Why Super-B?

Zoltan Ligeti

SLAC, June 14

- Introduction
- Bounds on non-SM contributions
 Brief look at B_d and B_s mixing
- Some future clean measurements
 Few examples fuller list in many reports
- Exciting theoretical developments
 Zero-bin factorization, annihilation
- Conclusions

[Höcker & ZL, hep-ph/0605217, to appear in ARNPS]

We do not understand much about flavor

- SM flavor problem: hierarchy of masses and mixing angles
- NP flavor problem: TeV scale (hierarchy problem) \ll flavor & CPV scale

$$\epsilon_K: \frac{(s\bar{d})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^4 \,\mathrm{TeV}, \qquad B_d \text{ mixing: } \frac{(b\bar{d})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^3 \,\mathrm{TeV}$$

- Almost all extensions of the SM have new sources of CPV & flavor conversion (e.g., 43 new CPV phases in SUSY)
- A major constraint for model building

(flavor structure: universality, heavy squarks, squark-quark alignment, ...)

 The observed baryon asymmetry of the Universe requires CPV beyond the SM (not necessarily in flavor changing processes, nor in the quark sector)

- Flavor and *CP* violation are excellent probes of New Physics
 - β -decay predicted neutrino (Fermi)
 - Absence of $K_L \rightarrow \mu \mu$ predicted charm (GIM)
 - ϵ_K predicted 3rd generation (KM)
 - Δm_K predicted charm mass (GL)
 - Δm_B predicted heavy top
- If there is NP at the TEV scale, it must have a very special flavor / CP structure
- Or will the LHC find just a SM-like Higgs?

What is usually said to be done

• Exhibit hierarchical structure of CKM ($\lambda \simeq 0.23$)

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• Measurements often shown in the $(\bar{\rho}, \bar{\eta})$ plane — a "language" to compare data

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

Angles and sides are directly measurable in numerous different processes

Goal: overconstraining measurements sensitive to different short dist. phys.

Remarkable progress at ${\cal B}$ factories

• The CKM picture is verified \Rightarrow looking for corrections rather than alternatives

Missing messages

• $\mathcal{O}(20-30\%)$ non-SM contribution to most loop-mediated transitions still allowed

Stopping at $O(1 \text{ ab}^{-1})$ datasets and giving up approaching percent level constraints would be a little bit like not having LEP after SPS, or ILC after LHC

• O(20-30%) non-SM contribution to most loop-mediated transitions still allowed

Stopping at $O(1 \text{ ab}^{-1})$ datasets and giving up approaching percent level constraints would be a little bit like not having LEP after SPS, or ILC after LHC

- We continue to fail to convey excitement of this program to non-experts:
 - The interesting messages are not simple to explain
 Not just one, single, critical measurement; theory is often quite complicated
 - The simple messages are not interesting Lincoln Wolfenstein does not care what ρ and η are, so why should you / I / ...?

Bounds on non-SM

Important features of the SM

- The SM flavor structure is very special:
 - Single source of *CP* violation in CC interactions
 - Suppressions due to hierarchy of mixing angles
 - Suppression of FCNC processes (loops)
 - Suppression of FCNC chirality flips by quark masses (e.g., $S_{K^*\gamma}$)

Many suppressions that NP might not respect \Rightarrow sensitivity to very high scales

• It is interesting / worthwhile / possible to test all of these

Parameterization of NP in mixing

• Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

Concentrate on NP in mixing amplitude; two new param's for each neutral meson:

$$M_{12} = \underbrace{M_{12}^{\rm SM} r_q^2 e^{2i\theta_q}}_{M_{12}} \equiv \underbrace{M_{12}^{\rm SM} (1 + h_q e^{2i\sigma_q})}_{M_{12}}$$

easy to relate to data easy to relate to models

- Tree-level constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi \beta \alpha$)
- Observables sensitive to $\Delta F = 2$ new physics:

