
EDM

Extensible Display Manager

John Sinclair

EDM: Extensible Display Manager
by John Sinclair

Copyright © 2002 John Sinclair

This document can be freely redistributed according to the terms of the GNU General Public License.

Table of Contents
1. Overview...

Introduction..
Other EPICS Display Managers...
Display Widgets...
Editing Features..

2. Software Installation..

System Requirements...
Installation Procedure...

3. System Configuration..

Location and contents of component files..
edmObjects...
edmPvObjects...

Color File Configuration..
Static Colors..
Dyanmic Colors..
The Color Palette and Functional Name Menu..
Color Aliases..
Alarm Colors..
Example Color File...

Font File Configuration..
Version 3 Font File Format..

Font Groups...
Version 2 Font File Format..
Version 1 Font File Format..
Scalable Fonts...
Example Font File...

Printing...
The Print Definition File...
Directives..
printDialog..
printCommand..
printToFileCommand...
optionDefaults...
option..

Dialog Field Type = menu..
Dialog Field Type = toggle...
Dialog Field Type = text...

Example Print Definition File...

4. Program Execution, Command Line Options, and Environment...

Execution...
Environment...
Special Purpose Environment Variables..

3

5. The Project Environment...

Colors, Fonts, and Display Schemes...
Display Schemes..
Display Scheme Sets..

Step 1..
Step 2..

Location of edm component and PV component files..
Component Management...
Location of edm help files...
Display file search path..
Location of edm tmp files..

6. PV Types...

Introduction..
EPICS - Prefix = EPICS\ (or NULL)...
Calculations - Prefix = CALC\...
Local - Prefix = LOC\..

Specifying local PVs...
Scope...

7. Creating and Editing Display Windows..

File Operations...
Setting the Default Working Directory..
Creating a New Display File..
Opening an Existing Display File..

Using the Mouse..
Some Definitions..
Simple Select Operations...
Multiple Select Operations...
Create/Edit Operations...
Move and Resize Operations..
Execute Mode Operations..

Display Window Attributes...
Creating Objects (except lines)..
Editing Objects (except lines)..
Creating Line Objects..
Editing Line Objects..
Aligning Objects..
Miscellaneous Operations..

4

8. Display Execution...

9. Macro Symbols and Values...

10. Internal Symbols..

11. EDM and CVS..

12. Remote File Access...

Introduction..
Example Configurations...

Example 1 - Simple Remote Access...
Example 2 - Remote File Access Only...

13. Input Filters..

Introduction..
File Format for edmFilters...
Executable Requirements...

5

List of Figures
1-1. Example edm Widgets...
3-1. Example edm Color Palette..
3-2. Example edm Color Name Menu..
3-3. Poor Quality Font...
3-4. High Quality Font..
3-5. Example Print Dialog Box...
5-1. Display Schemes..

6

Chapter 1. Overview

Introduction
With the introduction of tools like EPICS and VSystem, the task of building complex distributed control
systems has been greatly simplified. Furthermore, extending both the content and functionality of these
systems is a trivial task. This is generally not the case for applications that have been built on top of
these core components and in most cases this is acceptable. There is one class of applications, namely
interactive graphical display tools, where the lack of user extensibility is a severe liability. This deficien-
cy arrests the growth of the suite of common display elements and prevents the development and cus-
tomization of site specific elements for special requirements. Just as EPICS record and device support is
easily extended without in-depth knowledge of the core software, so also should the elements of a dis-
play tool be extensible, again without in-depth knowledge of either the core behavior of the display tool
or the more esoteric details of window-based graphical user interface systems.

Edm, one example of an EPICS display manager, is an attempt to fulfill this objective. A display man-
ager is a tool that manages a collection of active displays. It provides the ability to create and edit dis-
play content (like graphics, text, meters, sliders, buttons, plots, etc.) and uses some facility (.e.g EPICS
channel access) to execute the same content resulting in the dynamic presentation of live data.

Other EPICS Display Managers
Additional examples of display managers for EPICS include the following:

• medm

• dm2k

• edd/dm

Display Widgets
The following is a list of some of the more common edm widgets.

See edm online help topic Objects for more information.

• Graphics

• Lines

• Rectangle

• Circle

• Arc

• Static Text

• GIF Image

• PNG Image

• HTML

7

Chapter 1. Overview
• Dynamic Symbols (built from graphic elements)

• Monitors

• Meter

• Bar

• Message Box

• Text

• Byte

• X-Y Graph

• Symbols (built from graphic elements)

• Controls

• Text

• Slider

• Motif Slider (medm-like)

• Button

• Menu Button

• Choice Button

• Radio Box

• Message Button

• Up/Down Button

• Exit Button

• Related Display

• Shell Command

• Menu Mux (multiplexor)

• Shell Command

• Multiplexor

Figure 1-1 is a screenshot showing several display elements provided by the base widject li-
brary.

8

Figure 1-1. Example edm Widgets

9

Chapter 1. Overview

Editing Features
Editing functions include the following:

• Display grid/Snap to grid

• Orthogonal line draw/Orthogonal move

• Copy/Cut/Paste (across different displays)

• Raise/Lower

• Group/Ungroup

• Rotate 90/Flip

• Select group PV name edit

• Select group display info edit (colors/fonts)

• Align select group

• Center select group

• Uniformly size select group

• Distribute select group

10

Chapter 2. Software Installation

System Requirements
Motif is required to build edm. OpenMotif has been used on Linux platforms successfully. LessTif is
not currently recommended.

Image widgets require the following external libraries:

• GIF Support: libgif

• PNG Support: libpng

Both libraries are publically available and can be readily found from most web search engines sites.

Installation Procedure
The edm distribution is packaged in a tar file with a name like edm-1-9-1f.tgz. In this case the name cor-
responds to major version 1, minor version 9, and release 1f.

Place the tar file in the src directory under the EPICS extensions directory. Use gunzip to uncompress
the file and then use tar to unpack the archive. Edm should then build like any other EPICS extension.

Unlike most other EPICS extensions, edm requires additional configuration after installation. See chap-
ter 3 before attempting to execute edm.

Example:

1. gunzip edm-1-9-1f.tgz

2. tar -xvf edm-1-9-1f.tar

3. cd edm

4. make

11

Chapter 3. System Configuration
The following items need to be configured after installation.

• Contents and location of component files

• Content and location of color file

• Content and location of font file

• Contents of print definition file

Location and contents of component files

edmObjects

Edm uses a registry that maps widgets to a class name and shareable library path. The registry
is contained in a file named edmObjects which resides in /etc/edm or the directory pointed to
by the environment variable EDMOBJECTS.

