Status on SuperB effort

P. Raimondi

SLAC, June 14, 2006

Outline

- Basic Concepts and Parameters
- Highlights of studies made since last workshop
- Layout for a Ring Collider with Linear Collider Parameters
- Some of the work to do
- Conclusions

Summary from Oide's talk at 2005 2nd Hawaii SuperBF Workshop

- Present design of SuperKEKB hits fundamental limits in the beam-beam effect and the bunch length (HOM & CSR).
- Higher current is the only way to increase the luminosity.
- Many technical and cost issues are expected with a new RF system.

We need a completely different collider scheme.....

Sigx*	μ m	2.67
Etax	mm	0.0
Sigy	nm	12.6
Betx	mm	9.0
Bety	mm	0.080
Sigz_IP	mm	6.0
Sige_IP		1.3e-3
Sige_Lum		0.9e-3
Emix	nm	0.8
Emiy	nm	0.002
Emiz	μ m	8.0
Cross_angle r	nrad	2*25
Sigz_DR	mm	6.0
Sige_DR		1.3e-3
Np 1	0e10	2.3
Nbunches		6000
DR_length	km	3.0
Damping_time I	msec	20
Nturns_betwe_c	coll	1
Collision freq	MHz	600
Lsingleturn	1e36	1.2
L _{multiturn}	1e36	1.0

- Defined a parameters set based on ILC-like parameters
- Same DR emittances
- Same DR bunch length
- Same DR bunch charges
- Same DR damping time
- Same ILC-IP betas
- Crossing Angle and Crab
 Waist to minimize BB blowup

Crossing angle concepts

Both cases have the same luminosity, (2) has longer bunch and smaller $\sigma_{\rm x}$

With large crossing angle X and Z quantities are swapped: Very important!!!

1) Standard short bunches

High luminosity requires:

- short bunches
- small vertical emittance
- large horizontal size and emittance to mimimize beam-beam
- For a ring:
- easy to achieve small horizontal emittance and horizontal size
- Vertical emittance goes down with the horizontal
- Hard to make short bunches
- Crossing angle swaps X with Z, so the high luminosity requirements are naturally met:
- Luminosity goes with 1/ $\!\epsilon_{\!x}$ and is weakly dependent by $\sigma_{\!z}$

- 'Long Range Beam Beam' is minimized with a proper choice of the crossing angle w.r.t. the other parameters:

 $x_{crossing_angle}$ =2*25mrad σ_x =2.7µm

- LRBB is further decreased togheter with the betatron resonances by crabbing the Vertical waist.

Vertical waist position in z is a function of x:

Zy_waist(x)=x/20 Crabbed waist

All components of the beam collide at a minimum β_v :

- the 'hour glass' is reduced
- the geometric luminosity is higher (5-10%)
- the bb effects are reduced (factor 2-4)

Crabbed waist realized with a sextupole in phase with the IP in X and at $\pi/2$ in Y

Emittance blowup due to the crossing angle

Colliding with no crossing angle and

 σ_x =100 μ m, σ_z =100 μ m:

 $\Delta \varepsilon_v$ (single pass)=4*10⁻⁴ L=2.1*10²⁷

Colliding with crossing angle=2*25mrad and

 σ_x =2.67um, σ_z =4mm (σ_z * θ =100um, σ_x / θ =104um):

 $\Delta \epsilon_{v} = 4*10^{-3}$ (single pass) L=2.14*10²⁷

Same geometric luminosity but 10 times more emittance blowup Adding the "Crab-waist", $Zy_waist(x)=x/2\theta$:

 $\Delta \epsilon_{v} = 1.5^{*}10^{-3}$ (single pass) L=2.29^{*}10^{27}

- the 'hour glass' is reduced, the geometric luminosity is higher: small effect about 5% more luminosity

- the main effect: blowup due the the beam-beam is reduced, about a factor 2.4 less $\Delta \epsilon_v$ (3.8 times the no-crossing case)

Colliding with an angle requires just the ILC DR and the ILC FF.

Short bunches are not needed

Crabbed y_{waist} is achieved by placing a sextupole upstream the IP (and symmetrically downstream) in a place in phase with the IP in X and at $\pi/2$ in Y.

