Low emittance coupling (0.25 %)
- Natural candidate is OCS lattice from ILCDR Baseline Design

OCS lattice

- 10-fold symmetry with 10 long straight sections
- 8 straight sections contain wigglers and RF cavities, the other 2 can accommodate tune-adjustment sections and injection
- Arc cell is a TME (Theoretical Minimum Emittance), 40 m long, with 72 dipoles 5.6 m long with low (0.2 T) field
- Wigglers are SC, 1.6 T field, 10.4 m long in each section

ILCDR Parameters

Table 2.1: Parameters of the position damping ring reference lattices.								
Lattice	PPA [12]	OTW	OCS [26]	BRU [82]	MCH [82]	DAS [12]	TESLA [72]	
Circumference [m]	2824	3223	6114	6333	15935	17014	17000	
Energy [GeV]	5.0	5.0	5.066	3.74	5.0	5.0	5.0	
Harmonic number	4700	7678	13256	13732	34550	28377	28200	
Arc cell type	PI	TME	тмЕ	FODO	FODO	PI	TME	
Horizontal tune	47.810	45.164	50.840	65.783	75.783	83.730	76.310	
Vertical tune	47.680	24.157	40.800	66.413	76.413	83.650	41.180	
Natural chromaticity (x, y)	-63,-60	-88,-74	-65, -53	-79,-87	-90,-95	105, -105	-126,-60	
Momentum compaction $[10^{-4}]$	2.83	3.62	1.69	11.9	4.09	1.14	1.22	
Energy loss/turn [MeV]	4.70	8.85	9.33	6.19	19.8	21.0	20.3	
Transverse damping time [ms]	20.0	12.1	22.2	25.5	26.9	27.0	1750	
Longitudinal damping time [ms]	10.0	6.07	11.1	12.8	13.4	13.5	1750	
Natural emittance [nm]	0.433	0.388	0.559	0.377	0.675	0.612	1500	
Norm. natural emittance $[\mu m]$	4.24	3.80	5.54	2.76	6.60	5.99	1500	
RF voltage [MV]	17.76	21.78	19.27	23.16	53.70	48.17	1050	
RF frequency [MHz]	500	714	650	650	650	500	1250	
Synchrotron tune	0.0269	0.0418	0.0337	0.120	0.150	0.0668	1000	
Synchronous phase [deg]	164	156	151	164	158	154	1000	OCS
RF acceptance [%]	3.2	2.1	2.0	1.3	1.5	2.8	750	
Natural bunch length [mm]	6.00	6.00	6.00	9.00	9.00	6.00	100	
Natural energy spread [10 ⁻³]	1.27	1.36	1.29	0.973	1.30	1.30		
Particles/bunch [10 ¹⁰]	2.4	2.2	2.0	2.0	2.0	2.0	500	
Peak current [A]	76.7	70.0	63.9	42.6	42.6	63.9		
Bunch spacing $[\lambda_{RF}]$	2	3	4	4	10	10	250	
Bunch spacing [ns]	4.000	4.202	6.154	6.154	15.38	20.00		
Bunches per train	2350	2559	47	36	18	2820	1000	500 0 500 1000
Gaps per train	0	0	8.25	8	4	0	-1000 -	-500 0 500 1000
Number of bunch trains	1	1	60	78	157	1	1	
Average current [mA]	959	839	443	426	170	159	159	
Mean horizontal beta function [m]	13.1	58.0	25.6	57.6	109	106	120	
Mean vertical beta function [m]	12.5	63.8	31.0	55.4	108	106	121	
Synch. radn. integral I ₁ [m]	0.7986	1.158	0.9727	6.365	6.523	1.940	2.071	
Synch. radn. integral I ₂ [m ⁻¹]	0.5341	1.006	0.8087	2.248	2.248	2.390	2.314	
Synch. radn. integral I ₃ [m ⁻²]	0.04699	0.1016	0.09992	0.2073	0.2073	0.2190	0.2113	
Synch. radn. integral I ₄ [10 ⁻⁴ m ⁻¹]	0.3276	1.212	1.488	3.675	3.774	1.914	2.150	
Synch. radn. integral $I_5 [10^{-5} \text{m}^{-1}]$	0.6342	1.104	1.424	3.043	3.112	3.883	3.206	

SuperB Rings Parameters

TABLE V: Preliminary Super Flavour Factory collision parameters

	1 st LNF Workshop	2 nd LNF Workshop		
	Best Working Point	Best Working Point		
σ_x^* (µm)	30 (1.0 σ_x betatron)	2.67		
$\eta_x \text{ (mm)}$	1.5 LER/ -1.5 HER	0.0		
σ_y^* (nm)	12.6	12.6		
$\beta_x^* \text{ (mm)}$	1.25	8.9		
β_y^* (mm)	0.080	0.080		
$\sigma_z^* \text{ (mm)}$	0.100	6.0		
σ_E^*	$2. imes 10^{-2}$	10^{-3}		
σ_E Lum.	10-3	$0.7 imes10^{-3}$		
ϵ_x (nm)	0.8	0.8		
ϵ_y (nm)	0.002	0.002		
$\epsilon_z \ (\mu m)$	2.0	4.0		
$\theta_x \text{ (mrad)}$	Optional	2*20		
$\sigma_z DR \text{ (mm)}$	4.0	6.0		
$\sigma_E DR$	0.5×10^{-3}	10^{-3}		
$N_{part}(10^{10})$	7.0	2.0		
$N_{\texttt{bunches}}$	12000	12000		
I(A)	6.7	1.9		
C_{DR} (km)	6.0	6.0		
$\tau_{x,y}$ (ms)	10	20		
Turns between	50	1		
collisions				
f_{coll} (MHz)	12.0	650		
$\mathcal{L}_{ t singleturn}(10^{36})$	1.5	1.2		
$\mathcal{L}_{multiturn}(10^{36})$	1.1	1.0		