When edm is installed, an example edmObjects file is included as part of the installation but
this file should not be used in the production edm environment. Instead, a new file should be
created by edm itself. This is accomplished as follows:

• Choose a location for the edmObjects file, make EDMOBJECTS point to this location, and
make sure you have write access.

• Locate each edm component library. After the build, these reside in .../extensions/lib/(ARCH
DEPENDENT)/ and, except for libEdmBase.so, they all have uuid-like names (however, not
all files so named are component files).

Example names:

libEdmBase.so

lib7e1b4e6f-239d-4650-95e6-a040d41ba633.so

You may verify that a library is an edm component file as the following example illustrates:

edm -show /usr/local/src/epics/supTop/R3.13.6/extensions/lib/Linux/libEdmBase.so

• For each component library file, execute edm with the -add option as follows:

edm -add (full absolute path to library)/(library name)

e.g. edm -add /usr/local/src/epics/supTop/R3.13.6/extensions/lib/Linux/libEdmBase.so

After populating edmObjects in this manner, you may wish to manually manage it with a text
editor. If so, the number of objects at the top must match the number of registry entries. The di-
rectory location references may be replaced with the environment variable EDMLIBS. The fol-
lowing shows two equivalent entries (assuming, of course, that EDMLIBS has been set to /
epics/extensions/lib/linux-x86).

• activeLineClass /epics/extensions/lib/linux-x86/libEdmBase.so Graphics Lines

• activeLineClass $(EDMLIBS)/libEdmBase.so Graphics Lines

The use of the EDMLIBS variable allows different versions of edm to reference the same ed-

Chapter 3. System Configuration

mObjects file.

edmPvObjects

A similar exercise needs to be performed for a PV component registry file. In this case the environment
variable is EDMPVOBJECTS, the file is edmPvObjects, and the only library is libEpics.so.

Do the following:

• Choose a location for the edmPvObjects file, make EDMPVOBJECTS point to this location, and
make sure you have write access.

• Locate the edm pv component library. After the build, this file reside in .../extensions/lib/(ARCH
DEPENDENT)/ and is named libEpics.so.

You may verify that a library is an edm pv component file as the following example illustrates:

edm -showpv /usr/local/src/epics/supTop/R3.13.6/extensions/lib/Linux/libEpics.so

• Add the pv component library to the registry file as follows:

edm -addpv (full absolute path to library)/(library name)

e.g. edm -addpv /usr/local/src/epics/supTop/R3.13.6/extensions/lib/Linux/libEpics.so

Color File Configuration
The edm color file must be manually created using a text editor. The file name is normally colors.list
and the default location is /etc/edm. The location may be overridden on a site-by-site or project-by-
project basis with the environment variable EDMFILES. The name and location may be overridden on a
site-by-site or project-by-project basis with the environment variable EDMCOLORFILE.

The first line of the color file must contain the color file format version id as three numbers correspond-
ing to major, minor, and release. This should currently be

4 0 0

The next three items in the color file are described as follows:

• The blink period given in milliseconds, e.g.

blinkms=750

• The number of columns in the color palette, e.g.

columns=5

• The maximum number of RGB component values (256 or 65536), e.g.

max=0x10000

This is one more than the largest value that may be specified for any RGB component.

So, the first few lines of the colors.list file might look like this

4 0 0

blinkms=750
max=0x10000

13

columns=5

Static Colors

Edm stores and references colors as indices rather than RGB values. Colors can be selected vi-
sually or functionally, i.e. from a palette of colors or from a menu of color names. The edm
color file establishes this mapping of index to RGB and functional name. In this manner, a list
of static colors are specified.

An example static color declaration is shown below:

static 25 Controller { 0 0 65535 } # blue

blinking is specified by 2 RGB values
static 26 "blinking red" { 65535 0 0 41120 0 0 }

In this example, note the following:

• The first color's index is 25 and functional name is Controller.

• The second color's index is 26 and functional name is blinking red.

• The name Controller could have been enclosed in quotes but this is not necessary.

• The name blinking red must be enclosed in quotes and, in general, this is true for any color
name containing white space.

• Comments are introduced by the # character and may be placed anywhere but on the very
first line of the color file.

Dyanmic Colors

In addition, another list of dynamic colors may be included where the mapping is index to col-
or rule and name. A color rule is an expression that maps a color name to a set of RGB values
depending on the range of an associated color PV. A color rule might look like the following:

rule 100 exampleRule {
 =100 || =200 : strange
 >=20 : invisible
 >0 && <10 : red
 >=10 && <20 : "blinking red"
 default : green
}

In this example, note the following:

• The color index is 100 and the functional name is exampleRule.

• invisible is a color name with special behavior that causes some widgets to disappear (the
widget must support invisibility by color). Even though the color name invisible is special, it
must nevertheless be defined as a static color. The specified RGB value is utilized by
widgets that do not support invisibility by color.

• The names strange, invisible, red, blinking red, and green must be valid color names defined
elsewhere in the color file

• Rule evaluation goes from top to bottom, stopping at the first true condition. The default
clause must therefore come last.

Chapter 3. System Configuration

• Symbols

• = equal to

• > greater than

• >= greater than or equal to

• < less than

• <= less than or equal to

• || logical or

• && logical and

The Color Palette and Functional Name Menu

The color palette shown in Figure 3-1 and color name menu in Figure 3-2 corresponds to the following
color file information:

4 0 0

blinkms=750
max=0x10000
columns=5

static 6 white { 0xffff 0xffff 0xffff }
static 7 black { 0 0 0 }
static 8 grey1 { 50000 50000 50000 }
static 9 grey2 { 40000 40000 40000 }
static 3 "dark red" { 0xffff 0 0 }
static 4 "dark green" { 0 0xffff 0 }
static 5 "dark blue" { 0 0 0xffff }
static 0 red { 0xffff 0 0 }
static 1 green { 0 0xffff 0 }
static 2 blue { 0 0 0xffff }

menumap {
red
green
blue
"dark red"
"dark green"
"dark blue"
}

Note that there are 5 columns as given by

columns=5

 and that the palette is populated from top-left to bottom-right, row by row, according to the entry order
of color indices in the color file. So, white is the first specified color in the file and also the first color in
the palette. Likewise, blue is last in both places.