- Only natural energy spread in the beams
- Angular divergences about 150µrad in both planes
- Crossing angle so large makes the IR (and the FF) design very easy
- Low energy spread makes the FF very easy
- Beam currents around 1.9Amps, possible better trade off current trade damping time

Horizontal Plane

Vertical Plane

Collisions with uncompressed beams Crossing angle = 2*25mrad Relative Emittance growth per collision about $1.5*10^{-3}$ $\varepsilon_{yout}/\varepsilon_{yin}=1.0015$

Luminosity considerations

Ineffectiveness of collisions with large crossing angle is illusive!!! Loss due to short collision zone (say $I=\sigma_z/40$) is fully compensated by denser target beam (due to much smaller vertical beam size!).

Number of particles in collision zone: $\delta N_2 = N_2 \frac{1_{cross}}{\sigma_z} \quad 1_{cross} = 2\sigma_x / \theta$ $L = \frac{N_1 \cdot \delta N_2 \cdot f_0}{4\pi \sigma_x \sigma_y} \qquad \xi_{1y} = \frac{r_e \cdot \delta N_2 \cdot \beta_y}{2\pi \gamma \sigma_y (\sigma_x + \sigma_y)}$ $L = \frac{\gamma \xi_{1y} N_1 f_0}{2r_e \beta_y} \left(1 + \frac{\sigma_y}{\sigma_x}\right) \square 2.167 \cdot 10^{34} \frac{E(GeV) \cdot I(A) \cdot \xi_{1y}}{\beta_y (cm)} \square 1.2 \cdot 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

No dependence on crossing angle!

Universal expression: valid for both - head-on and crossing angle collisions!

I. Koop, Novosibirsk

Tune shifts

Raimondi-Shatilov-Zobov formulae:

$$\sigma_{x} \rightarrow \sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}}$$

(Beam Dynamics Newsletter, 37, August 2005)

$$\xi_{x} = \frac{r_{e}N}{2\pi\gamma} \frac{\beta_{x}}{\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} \left(\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} + \sigma_{y}\right)}{\left(\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} + \sigma_{y}\right)}$$

$$\xi_{y} = \frac{r_{e}N}{2\pi\gamma} \frac{\beta_{y}}{\sigma_{y} \left(\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} + \sigma_{y}\right)}}{\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} = 100 \,\mu\text{m} \,\Box \,\sigma_{x} = 2.67 \,\mu\text{m}}$$
Super-B: $\sqrt{\sigma_{z}^{2} \tan^{2}(\theta/2) + \sigma_{x}^{2}} = 100 \,\mu\text{m} \,\Box \,\sigma_{x} = 2.67 \,\mu\text{m}}$

$$\frac{\sqrt{\sigma_z^2 \tan^2(\theta/2) + \sigma_x^2}}{\sigma_y} \square 8000 !!!$$

One dimensional case for $\beta_y >> \sigma_x/\theta$. For $\beta_y < \sigma_x/\theta$ also, but with crabbed waist!

$$\xi_{x} = \frac{2r_{e}N}{\pi\gamma} \frac{\beta_{x}}{\sigma_{z}^{2}\theta^{2}} = 0.002$$
$$\xi_{y} = \frac{r_{e}N}{\pi\gamma} \frac{\beta_{y}}{\sigma_{y}\sigma_{z}\theta} = 0.072$$

I. Koop, Novosibirsk

Kicks that a particle receives while passing through the other beam

$$\left(x^{p}\right)' = \frac{2r_{e}N}{\gamma} (x^{p} - z^{p}tg(\theta/2))^{\infty}_{0} dw \frac{\exp\left\{-\frac{\left(x^{p} - z^{p}tg(\theta/2)\right)^{2}}{\left(2\left(\sigma_{x}^{2} + \sigma_{z}^{2}tg^{2}(\theta/2)\right) + w\right)} - \frac{\left(y^{p}\right)^{2}}{\left(2\sigma_{y}^{2} + w\right)^{1/2}}\right\} }{\left(2\left(\sigma_{x}^{2} + \sigma_{z}^{2}tg^{2}(\theta/2)\right) + w\right)^{3/2} \left(2\sigma_{y}^{2} + w\right)^{1/2}}$$