$$\begin{split} \Delta m_{Bq} &= r_q^2 \,\Delta m_{Bq}^{\rm SM} = |1 + h_q e^{2i\sigma q} | \Delta m_q^{\rm SM} \\ S_{\psi K} &= \sin(2\beta + 2\theta_d) = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})] \qquad S_{\rho\rho} = \sin(2\alpha - 2\theta_d) \\ S_{\psi\phi} &= \sin(2\beta_s - 2\theta_s) = \sin[2\beta_s - \arg(1 + h_s e^{2i\sigma_s})] \\ A_{\rm SL}^q &= {\rm Im} \left(\frac{\Gamma_{12}^q}{M_{12}^q r_q^2 e^{2i\theta_q}}\right) = {\rm Im} \left[\frac{\Gamma_{12}^q}{M_{12}^q (1 + h_q e^{2i\sigma_q})}\right] \qquad \Delta \Gamma_s = \Delta \Gamma_s^{\rm SM} \cos^2 2\theta_s \end{split}$$

Constraining new physics in loops

• B factories: $\bar{\rho}, \bar{\eta}$ determined from (effectively) tree-level & loop-induced processes

• $\bar{\rho}, \bar{\eta}$ constrained to SM region even in the presence of NP in loops

• ϵ_K , Δm_d , Δm_s , $|V_{ub}|$, etc., can be used to overconstrain the SM and test for NP NP: more parameters \Rightarrow independent measurements critical

The parameter space $r_d^2, heta_d$ and h_d, σ_d

 r_d^2 , θ_d : $|M_{12}/M_{12}^{SM}|$ can only differ significantly from 1 if $\arg(M_{12}/M_{12}^{SM}) \sim 0$ h_d , σ_d : NP may still be comparable to SM: $h_d = 0.23^{+0.57}_{-0.23}$, i.e., $h_d < 1.7$ (95% CL)

• Recent data restricts NP in mixing for the first time — still plenty of room left

News of the year: Δm_s

• $\Delta m_s = (17.31 + 0.33 \pm 0.07) \, \mathrm{ps}^{-1}$ [CDF, hep-ex/0606027] (prob. of bkgd fluctuation: 0.2%)

First time that sensitivity is significantly greater than where (hint of) signal is seen

CDF: $\sim 3\sigma$; world average: $\sim 4\sigma$

Weights in world average at 17.5 ps ⁻¹							
ALEPH	10.2%						
DELPHI	4.1%	LEP	14.6%				
OPAL	0.4%						
SLD	8.2%	SLC	8.2%				
CDF1	0.9%						
CDF2	67.9%	Tevatron	77.2%				
D0	8.4%						

[from O. Schneider]

A $> 5\sigma$ measurement before the LHC turns on now appears certain

New physics in $B^0_s\overline{B}^0_s$ mixing

• Before and after the measurement of Δm_s (and $\Delta \Gamma_s$):

[ZL, Papucci, Perez, hep-ph/0604112]

• To learn more about the B_s^0 system, need CP asymmetry in $B_s \rightarrow \psi \phi$, etc.

Constraints with measurement of $S_{B_s \rightarrow \psi \phi}$

• $S_{\psi\phi}$ is analog of $S_{\psi K}$ $(\sin 2\beta)$, and similarly clean

In SM: $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) = \mathcal{O}(\lambda^2)$; prediction: $\sin 2\beta_s = 0.0365 \pm 0.0020$

• Assume $S_{\psi\phi}$ measured to be SM $\pm 0.03 / \pm 0.10$ (1/0.1 yr nominal LHCb data)

Unless there is an easy-to-find narrow resonance at ATLAS & CMS, this could be (one of) the most interesting early measurements(s)

Some important processes

What are we really after?

• At scale m_b , flavor changing processes are mediated by $\mathcal{O}(100)$ higher dimension operators

Depend only on a few parameters in SM \Rightarrow intricate correlations between s, c, b, t decays

E.g.: in SM
$$\frac{\Delta m_d}{\Delta m_s}$$
, $\frac{b \to d\gamma}{b \to s\gamma}$, $\frac{b \to d\ell^+ \ell^-}{b \to s\ell^+ \ell^-} \propto \left| \frac{V_{td}}{V_{ts}} \right|$, but test different short dist. physics

- Question: does the SM (i.e., integrating out virtual W, Z, and quarks in tree and loop diagrams) explain all flavor changing interactions? Right coeff's? Right op's?
- New physics most likely to modify SM loops, so study: mixing & rare decays, compare tree and loop processes, CP asymmetries

CPV in $b \rightarrow s, d$ penguins

• Measuring same angle in decays sensitive to different short distance physics may give best sensitivity to NP ($f_s = \phi K_S$, $\eta' K_S$, etc.)