15

Figure 3-1. Example edm Color Palette

The listing order in the color name menu is explicitly given in the menumap section of the col-
or file. This is clear by comparing the menumap content to the menu shown in Figure 3-2. Note
that some colors have been intentionally omitted from the menu.

Figure 3-2. Example edm Color Name Menu

Color Aliases

Some widgets, like the X-Y plot, require many default colors. Instead of referencing color
names or indices (which may not exist at a given site), they instead reference color aliases. The
X-Y plot uses the following color alias names: trace0, trace1, ... trace9.

These color alias names are included in the color file to establish this mapping for a given con-
figuration. An example is shown below.

alias trace0 red
alias trace1 green
alias trace2 blue
alias trace3 "dark red"
alias trace4 "dark green"
alias trace5 "dark blue"
alias trace6 black
alias trace7 white
alias trace8 grey1
alias trace9 grey2

Alarm Colors

The alarm section of the color file maps color names into EPICS alarm states. An example is
given below.

Chapter 3. System Configuration

alarm {
 disconnected : grey1
 invalid : grey2
 minor : blue
 major : red
 noalarm : green
}

In this case, all alarm sensitive content in the noalarm state is shown as green.

The following causes alarm sensitive content in the noalarm state to be rendered with user specified col-
ors:

alarm {
 disconnected : grey1
 invalid : grey2
 minor : blue
 major : red
 noalarm : *
}

Example Color File

The following is an example of an entire edm color file.

4 0 0

blinkms=750
max=0x10000
columns=5

alias trace0 red
alias trace1 green
alias trace2 blue
alias trace3 "dark red"
alias trace4 "dark green"
alias trace5 "dark blue"
alias trace6 black
alias trace7 white
alias trace8 grey1
alias trace9 grey2

static 6 white { 0xffff 0xffff 0xffff }
static 7 black { 0 0 0 }
static 8 grey1 { 50000 50000 50000 }
static 9 grey2 { 40000 40000 40000 }
static 3 "dark red" { 0xafff 0 0 }
static 4 "dark green" { 0 0xafff 0 }
static 5 "dark blue" { 0 0 0xafff }
static 0 red { 0xffff 0 0 }
static 1 green { 0 0xffff 0 }
static 2 blue { 0 0 0xffff }
static 10 "blink red" { 0xffff 0 0 0x3fff 0 0 }

17

static 11 invisible { 0 0 0 }

rule 12 rule1 {
 =100 || =200 : grey1
 >=20 : invisible
 >0 && <10 : red
 >=10 && <20 : "blink red"
 default : green
}

menumap {
red
green
blue
"dark red"
"dark green"
"dark blue"
rule1
}

alarm {
 disconnected : grey1
 invalid : grey2
 minor : blue
 major : red
 noalarm : *
}

Font File Configuration
The edm font file must be manually created using a text editor. The file name is always
fonts.list and the default location is /etc/edm. The location may be overridden on a site-by-site
or project-by-project basis with the environment variable EDMFILES. The name and location
may be overridden on a site-by-site or project-by-project basis with the environment variable
EDMFONTFILE.

All edm fonts must be explicitly specified in the font file.

Version 3 Font File Format

The version 3 font file format accomodates blank lines and comment lines. Comment lines
must contain '#' as the first non white-space character.

The first line of the font file must contain the file version id as three numbers corresponding to
major, minor, and release. Currently, this should be

3 0 0

The next two lines in the font file are default font tags that are used to resolve unknown font
references. The lines look something like the following:

helvetica-medium-r-10.0
helvetica-medium-r-12.0

Chapter 3. System Configuration

The first tag, in this example helvetica-medium-r-10.0, is used as a substitute for an invalid font refer-
enced in a display file.

The second tag, in this example helvetica-medium-r-18.0, is used as a default font for creating new text
when no default has been specified. Specifying a default font is described elsewhere.

The remaining lines specify available fonts. The information is the same as for previous file versions but
the form is highly condensed and the font name may now be arbitrarily assigned (previously, the font
family mapped directly to the font name).

Note that for all font file versions, blanks in font specification lines are significant and may not be used
as separators.

Using the previous file formats, the following lines would specify 8, 10, and 12 point courier fonts. No-
tice the four groups of three sizes.

-*-courier-bold-o-normal--8-80-75-75-m-50-*-*
-*-courier-bold-o-normal--10-100-75-75-m-60-*-*
-*-courier-bold-o-normal--12-120-75-75-m-70-*-*
-*-courier-bold-r-normal--8-80-75-75-m-50-*-*
-*-courier-bold-r-normal--10-100-75-75-m-60-*-*
-*-courier-bold-r-normal--12-120-75-75-m-70-*-*
-*-courier-medium-o-normal--8-80-75-75-m-50-*-*
-*-courier-medium-o-normal--10-100-75-75-m-60-*-*
-*-courier-medium-o-normal--12-120-75-75-m-70-*-*
-*-courier-medium-r-normal--8-80-75-75-m-50-*-*
-*-courier-medium-r-normal--10-100-75-75-m-60-*-*
-*-courier-medium-r-normal--12-120-75-75-m-70-*-*

The version 3 file format specifies all this information on one line and the font name is idependent of
the font specification. The equivalent version 3 content is shown below.

courier=-*-courier-(medium,bold)-(r,o)-normal--*-(80,100,120)-75-75-m-*-*-*

Note that the weight option must be listed in the order (<non-bold>,<bold>). Likewise the slant option
must be ordered as (<non-italicized>,<italicized>).

For example, the gothic font would be specified as follows:

gothic=-urw-gothic l-(book,demi bold)-(r,o)-normal--0-(80,100,120)-75-75-p-0-
-

In this case, the weight modifiers are book (non-bold) and demi bold (bold). The slant modifiers are r
(non-italicized) and o (oblique, i.e. italicized).

Appending at least one tab and the keyword preload to the font spec line instructs edm to preload the
font during initialization.

courier=-*-courier-(medium,bold)-(r,o)-normal--*-(80,100,120)-75-75-m-*-*-*
 preload

Another keyword that may be specified is exact. This option requires that all fonts match the font speci-
fication exactly. The default policy is to allow another font to be used if the desired font cannot be re-
solved. As before, use a tab character as whitespace to separate keywords from one another and from
the font spec.