$$\left(y^{p}\right)' = \frac{2r_{e}N}{\gamma} y^{p} \int_{0}^{\infty} dw \frac{\exp\left\{-\frac{\left(x^{p} - z^{p}tg(\theta/2)\right)^{2}}{\left(2\left(\sigma_{x}^{2} + \sigma_{z}^{2}tg^{2}(\theta/2)\right) + w\right)} - \frac{\left(y^{p}\right)^{2}}{\left(2\sigma_{y}^{2} + w\right)^{2}}\right\} }{\left(2\left(\sigma_{x}^{2} + \sigma_{z}^{2}tg^{2}(\theta/2)\right) + w\right)^{1/2} \left(2\sigma_{y}^{2} + w\right)^{3/2}}$$

$$\left(z^{p}\right)' = \left(x^{p}\right)' tg(\theta/2)$$

$$(13)$$

As we can see, a large crossing angle introduces strong coupling between the horizontal and longitudinal planes, provided that $\sigma z > \sigma x$ (this is almost always true).

X-Z Coupling smaller then KeK: $\sigma_z^*\theta=100\mu m$ $\theta=25mrad$ $\beta_x=9mm$

ξ_{y} -increase caused by hour-glass effect.

Dependence of ξ_v on β_v for constant beam sizes at IP

"Crabbed" waist optics

Appropriate transformations from first sextupole to IP and from IP to anti-sextupole:

$$\begin{split} T_{x} &= \begin{pmatrix} u_{x} & 0 \\ -F_{x}^{-1} & u_{x}^{-1} \end{pmatrix} \quad \tilde{T}_{x} = \begin{pmatrix} u_{x}^{-1} & 0 \\ -F_{x}^{-1} & u_{x} \end{pmatrix} \qquad \tilde{T}_{x} T_{x} = \begin{pmatrix} 1 & 0 \\ -2u_{x}F_{x}^{-1} & 1 \end{pmatrix} \\ T_{y} &= \begin{pmatrix} u_{y} & F_{y} \\ -F_{y}^{-1} & 0 \end{pmatrix} \qquad \tilde{T}_{y} = \begin{pmatrix} 0 & F_{y} \\ -F_{y}^{-1} & u_{y} \end{pmatrix} \qquad \tilde{T}_{y} T_{y} = \begin{pmatrix} -1 & 0 \\ -2u_{y}F_{y}^{-1} & -1 \end{pmatrix} \end{split}$$

I. Koop, Novosibirsk

Vertical beam size vs crab focus K2=sextupole strength Luminosity vs crab focus K2=sextupole strength

With k2=8 the vertical emittance blowup is < 20% Luminosity gain about 70% Vertical size rms reduction about a factor 2.5, large tails reduction

Luminosity in excess of 1e36 is achievable

Ohmi (KEK) simulations

Normalised Luminosity vs x and y tunes (Dafne parameters)

Without Crab Focus

With Crab Focus

M. Zobof, INFN

Vertical Size Blow Up (rms) vs x and y tunes (Dafne parameters)

Without Crab Focus

With Crab Focus

M. Zobof, INFN

Beam size and tails vs Crab-waist

Simulations with beam-beam code LIFETRAC

Beam parameters for DAFNE

An effective "crabbed" waist map at IP:

Optimum is shifted from the "theoretical" value V=1 to V=0.8, since it scales like $\sigma_z \theta/sqrt((\sigma_z \theta)^2 + \sigma_x^2)$ D.N. Shatilov, Novosibirsk

Relative displacement from a bunch center

Conclusion: one can expect improvement for lifetime of halo-particles!

Dafne Wigglers

Very weak luminosity dependence from damping time given the very small **bb-blowup (Dafne studies)** M. Zobov Simplified SuperB layout Crossing angle = 2*25 mrad

ILC ring & ILC FF

ILC-like rings

- OCS lattice used
- Scaled to 4 and 7 GeV
- Shortened to 3.2 Km
- Wiggler field 1.4 T (permanent magnet)
- 4 GeV has 5.6 m long bends
- 7 GeV has 10.6 m long bends

M. Biagini, INFN

	SBF 4 GeV	SBF 7 GeV	
C (m)	3251.	3251.	
B _w (T)	1.4	1.4	
L _{bend} (m)	5.6	10.6	
N. bends	96	96	
B _{bend} (T)	0.155	0.144	
Uo (MeV/turn)	4.4	6.4	
N. wigg. cells	8	4	
τ _x (ms)	19.8	24.	
τ _s (ms)	10.	12.	
ε _x (nm)	0.38	0.565	
σ _E	1.1x10 ⁻³	1.32x10 ⁻³	cm σ _E =0.85x10 ⁻³
I _{beam} (A)	2.5	1.4	
P _{beam} (MW)	11.	9.	