Amplitudes with one weak phase expected to dominate:

$$\overline{A} = \underbrace{V_{cb}V_{cs}^*}_{\mathcal{O}(\lambda^2)} \underbrace{\langle "P" \rangle}_{1} + \underbrace{V_{ub}V_{us}^*}_{\mathcal{O}(\lambda^4)} \underbrace{\langle "P+T_u" \rangle}_{\mathcal{O}(1)}$$

SM: expect: $S_{f_s} - S_{\psi K}$ and $C_{f_s} \lesssim 0.05$

NP: $S_{f_s} \neq S_{\psi K}$ possible; expect mode-dependent S_f Depend on size & phase of SM and NP amplitude

NP could enter $S_{\psi K}$ mainly in mixing, while S_{f_s} through both mixing and decay

Interesting to pursue independent of present results — there is room left for NP

Is there NP in $b \rightarrow s$ transitions?

f_{CP}	SM predictions my estimates*	for $(-\eta_{f_{CP}}S_{f_C})$ BHNR	$_{CP}-\sin 2eta)$ Beneke	$-\eta_{f_{CP}}S_{f_{CP}}$
ψK	0.01			$+0.687 \pm 0.032$
$\eta' K$	0.05	$+0.01^{+0.01}_{-0.02}$	$+0.01^{+0.01}_{-0.01}$	$+0.48\pm0.09$
ϕK	0.05	+0.02	$+0.02\substack{+0.01\\-0.01}$	$+0.47\pm0.19$
$\pi^0 K_S$	0.15	$+0.06\substack{+0.04\\-0.03}$	$+0.07\substack{+0.05\\-0.04}$	$+0.31\pm0.26$
$K^+K^-K_S$	0.15			$+0.51\pm0.17$
$K_S K_S K_S$	0.15			$+0.61\pm0.23$
f^0K_S	0.25			$+0.75 \pm 0.24$
ωK_S	0.25	$+0.19\substack{+0.06 \\ -0.14}$	$+0.13\substack{+0.08 \\ -0.08}$	$+0.63\pm0.30$

* What I consider reasonable limits (strict bounds worse, model calculations better)

Buchalla, Hiller, Nir, Raz and Beneke use QCDF; SU(3) bounds weaker [Grossman, ZL, Nir, Quinn]

- Estimates model dependent: theory has to develop further to firm up predictions There are also SM predictions with $S_{\eta'K^0} - \sin 2\beta < 0$ [Williamson & Zupan, hep-ph/0601214]
- Will significance of hints of deviations from SM increase or decrease...?

α from $B \rightarrow \rho \rho, \ \rho \pi, \ \pi \pi$

• $S_{\rho^+\rho^-} = \sin[(B\text{-mix} = -2\beta) + (\overline{A}/A = -2\gamma + ...) + ...] = \sin(2\alpha) + \text{small}$ (1) Longitudinal polarization dominates (could be mixed *CP*-even/odd) (2) Small rate: $\mathcal{B}(B \to \rho^0 \rho^0) < 1.1 \times 10^{-6} (90\% \text{ CL}) \Rightarrow \text{small } \Delta \alpha$ $\frac{\mathcal{B}(B \to \pi^0 \pi^0)}{\mathcal{B}(B \to \pi^+ \pi^0)} = 0.26 \pm 0.06 \text{ vs. } \frac{\mathcal{B}(B \to \rho^0 \rho^0)}{\mathcal{B}(B \to \rho^+ \rho^0)} < 0.06 (90\% \text{ CL})$