19

courier=-*-courier-(medium,bold)-(r,o)-normal--*-(80,100,120)-75-75-m-
--* preload exact

The above example, where the font name is the same as the family name, makes the content
compatable with previous file versions. The same font could be renamed as given below.

edm courier font=-*-courier-(medium,bold)-(r,o)-normal--*-(80,100,120)-
75-75-m-*-*-*

Of course, the actual intent is to change the font spec and keep the name unchanged. For exam-
ple, suppose the free Microsoft courier new scalable font is installed. An existing font given as

courier=-*-courier-(medium,bold)-(r,o)-normal--*-(80,100,120)-75-75-m-
--*

could be changed to

courier=-microsoft-courier new-(medium,bold)-(r,o)-normal--0-
(80,100,120)-75-75-m-0-*-*

All existing edm screens would now use the new font.

Font Groups

Version 3 files support the notion of font groups where each group contains one font name and
multiple fonts specs. An example is shown below.

helvetica={
-urw-helvetica-(medium,bold)-(r,o)-normal--0-(80,100,120)-75-75-m-0-*-*
 preload
-adobe-helvetica-(medium,bold)-(r,o)-normal--*-(80,100,120)-75-75-m-*-
- preload
-*-helvetica-(medium,bold)-(r,o)-normal--*-(80,100,120)-75-75-m-*-*-*
 preload
}

In this example, edm will first try to use the scalable urw font found in most Linux distribu-
tions. If an exact match cannot be made, the adobe font will be tried next. Finally any helvetica
font will be tried.

If all font resolution attempts fail, and if the last font spec of the group does not include the ex-
act option, it will be used to generate a fallback set of fonts, some of which may be members of
a different font family. If even this strategy fails, edm will abort.

Version 2 Font File Format

Version 2 is equivalent to version 1 with the following exceptions:

• The first line is 2 0 0.

• One or more tabs and the keyword preload may be appended to a font specification. This
instructs edm to preload the font during initialization.

Version 1 Font File Format

The version 1 font file format is somewhat inflexible. Neither blank lines nor comments of any

Chapter 3. System Configuration

kind are allowed. The first line of the font file must contain the file version id as three numbers corre-
sponding to major, minor, and release. Currently, this should be

1 1 0

The next two lines in the font file are default font tags that are used in case a font referenced in a display
file has not been specified in the font file. This might be the case if a file has been obtained from some
external site. The lines look something like the following:

helvetica-medium-r-10.0
helvetica-medium-r-12.0

The first tag, in this example helvetica-medium-r-10.0, is used as a substitute for an invalid font refer-
enced in a display file.

The second tag, in this example helvetica-medium-r-18.0, is used as a default font for creating new text
when no default has been specified. Specifying a default font is described elsewhere.

The remaining lines specify fonts, family by family, four groups of font specifications on separate lines,
in repeated blocks for each of the equivalent of bold-italic, bold-normal, medium-italic, and medium-
normal.

So, for example, the following lines would specify 8, 10, and 12 point courier fonts. Notice the four
groups of three sizes.

-*-courier-bold-o-normal--8-80-75-75-m-50-*-*
-*-courier-bold-o-normal--10-100-75-75-m-60-*-*
-*-courier-bold-o-normal--12-120-75-75-m-70-*-*
-*-courier-bold-r-normal--8-80-75-75-m-50-*-*
-*-courier-bold-r-normal--10-100-75-75-m-60-*-*
-*-courier-bold-r-normal--12-120-75-75-m-70-*-*
-*-courier-medium-o-normal--8-80-75-75-m-50-*-*
-*-courier-medium-o-normal--10-100-75-75-m-60-*-*
-*-courier-medium-o-normal--12-120-75-75-m-70-*-*
-*-courier-medium-r-normal--8-80-75-75-m-50-*-*
-*-courier-medium-r-normal--10-100-75-75-m-60-*-*
-*-courier-medium-r-normal--12-120-75-75-m-70-*-*

If desired, scalable fonts may be specified as follows.

-*-courier-bold-r-normal--0-90-75-75-m-0-*-*

Scalable Fonts

In general, it is not possible to guarantee that high quality scalable fonts will be used when appropriate.
But if the actual family name of the desired scalable font is used in the spec, it obviously will be. Figure
3-3 shows the rendering on a linux system of a 72 point New Century Schoolbook font specified as

-*-new century schoolbook-bold-r-normal--0-720-75-75-p-0-*-*

Clearly, the font renders, but the quality is poor.

21

Figure 3-3. Poor Quality Font

In Figure 3-4, when the font is specified as

-urw-new century schoolbook-bold-r-normal--0-720-75-75-p-0-*-*

The nice scalable font is used and the results are much more pleasing.

Figure 3-4. High Quality Font

Example Font File

The following is an example of an entire edm font file. This would make 8, 10, 12 and 72 point
courier and helvetica fonts available.

1 1 0
helvetica-medium-r-10.0
helvetica-medium-r-12.0
-*-courier-bold-o-normal--8-80-75-75-m-50-*-*
-*-courier-bold-o-normal--10-100-75-75-m-60-*-*
-*-courier-bold-o-normal--12-120-75-75-m-70-*-*
-*-courier-bold-o-normal--0-720-75-75-m-0-*-*
-*-courier-bold-r-normal--8-80-75-75-m-50-*-*
-*-courier-bold-r-normal--10-100-75-75-m-60-*-*
-*-courier-bold-r-normal--12-120-75-75-m-70-*-*
-*-courier-bold-r-normal--0-720-75-75-m-0-*-*
-*-courier-medium-o-normal--8-80-75-75-m-50-*-*
-*-courier-medium-o-normal--10-100-75-75-m-60-*-*
-*-courier-medium-o-normal--12-120-75-75-m-70-*-*
-*-courier-medium-o-normal--0-720-75-75-m-0-*-*
-*-courier-medium-r-normal--8-80-75-75-m-50-*-*
-*-courier-medium-r-normal--10-100-75-75-m-60-*-*
-*-courier-medium-r-normal--12-120-75-75-m-70-*-*
-*-courier-medium-r-normal--0-720-75-75-m-0-*-*
-*-helvetica-bold-o-normal--8-80-75-75-p-50-*-*
-*-helvetica-bold-o-normal--10-100-75-75-p-60-*-*
-*-helvetica-bold-o-normal--12-120-75-75-p-69-*-*
-*-helvetica-bold-o-normal--0-720-75-75-p-0-*-*
-*-helvetica-bold-r-normal--10-100-75-75-p-60-*-*
-*-helvetica-bold-r-normal--12-120-75-75-p-70-*-*
-*-helvetica-bold-r-normal--0-720-75-75-p-0-*-*
-*-helvetica-bold-r-normal--8-80-75-75-p-50-*-*
-*-helvetica-medium-o-normal--10-100-75-75-p-57-*-*
-*-helvetica-medium-o-normal--12-120-75-75-p-67-*-*
-*-helvetica-medium-o-normal--0-720-75-75-p-0-*-*

Chapter 3. System Configuration

-*-helvetica-medium-o-normal--8-80-75-75-p-47-*-*
-*-helvetica-medium-r-normal--10-100-75-75-p-56-*-*
-*-helvetica-medium-r-normal--12-120-75-75-p-67-*-*
-*-helvetica-medium-r-normal--0-720-75-75-p-0-*-*
-*-helvetica-medium-r-normal--8-80-75-75-p-46-*-*

Note that the fonts do not have to specified in size order (see ...helvetica-bold-r-normal--8... above) but
all variants must be included for each size (bold-italic, bold-normal, medium-italic, medium-normal).