From document presented at CERN Strategy Group and INFN Roadmap: <u>www.pi.infn.it/SuperB/</u> (March 2006)

SuperB Schematic Layout

- Rings have asymmetric energies of 4 and 7 GeV
- OCS lattice was scaled from 5 GeV to 4 and 7
- 6.1 Km, 3.2 Km and 2.2 Km long rings were studied
- Emittances and damping times were kept similar for each configuration
- Lattice symmetry was respected
- Fewer and lower field wigglers used (pm?)
- · Longer dipoles were used, when needed
- Preliminary Final Focus (A. Seryi) included

6.1 Km lattice

- OCS lattice: 6.1 Km ILC Damping Rings, 8 wiggler sections
- 4 GeV: same wiggler sections (8) and field, same bend length
- 7 GeV: same wiggler field, less wiggler sections (6), double bend length

Frascati INFN & ENEA Laboratories

3.2 Km Rings

- The OCS lattice has many free drifts and a relatively low number of quadrupoles and bends → quite easy to shorten the ring
- Quadrupole strengths and beta peaks are higher though
- Arc needs higher dispersion for better chromaticity correction \rightarrow in progress

Possible issues of shorter rings

- Same as ILCDR, that is:
 - Dynamic aperture
 - HER e-cloud instability \rightarrow new electrodes ?
 - LER Intra Beam Scattering
 - Fast Ion Instability \rightarrow gaps in train

Intra Beam Scattering

DR Baseline Configuration Document, Feb. 06

2.2 Km Rings

- A first solution was found by:
 - Shortening drifts in dispersion suppressors
 - Eliminating some of the FODO cells
 - Shortening wiggler-free sections in 7 GeV ring
 - Shortening long drift sections in 4 GeV
- Preliminary, can be easily improved

7 GeV ring, 2.2 Km

4 GeV ring, 2.2 Km

A. Seryi Final Focus (March 06)

2.2 Km ring with FF

Chromatic functions W_x, W_y and 2nd order dispersion in FF

3)] $\gg 0I_{*}$ Μ

 $dD/d\delta (m)$

Comparison of Ring Parameters

		4 GeV		7 GeV			
C (m)	6114.	3251.	2230.	6114.	3251.	2230.	
В _w (Т)	1.6	1.4	1.4	1.6	1.4	1.4	
L _{bend} (m)	5.6	5.6	6.72	11.2	10.6	6.72	
N. bends	96	96	100	96	96	100	
B _{bend} (T)	0.078	0.155	0.125	0.136	0.144	0.218	
Uo (MeV/turn)	5.7	4.4	3.5	10.7	6.4	7.	
N. wigg. cells	8	8	8	6	4	4	
τ _× (ms)	28.8	19.8	17.	26.	24.	14.5	
τ _s (ms)	14.4	10.	8.6	13	12.	7.25	
ε _x (nm)	0.5	0.38	0.37	0.5	0.565	0.64	
σ _E	1.1×10-3	1.1x10 ⁻³	10-3	1.3x10 ⁻³	1.32x10 ⁻³	1.35×10-3	
I _{beam} (A)	2.5	2.5	2.5	1.4	1.4	1.4	
P _{beam} (MW)	14.	11.	8.8	15.	9.	9.8	
P _{wall} (MW) (50% eff)	43.5	30	28	-	-	-	

Dynamic aperture

- Preliminary dynamic aperture calculations for the 3 Km ring @ 7 GeV with FF have been performed by A. Wolski
- Studied tune behavior vs energy deviation
- First dynamic aperture & frequency map analysis
- Tunes not optimized \rightarrow needs work
- Sextupoles not optimized \rightarrow needs work

Chromaticity vs energy deviation for ideal 3 Km lattice without FF

A. Wolski

x tune

y tune

Chromaticity vs energy deviation for ideal 3 Km lattice with FF

A. Wolski

x tune

y tune

Energy acceptance between 1% and 2%

Dynamic aperture for "ideal" lattice with FF (3 Km, 7 GeV)

Frequency map analysis, sextupoles tuned for 0 chromaticity

- 3 rings with asymmetric energies have been studied by scaling the ILCDR OCS lattice
- Final Focus has been inserted in all
- They all look reasonable
- A lot of work is still needed:
 - Optimization of arc cell
 - Dynamic aperture optimization
 - Dependence of vertical emittance from errors
 - Collective effects
- Beam instabilities will be different due to different energies and need to be studied especially for the LER
- There is full synergy with ILCDR as requested