Total Wall Power (60% transfer eff.): 32 MW

International Linear Collider at Stanjord Linear Accelerator Center electron cloud

M. Pivi – L. Wang – T. Raubenheimer - P. Raimondi, SLAC

rnational Linear Collider Curved clearing electrodes for tanford Linear Accelerator Center electron cloud

using POSINST

M. Pivi – P. Raimondi, SLAC, Mar 2006

35m long ILC-Like FF, seems to be able to deliver the small σ_y and β_y Insertion in the ring seems ok (Biagini talk) Further simplification-optimization possible by integrating crab-focus and chromatic correction A.Servi, SLAC

- Parameters optimizations and Luminosity scaling laws not yet done (in progress by D. Shatilov, M. Zobov and Ohmi)
- Possible other solutions with large vertical emittance/beta, for example: half the number of bunches with twice the bunch charge and 4 times the vertical emittance give roughly the same luminosity
- Possible to reduce the requirements on damping time, although the ILC-Ring naturally produces a small damping time, because of the wigglers needed for the small emittance.
- Ring and FF design in progress, but a lot has to be done...

SuperB-ILC synergy

- Potential size and cost reduction of the ILC complex
- Potential decrease of the ILC commissioning time
- Potential increase of the ILC performances
- Could the ILC community benefit by having an operating positron damping ring just 3km long delivering 6000 bunches with 2e10 particles/bunch?
- Could the ILC community benefit by having an operating BDS with ILC-IP beams sizes and betas?

Conclusions (1)

- Possible fall back on the existing factories
- The crabbed waist potentially beneficial also for the current factories
- Possibility to simultaneously boost the performances of the existing machines and do SuperB R&D
- Worth to study possible benefits also for LHC

D.Shatilov, Novosibirsk

Parameters for a PEP IR upgrade $\varepsilon_{\rm x} = 20 \text{ nm } \varepsilon_{\rm y} = 0.20 \text{ nm}$ $\sigma_{\rm x} = 14.4 \ \mu {\rm m}$ $\sigma_v = 0.4 \ \mu m$ $\sigma_{z} = 10 \text{ mm}$ $\sigma_{\rm E} = 7 \times 10^{-4}$ $\beta_{\rm x} = 10 \, \rm mm$ $\beta_v = 0.8 \text{ mm}$ C = 2.2 km $f_{col} = 238 \text{ MHz}$ $\Phi = 2 \times 14 \text{ mrad}$ $N_1 = 7.9 \times 10^{10}$ (3.0Amps) $N_2 = 4.4 \times 10^{10}$ (1.7Amps) $L=1.00*10^{35}$

With the present achieved beam parameters (currents, emittances, bunchlenghts etc) a luminosity in excess of 10³³ is predicted.

With 2Amps/2Amps more than 2*10³³ is possible Beam-Beam limit is way above the reachable currents

Conclusions (2)

Solution with ILC DR + ILC FF seems extremely promising:

- Crossing angle of about 25mrad
- Requires virtually no extra R&D
- Uses all the work done for ILC (e.g. Damping-Ring and FF)
- 100% Synergy with ILC
- IR extremely simplified
- Beam stay clear about 20sigmas supposing 1cm radius beam pipe
- Beam Currents around 2.0Amps
- Background should be better than PEP and KEKB
- Possibly to operate at the τ energy with L=10^{35}
- Total cost less than half of the ILC e+ DRs (2 e+ 6km rings in ILC)
- Power around 30MW, further optimization possible
- Possible to reuse PEP RF system, power supplies, Vacuum pumps, etc., further reducing the overall cost
- Needs the standard injector system, probably a C-band 7GeV linac like in KEKB upgrade (around 100ME)