Printing
Printing in edm depends on external utilities like those found in the netpbm distribution (formerly libgr-
progs). A print definition file is used to specify template print commands and to relate print options to
print dialog box fields.

The following command might be used from a Linux shell to print a window:

• xwd | xwdtopnm | pnmdepth 255 | pnmtops -center | lpr -P lp

The above command could be used in the edm print definition file verbatim. The corresponding direc-
tive follows.

• printCommand = "xwd | xwdtopnm | pnmdepth 255 | pnmtops -center | lpr -P lp"

The problem with the above example is the lack of options like page size, portrait/landscape, a list of
print queues, and so on. Furthermore, the xwd command shown above requires user interaction to select
the window to be dumped. The edm print definition file allows options to be specified and related to
fields in a print dialog box.

The Print Definition File

The following rules are used to locate the edm print defintion file:

• If the environment variable EDMPRINTDEF is defined, its value is taken as the full name, including
path, of the print defintion file.

• If EDMPRINTDEF is unset and EDMFILES is defined, then the file edmPrintDef in the directory
given by EDMFILES is used.

• If EDMPRINTDEF and EDMFILES are both unset, the file /etc/edm/edmPrintDef is used.

If the print defintion file does not exist or is invalid, printing is disabled and the print menu item is inac-
tive.

Directives

The following directives may appear in any order. Blank lines and comment lines starting with # are ig-
nored.

• printDialog (optional) - gives the maximum width and height of the dialog box

• printCommand (required) - gives command used to print to a printer

• printToFileCommand (required) - gives command used to print to a file

• optionDefaults (optional) - specifies print command option defaults

23

• option <number> (optional) - specifies a print dialog field and command option modifier

printDialog

The printDialog directive has a simple form as shown below:

• printDialog { w = 400 h = 500 }

The line "w = 400" sets the maximum dialog box width to 400 pixels and "h = 500" sets the
maximum height to 500 pixels.

printCommand

The printCommand directive includes legal shell commands and parameters. It is used when
Print To File is not selected. An example follows.

• printCommand = "xwd -display <DSPNAME> -id <WINID> | xwdtopnm | pnmdepth 255 |
pnmtops <opt1> | lpr <opt2>"

<WINID> translates to the XWindow ID of the window from which the print menu item was
selected.

<DSPNAME> translates to the current X Window display name

<optN> translates to the value of the Nth option where N ranges from 1 to 10.

printToFileCommand

The printToFileCommand directive includes legal shell commands and parameters. It is used
when Print To File is selected. An example follows.

• printToFileCommand = "xwd -display <DSPNAME> -id <WINID> | xwdtopnm | pnmdepth
255 | pnmtops <opt1> > <file>"

<WINID> translates to the XWindow ID of the window from which the print menu item was
selected.

<DSPNAME> translates to the current X Window display name

<optN> translates to the value of the Nth option where N ranges from 1 to 10.

<file> translates to the filename specified in the print dialog box by the user.

optionDefaults

Options are stored as strings. The directive optionDefaults gives the initial value of the option
strings.

• optionDefaults { opt1 = "" opt2 = "" }

option

The option directive has the following general form:

option N = <DIALOG FIELD TYPE> {
 label = "<LABEL STRING>"

 default = <DEFAULT DIALOG FIELD VALUE>

Chapter 3. System Configuration

 <OPTION STRING MODIFIERS>

}

The option attributs (label, default, modifiers) must be given in the order shown in the above example.

If <DIALOG FIELD TYPE> is menu, a string of menu items follow as shown below:

option N = menu "item1|item2|item3..." {
 .
 .
 .

Dialog Field Type = menu

For the menu type, default is given as a number from 0 to n-1, where n is the number of items in the
menu string.

Option string modifiers have the following form:

 N option [= | +=] "<OPTION STRING VALUE>"

 e.g. to replace current option with "-noturn"
 0 option = "-noturn"

 to append "-noturn" to the current option
 0 option += "-noturn"

A complete example follows.

option 2 orientation = menu "Default|Portrait|Landscape" {

 label = "Orientation"

 default = 0

 0 option += ""

 1 option += "-noturn"

 2 option += "-turn"

}

Dialog Field Type = toggle

The toggle type is much like the menu type. As before, default is given as a number, but for the toggle
type, the number must be 0 or 1.

Option string modifiers have the following form:

 [0 | 1] option [= | +=] "<OPTION STRING VALUE>"

 e.g. to replace current option with "-center"

25

 0 option = "-center"

 to append "-center" to the current option
 0 option += "-center"

A complete example follows.

option 2 center = toggle {

 label = "Center"

 default = 1

 0 option += "-nocenter"

 1 option += "-center"

}

Dialog Field Type = text

For the text type, default is given as a string.

In this case the option is modified by the option string modifier concatenated with the text en-
try value specified by the user. If a space should separated the two, it must be included at the
end of the option string modifier.

The single option string modifier has the following form:

 option [= | +=] "<OPTION STRING VALUE>"

 e.g. to replace current option with "-width " (and the user input)
 option = "-width "

 to append "-width " (and the user input) to the current option
 option += "-width "

A complete example follows.

option 2 pagewidth = text {

 label = "Page Width"

 default = "8.5"

 option += "-width "

}

Example Print Definition File

Note:

 If the environment variable EDMDEBUGMODE is set to 1,
 the print command will be displayed when a print
 operation is performed.