 α from $B \rightarrow \rho \rho, \ \rho \pi, \ \pi \pi$

• $S_{\rho^+\rho^-} = \sin[(B\text{-mix} = -2\beta) + (\overline{A}/A = -2\gamma + ...) + ...] = \sin(2\alpha) + \text{small}$ (1) Longitudinal polarization dominates (could be mixed *CP*-even/odd) (2) Small rate: $\mathcal{B}(B \to \rho^0 \rho^0) < 1.1 \times 10^{-6} (90\% \text{ CL}) \Rightarrow \text{small } \Delta \alpha$ $\frac{\mathcal{B}(B \to \pi^0 \pi^0)}{\mathcal{B}(B \to \pi^+ \pi^0)} = 0.26 \pm 0.06 \text{ vs.} \quad \frac{\mathcal{B}(B \to \rho^0 \rho^0)}{\mathcal{B}(B \to \rho^+ \rho^0)} < 0.06 \quad (90\% \text{ CL})$

This year the penguins started to bite

 \Rightarrow Need more data

lpha from $B ightarrow ho ho, \ ho \pi, \ \pi \pi$

•
$$S_{\rho^+\rho^-} = \sin[(B - \min x = -2\beta) + (\overline{A}/A = -2\gamma + ...) + ...] = \sin(2\alpha) + \text{small}$$

(1) Longitudinal polarization dominates (could be mixed *CP*-even/odd)
(2) Small rate: $\mathcal{B}(B \to \rho^0 \rho^0) < 1.1 \times 10^{-6} (90\% \text{ CL}) \Rightarrow \text{small } \Delta \alpha$
 $\frac{\mathcal{B}(B \to \pi^0 \pi^0)}{\mathcal{B}(B \to \pi^+ \pi^0)} = 0.26 \pm 0.06 \text{ vs. } \frac{\mathcal{B}(B \to \rho^0 \rho^0)}{\mathcal{B}(B \to \rho^+ \rho^0)} < 0.06 (90\% \text{ CL})$
• Isospin bound: $|\Delta \alpha| < 17^\circ$
 $S_{\rho^+\rho^-}$ yields: $\alpha = (100^{+13}_{-20})^\circ$
More complicated than $\pi\pi$, $I = 1$ possible due to $\Gamma_{\rho} \neq 0$; its $\mathcal{O}(\Gamma_{\rho}^2/m_{\rho}^2)$ effects can be constrained with more data [Falk, ZL, Nir, Quinn]
• All measurements combined: $\alpha = (102^{+15}_{-9})^\circ$

m

 γ from $B^\pm o DK^\pm$

• Tree level: interfere $b \to c \ (B^- \to D^0 K^-)$ and $b \to u \ (B^- \to \overline{D}{}^0 K^-)$ Need $D^0, \overline{D}{}^0 \to$ same final state; determine *B* and *D* decay amplitudes from data

Sensitivity driven by: $r_B = |A(B^- \to \overline{D}{}^0 K^-)/A(B^- \to D^0 K^-)| \sim 0.1 - 0.2$ Many variants according to D decay: D_{CP} [GLW], DCS/CA [ADS], CS/CS [GLS]

• Best measurement was: $D^0, \overline{D}{}^0 \to K_S \pi^+ \pi^-$

[Giri, Grossman, Soffer, Zupan; Bondar]

- Both amplitudes Cabibbo allowed
- Can integrate over regions in $m_{K\pi^+} m_{K\pi^-}$ Dalitz plot

Also got a lot harder this year!

Each of these methods satisfies the NIMSBHO principle: Not Inherently More Sensitive But Helps Overall (despite possible claims to the contrary...)