Chapter 3. System Configuration

A complete example edm print definition file is shown below. Figure Figure 3-5 shows the correspond-
ing print dialog box.

printDialog {
 w = 400
 h = 600
}

printCommand = "xwd <opt1> | xwdtopnm | pnmdepth 255 <opt4> | pnmtops <opt2>
<opt3> | lpr <opt5>"

printToFileCommand = "xwd <opt1> | xwdtopnm | pnmdepth 255 <opt4> | pnmtops
<opt2> <opt3> > <file>"

optionDefaults {
 opt1 = "-display <DSPNAME> "
 opt2 = ""
 opt3 = ""
 opt4 = ""
 opt5 = ""
}

option 2 orientation = menu "Default|Portrait|Landscape" {
 label = "Orientation"
 default = 0
 0 option += ""
 1 option += "-noturn"
 2 option += "-turn"
}

option 2 pagewidth = text {
 label = "Page Width"
 default = "8.5"
 option += "-width "
}

option 2 pageheight = text {
 label = "Page Height"
 default = "11"
 option += "-height "
}

option 3 scale = text {
 label = "Scale Factor"
 default = "1"
 option += "-scale "
}

option 3 center = toggle {
 label = "Center"
 default = 1
 0 option += "-nocenter"
 1 option += "-center"

27

}

option 3 fit = toggle {
 label = "Fit To Page"
 default = 0
 0 option += ""
 1 option = "-center -scale 1000"
}

option 4 invert = toggle {
 label = "Invert"
 default = 0
 0 option += ""
 1 option += "| pnminvert"
}

option 1 select = menu "Window|Desktop|Interactive" {
 label = "Select"
 default = 0
 0 option += "-silent -id <WINID>"
 1 option += "-silent -root"
 2 option += "-frame"
}

option 5 printer = menu "lp|lp0" {
 label = "Printer"
 default = 0
 0 option = "-P lp"
 1 option = "-P lp0"
}

Chapter 3. System Configuration

Figure 3-5. Example Print Dialog Box

29

Chapter 4. Program Execution, Command
Line Options, and Environment

Execution
edm [-x] [-noedit] [-ro] [-noscrl] [-m <"m1=string1,m2=string2,...">]
 [-display <display name>] [-ctl <control PV name>]
 [-color rgb or index] [-cmap] [-restart] [-server] [-one] [-open]
 [-port <port #>] [-local] [-eolc] [-(v|V|version)] [-(h|help)]
 [<display-file1 display-file2 ...>]

 -x Open all displays in execute rather than edit mode

 -noedit Remove capability to put display in edit mode, used
 with -x to produce execute only operation

 -ro Read-only mode (when the -server option is in use,
 this option affects the primary server only;
 clients inherit this attribute from the server)

 -noscrl Disable scroll bars

 -m Introduces list of macros/expansions

 e.g. -m "facility=beamline-5,section=z"

 -display Takes name of X Display

 -ctl Takes name of string process variable, writing
 a display file name to this string causes edm
 to open the display in execute mode

 Writing "* SHUTDOWN *" to the pv invokes a remote
 shutdown; edm writes its pid back into the same pv

 -color Set Colormode - index (default) or rgb

 -cmap Use private colormap if necessary

 -restart Takes pid number, restart from last shutdown

 -server Communicate with or become a
 display file server which can
 manage multiple displays

 -one Like -server but allows only one instance of edm
 per display; all instances must be launched with
 this option and all other options except -display
 should be identical

Chapter 4. Program Execution, Command Line Options,
and Environment

 -open Request server to open specified files; macros may
 be set; a server must exist and must already be
 managing the corresponding display otherwise the
 request will be ignored

 -port # Use specified TCP/IP port number (default=19000);
 may be used with -server and -one options

 -local Do not communicate with the display
 file server (default)

 -eolc Exit on last close; edm exits when last screen is closed

 -version Displays edm version information and exits
 -v
 -V

 -help Displays this text and exits
 -h
 -?

COMPONENT MANAGEMENT

edm (-add|-remove|-show) <component library file pathname>

 -add Add all library components to edmObjects

 -remove Remove all library components from edmObjects

 -show Show all components in specified library

 e.g. edm -add /usr/lib/someEdmComponents.so

PV COMPONENT MANAGEMENT

edm (-addpv|-removepv|-showpv) <PV component library file pathname>

 -addpv Add all library components to edmPvObjects

 -removepv Remove all library components from edmPvObjects

 -showpv Show all components in specified library

 e.g. edm -addpv /usr/lib/someEdmPvComponents.so

Environment
ENVIRONMENT VARIABLES

EDMFILES Location of fonts.list and colors.list
 (if unset then /etc/edm) if EDMCOLORFILE
 and EDMFONTFILE are unset

31

EDMCOLORFILE Name and location of color file

EDMFONTFILE Name and location of font file

EDMHELPFILES Location of edm help displays
 (if unset then /etc/edm)

EDMOBJECTS Location of edmObjects, the edm component
 object file (if unset then /etc/edm)

EDMPVOBJECTS Location of edmPvObjects, the edm PV component
 object file
 (if unset then /etc/edm)

EDMDATAFILES Location of display files given as

 <path 1>:<path 2>:...:<path n>
 e.g. /usr/displays:/usr/more:/usr/yetMore

 If EDMDATAFILES is not set then default
 path is ./

EDMSERVERS Comma separated list of server names

 <server1>[:merit],<server2>[:merit]...
 e.g. node1:2,node2:1.5,node3
 (node1 is preffered 2/1.5, 2/1 over nodes 2 &
3)

EDMTMPFILES Location of autosave files (default: /tmp)

EDMPRINTDEF Name of print defintion file; if unset the file
 edmPrintDef in the directory given by EDMFILES
 is used. If EDMFILES is unset, the file
 /etc/edm/edmPrintDef is used.

EDMUSERLIB Location of user shared library file (future)

EDMCOMMENTS Path to comment file (see chapter on EDM and
CVS).

EDMHTTPDOCROOT (version 1-10-x only) URL list separated by
"|".

If this environment variable is set, file access is performed using libcurl and edm must be com-
piled with the -DUSECURL=1 option. This results in a list of document root locations, each of
which are searched to resolve a file reference. All directories given in EDMFILES and ED-
MUSERFILES are relative to the document root locations.

This gives a locally executed instance of edm read-only access to display files on a web server.
Color files, font files, and png images are also obtained from the remote server. Currently, gif
files may not be remotely accessed (this will change in a future release).

Chapter 4. Program Execution, Command Line Options,
and Environment

Special Purpose Environment Variables
The following environment variables are not intended for use during normal operation of edm.

EDMCOLORMODE Set to rgb or RGB to enable rgb color mode

Help files employ rgb color mode to make display file colors somewhat site independent. When an edl
file is written in rbg mode, colors are stored as raw R-G-B values instead of as the usual color indices.
When a file written in this mode is opened, colors are chosen from the palette that best match the stored
R-G-B values.

EDMSUPERVISORMODE Set to TRUE to enable supervisor mode

Several widgets employ an optional password protected confirmation mechanism as a prerequisite to
performing some operation. This is not secure and serves primarily to remind the user that some opera-
tion is not without significant consequences. These widgets also provide a LOCK option that disables all
functional widget properties (e.g. what PV will be written, what value will be written) and inhibits fur-
ther password modification. Once the LOCK option is selected and the file saved, the widget remains
locked permanently (of course, one could simply edit the ascii edl file). Setting EDMSUPERVISOR-
MODE to TRUE unconditionally unlocks all such widgets.

EDMDEBUGMODE Set to any integer value to enable debug mode

For developer use only.

EDMXSYNC (version 1-10-x only) Puts X in sync mode

This is intended for use when testing or debugging edm. X I/O throughput is significantly degraded in
this mode.

EDMGENDOC (version 1-10-x only) Generates widget file format
 information on save

Setting this environment variable makes edm generate widget file format information when a display
file is saved. The output is sent to stdout. This gives up-to-date information to those writing display gen-
erating scripts and such.

Example output for rectangle widget:

(Rectangle)
object activeRectangleClass
beginObjectProperties
major <int>
minor <int>
release <int>
x <int>
y <int>
w <int>
h <int>
lineColor (index <int> | rgb <int> <int> <int>)
[lineAlarm [(0|1)]] /* present with no value = 1, absent = 0 */
[fill [(0|1)]] /* present with no value = 1, absent = 0 */

33

fillColor (index <int> | rgb <int> <int> <int>)
[fillAlarm [(0|1)]] /* present with no value = 1, absent = 0 */
[lineWidth <int>] /* default = 1 */
[lineStyle ("solid"|"dash")] /* default = "solid" */
[invisible [(0|1)]] /* present with no value = 1, absent = 0 */
[alarmPv <expandable string>] /* default = "" */
[visPv <expandable string>] /* default = "" */
[visInvert [(0|1)]] /* present with no value = 1, absent = 0 */
[visMin <string>] /* default = "" */
[visMax <string>] /* default = "" */
endObjectProperties

Conventions:

[a] means a is optional

(a | b) means either "a" or "b"

Arrays are specified as follows:

 a {
 0 1
 1 100
 }

In this case, a is an array of 2 elements, element 0 = 1,
element 1 = 100.

Primitive types are enclosed by "<" and ">". The following means
a takes an integer value.

 a <int>

Primitive types include

 <int>
 <real>
 <string>
 <expandable string> (i.e. macros are allowed)

Chapter 5. The Project Environment
The environment for a given project is determined by a group of files and environment variables. The
following considerations are addressed:

• Definition of the project colors, fonts, calculations, and display schemes

• Location of edm component and PV component files

• Component management

• Location of edm help files

• Display file search path

• Location of edm tmp files (.e.g for autosave)

Colors, Fonts, and Display Schemes
The environment variable EDMFILES determines the location of all related files. If EDMFILES is not
set, /etc/edm is used. Color and font configuration and content specifics have been given elsewhere in
this document so this section will only discuss display schemes in detail.

Display Schemes

Display schemes determine the default colors and fonts used when creating widgets in a given display.
The display scheme consists of the cosmetic properties shown in the display property dialog box which
may be obtained by middle-clicking on a edm display (while in edit mode) and selecting Display Prop-
erties from the menu. Figure 5-1 shows this property box and correlates the various color names with
their respective uses in a slider widget.

35

Chapter 5. The Project Environment
Figure 5-1. Display Schemes

36

When a new edm display file is created, the display scheme information is populated from the file
named default.scheme located in $EDMFILES. One task in configuring the project environment is
therefore creating this file. This is done as follows:

• Execute edm and create a new display

• Middle-click on the display background and select Display Properties from the menu

• Set the various display scheme properties as desired (Text Fg, 1st Control Fg, 2nd Control Fg, 1st
Control Bg, 2nd Control Bg, Top Shadow, Bottom Shadow, Default Text Font, Default Control Font,
Default Button Font)

• Press the OK button to close the dialog box

• Middle-click on the display background and select Save Display Scheme... from the menu

• Save the file default.scheme in the appropriate directory (as given by $EDMFILES)

• Exit edm now, don't save the display; when you next start edm the display scheme will be properly
set.

Display Scheme Sets

A single display scheme is sometimes not adequate. It may be useful to have a separate scheme for each
widget or multiple schemes, one per group of widgets per sub-system. This is possible but requires man-
ual configuration.

The file schemes.list in $EDMFILES associates a scheme set name with each edm widget over some
number of scheme sets. For example, suppose you have three sub-systems named front, middle, and
back. Furthermore, suppose you only care about rectangles, sliders, and text entry widgets. Configura-
tion consists of two steps

Step 1

Manually create (tediously) one scheme file per widget per sub-system. These could be named front-
rec.scheme, middle-rec.scheme, back-rec.scheme, front-sli.scheme, middle-sli.scheme, back-sli.scheme,
front-te.scheme, middle-te.scheme, and back-te.scheme.

Step 2

Create the file (with a text editor) schemes.list in $EDMFILES with the following contents:

front {
 Graphics-activeRectangleClass front-rec
 Controls-activeSliderClass front-sli
 Controls-activeXTextDspClass front-te
}
middle {
 Graphics-activeRectangleClass middle-rec
 Controls-activeSliderClass middle-sli
 Controls-activeXTextDspClass middle-te
}
back {
 Graphics-activeRectangleClass back-rec
 Controls-activeSliderClass back-sli

37

Chapter 5. The Project Environment
 Controls-activeXTextDspClass back-te
}

The component type-name (e.g. Graphics-activeRectangleClass) may be discovered by exam-
ining the file edmObjects, the location of which is given by the environment variable $ED-
MOBJECTS (or /etc/edm if $EDMOBJECTS is not set).

Once this file is created, a scheme set may be selected by Middle-clicking on the display back-
ground and selecting Select Scheme Set from the menu and then selecting the scheme set name
from the sub-menu.

Location of edm component and PV component files
The edm widget component file, edmObjects, resides in the directory given by $EDMOB-
JECTS or in /etc/edm if the environment variable is not set.