[Soffer @ 2004 Hawaii Super-B workshop]

\Rightarrow Need a lot more data

• Average of all measurements: $\gamma = (62^{+35}_{-25})^{\circ}$

 γ from $B^{\pm}
ightarrow DK^{\pm}$

• Tree level: interfere $b \to c \ (B^- \to D^0 K^-)$ and $b \to u \ (B^- \to \overline{D}{}^0 K^-)$ Need $D^0, \overline{D}{}^0 \to$ same final state; determine *B* and *D* decay amplitudes from data

Sensitivity driven by: $r_B = |A(B^- \to \overline{D}{}^0 K^-)/A(B^- \to D^0 K^-)| \sim 0.1 - 0.2$ Many variants according to D decay: D_{CP} [GLW], DCS/CA [ADS], CS/CS [GLS]

Rare B decays

Important probes of new physics

 $-B \rightarrow K^* \gamma$ or $X_s \gamma$: Best $m_{H^{\pm}}$ limits in 2HDM — in SUSY many param's

 $-B \rightarrow K^{(*)}\ell^+\ell^-$ or $X_s\ell^+\ell^-$: bsZ penguins, SUSY, right handed couplings

Decay	\sim SM rate	physics examples
$B \rightarrow s\gamma$	3×10^{-4}	$ V_{ts} $, H^{\pm} , SUSY
$B \to \tau \nu$	1×10^{-4}	$f_B V_{ub} $, H^\pm
$B \to s \nu \nu$	4×10^{-5}	new physics
$B \to s \ell^+ \ell^-$	6×10^{-6}	new physics
$B_s \to \tau^+ \tau^-$	1×10^{-6}	
$B \to s \tau^+ \tau^-$	5×10^{-7}	÷
$B ightarrow \mu u$	5×10^{-7}	
$B_s \to \mu^+ \mu^-$	4×10^{-9}	
$B \to \mu^+ \mu^-$	$2 imes 10^{-10}$	

A crude guide ($\ell = e \text{ or } \mu$)

Replacing $b \rightarrow s$ by $b \rightarrow d$ costs a factor ~ 20 (in SM); interesting to test in both: rates, CP asymmetries, etc.

In $B \rightarrow q l_1 l_2$ decays expect 10–20% K^*/ρ , and 5–10% K/π (model dept)

Many of these (cleanest inclusive ones) impossible at hadron colliders

Some theory excitements

B physics has been and continues to be fertile ground for theoretical developments

HQET, ChPT, SCET, Lattice QCD, ...

BBNS (QCDF) factorization proposal:

 $\langle \pi \pi | O_i | B \rangle \sim F_{B \to \pi} T(x) \otimes \phi_{\pi}(x) + T(\xi, x, y) \otimes \phi_B(\xi) \otimes \phi_{\pi}(x) \otimes \phi_{\pi}(y)$ The KLS (pQCD) formulae involve only ϕ_B , ϕ_{M_1} , ϕ_{M_2} , with k_{\perp} dependence

SCET: $\langle \pi \pi | O_i | B \rangle \sim \sum_{ij} T(x, y) \otimes \left[J_{ij}(x, z_k, k_\ell^+) \otimes \phi^i_\pi(z_k) \phi^j_B(k_\ell^+) \right] \otimes \phi_\pi(y)$

Weak annihilation (WA) gives power suppressed (Λ/E) corrections

Yields convolution integrals of the form: $\int_{0}^{1} \frac{\mathrm{d}x}{x^2} \phi_{\pi}(x), \qquad \phi_{\pi}(x) \sim 6x(1-x)$

BBNS: interpret as IR sensitivity \Rightarrow modelled by complex parameters KLS: rendered finite by k_{\perp} , but sizable and complex contributions

Subtractions for divergent convolutions

• Choose interpolating field for pion to be made of collinear quarks $(p_i^- \neq 0)$

$$[\pi_n^+(p_\pi)|\bar{u}_{n,p_1^-}\,\bar{\eta}\gamma_5\,d_{n,-p_2^-}|0\rangle = -if_\pi\,\delta(\bar{n}\cdot p_\pi - p_1^- - p_2^-)\,\phi_\pi(x_1,x_2,\mu)$$

Zero-bin: $p_i^- \neq 0$ (collinear quark with $p_i^- = 0$ is not a collinear quark)

Divergence in $\int_0^1 \phi_{\pi}(x)/x^2$ related to one of the quarks becoming soft near x = 0

• Zero-bin ensures there is no contribution from $x_i = p_i^-/(\bar{n} \cdot p_\pi) \sim 0$

Subtractions implied by zero-bin depend on the singularity of integrals, e.g.:

Weak annihilation

Match onto six-quark operators of the form (only hard contributions, no jet scale):

$$O_{1d}^{(ann)} = \sum_{q} \underbrace{\left[\bar{d}_{s}\Gamma_{s} b_{v}\right]}_{\text{gives } f_{B}} \underbrace{\left[\bar{u}_{\bar{n},\omega_{2}}\Gamma_{\bar{n}} q_{\bar{n},\omega_{3}}\right]}_{\pi \text{ in } \bar{n} \text{ direction }} \underbrace{\left[\bar{q}_{n,\omega_{1}}\Gamma_{n} u_{n,\omega_{4}}\right]}_{\pi \text{ in } n \text{ direction }}$$

[Arnesen, ZL, Rothstein, Stewart]

Similar to leading order contributions to the amplitude

- At leading nonvanishing order in Λ/m_b and α_s :
 - Real, because there is no way for these matrix elements to be complex
 - Calculable, and do not introduce nonperturbative inputs beyond those that occur in leading order factorization formula
- Constrain parameters in QCDF and pQCD to be real, which have been taken to be complex ⇒ fewer unknowns
- Can try to disentangle charm penguin amplitudes from weak annihilation, etc.

Final comments

- If there are new particles at TeV scale, new flavor physics could show up any time
- Goal for further flavor physics experiments:
 - If NP is seen in flavor physics: study it in as many different operators as possible If NP is not seen in flavor physics: achieve what is theoretically possible could teach us a lot about the NP seen at LHC
 - The program as a whole is a lot more interesting than any single measurement
- Try to distinguish: One / many sources of CPV? Only in CC interactions? NP couples mostly to up / down sector? 3rd / all generations? $\Delta(F) = 2$ or 1?
- Political and technical realities aside, I think the case is compelling Many interesting measurements, complementarity with high energy frontier

Theoretical limitations (continuum methods)

Many interesting decay modes will not be theory limited for a long time

Measurement (in SM)	Theoretical limit	Present error	
$B ightarrow \psi K \ (eta)$	$\sim 0.2^{\circ}$	1.3°	
$B ightarrow \eta' K, \; \phi K$ (eta)	$\sim 2^{\circ}$	$5,~10^\circ$	
$B ightarrow ho ho,\ ho\pi,\ \pi\pi$ ($lpha$)	$\sim 1^{\circ}$	$\sim 13^{\circ}$	
$B ightarrow DK$ (γ)	$\ll 1^{\circ}$	$\sim 20^{\circ}$	
$B_s ightarrow \psi \phi ~~$ (eta_s)	$\sim 0.2^{\circ}$		
$B_s ightarrow D_s K ~(\gamma - 2 eta_s)$	$\ll 1^{\circ}$	_	
$ V_{cb} $	$\sim 1\%$	$\sim 2\%$	
$\left V_{ub} ight $	$\sim 5\%$	$\sim 10\%$	
$B \to X_s \gamma$	$\sim 5\%$	$\sim 10\%$	
$B \to X_s \ell^+ \ell^-$	$\sim 5\%$	$\sim 20\%$	
$B \to K^{(*)} \nu \bar{\nu}$	$\sim 5\%$	—	

For some entries, the shown theoretical limits require more complicated analyses It would require major breakthroughs to go significantly below these theory limits

Conclusions

- Despite tremendous progress, new physics in neutral meson mixings may still be comparable to the SM contributions (sensitive to scales \gg LHC)
- Measurement of $S_{\psi\phi}$, etc., at LHC(b) will constrain B_s sector much better Precise measurements in $B_{u,d}$ sector is crucial for this as well
- Exciting theory progress: zero-bin factorization => no divergent convolutions
 Annihilation & "chirally enhanced" hard scattering contributions better understood
- If new physics shows up in the flavor sector, pursuing this program is a no-brainer
 If no unambiguous sign of NP is found in the flavor sector, constraints may still provide important clues to model building in the LHC era

Backup slides