The edm PV component file, edmPvObjects, resides in the directory given by $EDMPVOB-
JECTS or in /etc/edm if the environment variable is not set. This file supports an obsolete class
of generic PV objects and will not be further discussed. A future version of edm will use this
file to manage the generic PV objects currently in use.

Component Management
Edm widgets are distributed as independent component packages. This serves as a quality con-
trol device and prevents a new, but perhaps unstable, component from affecting the stability of
a previous configuration. The new component may be installed, tested, and subsequently, if a
problem arises, uninstalled without any code modification.

As an example, consider the following html component which happens to be packaged sepa-
rately. The library file name is libHtml.so.

The package contents may be viewed as follows:

edm -show /myPath/libHtml.so

Edm component file is ./edmObjects

Component Menu Type Menu Text

html Graphics html

The package may be installed as follows:

edm -add /myPath/libHtml.so

38

Edm component file is ./edmObjects

Adding component: html, menu type: Graphics, menu text: html

Moving current edm component file to ./edmObjects~

The new component has been successfully added

The package may be uninstalled as follows:

edm -remove /myPath/libHtml.so

Edm component file is ./edmObjects

Removing component: html

Moving current edm component file to ./edmObjects~
Component was successfully removed

Notice than in each command, the library file reference includes an absolute path. This is a strict re-
quirement.

Location of edm help files
Edm help files reside in the directory given by $EDMHELPFILES or in /etc/edm if the environment
variable is not set.

Display file search path
The environment variable EDMDATAFILES is a colon separated list of directories. This list is searched
in the given order whenever an edm display file is referenced in a related display widget and also when-
ever a symbol or graphical image file is refenced in some associated widget.

If the environment variable is not set, the current directory is used as the search path.

Location of edm tmp files
Edm tmp files reside in the directory given by $EDMTMPFILES or in /tmp if the environment variable
is not set.

39

Chapter 6. PV Types

Introduction
Several different PV types are supported by some edm widgets (in version 1-10-x, all widgets
support all PV types). Currently, supported types include EPICS, CALC, and LOC.

EPICS - Prefix = EPICS\ (or NULL)

The default edm PV type is EPICS and, in fact, a PV reference may include the prefix EPICS\.
So, when referring to an EPICS PV, the names EPICS\somePv and somePv are equivalent.

Calculations - Prefix = CALC\

A CALC PV must include the CALC\ prefix. For example, a legal CALC PV name is
CALC\somePv and this is distinctly different from the simple name somePv (an EPICS PV).

CALC PVs may work in conjunction with a global configuration file which must be named cal-
c.list and, for a production system, must reside in the location pointed to by $EDMFILES. If
calc.list resides in the current directory it will be utilized in place of the one in $EDMFILES.
This behavior facilitates development but obviously introduces a deployment pitfall. Enhance-
ments will be made to future versions to give the same flexibility without the deployment
gotcha.

A couple of simple CALC PV references could look like these that follow:

 CALC\sum(pv1, pv2)

 CALC\diff(pv1, 10.5)

The above definitions will produce new PVs containing the values pv1+pv2 and pv1-pv2 re-
spectively. For example, if value1 and value2 are the names of two EPICS PVs, and an edm
widget references the name CALC\sum(value1,value2), then a new PV will be created contain-
ing the value value1+value2.

The file calc.list would look like this:

CALC1

Example definition file for the CALC ProcessVariable
#
First line "CALC1 ..." is magic and provides version number
as well as EMACS mode with is not necessary
but makes for - by definition - cool coloring
when this file is edited in emacs.

Empty lines and comments like these,
beginning with '#', are ignored.
#
Syntax for the rest of the file:
#

<name>
<implementation>
#
The name is used to refer to a CALC PV as "CALC\name"
or "CALC\name(argA, argB, argC, ...).
#
Implementation is in EPICS CALC record syntax,
with A, B, C, ... being variable names for the arguments.
#
#
Note: arguments are not checked!
If e.g. CALC\sum(a,b) requires two arguments,
nonone cares if you provide 0, 2 or 5 arguments instead of 2.

Example: CALC\sum(x, y) adds the arguments
sum
Implementation:
A+B

Example: CALC\diff(x, y) subtracts the arguments
diff
Implementation:
A-B

One serious shortcoming of this strategy is the requirement to restart edm whenever the calculation file
is modified.

As of version 1-10-1d and later, calculation PVs may be created on-the-fly, independent of a calc.list
file. The syntax extension uses curly braces to enclose the expression.

The above CALC PVs could be equivalently declared as

 CALC\{A+B}(pv1, pv2)

 CALC\{A-B}(pv1, 10.5)

In this case, no calculation file is necessary and new calculations may be declared on-the-fly, with no
need to restart edm.

Local - Prefix = LOC\

Local PVs are internal to edm and must include the LOC\ prefix. For example, a legal LOC PV name is
LOC\somePv=<type>:<value> (e.g. LOC\somePv=d:1.234).

Specifying local PVs

Local PV types are double (d), integer (i), enumerated (e), and string (s). Example declarations are
shown below.

• LOC\realPv=d:1.234

• LOC\intPv=i:55

• LOC\stringPv=s:this is a string

41

Chapter 5. The Project Environment
• LOC\enumPv=e:0,zero,one,two (initial value is "zero")

• LOC\enumPv=e:1,zero,one,two (initial value is "one")

• LOC\enumPv=e:2,zero,one,two (initial value is "two")

Edm creates a local PV the first time it is encountered. If types or values differ between two
declarations, the first one wins. To ensure predictable beavior, the declarations must be identi-
cal.

Scope

The default scope of a local PV is global. By default, the PV is visible from all windows on all
X displays managed by a given instance of edm. The scope may be limited to a single X dis-
play (application context) or to a single window. The following examples show how this may
be accomplished.

• LOC\$(!A)realPvDisplayScope=d:1.234

• LOC\$(!W)realPvWindowScope=d:1.234

42

Chapter 7. Creating and Editing Display
Windows

File Operations
See edm online help topic File Operations for more information.

Setting the Default Working Directory

When edl files are opened or saved, the operation is usually performed in one of the directories listed in
the EDMDATAFILES environment variable. Initially, the default file selection dialog directory is set to
the first directory given in EDMDATAFILES. This default may be changed by making a selection from
the Path menu (on the main window). The menu contains each directory in EDMDATAFILES.

Creating a New Display File

Creating a new edl file is simple. In the main window, select New from the File menu. A new window is
created which may be resized as desired.

Opening an Existing Display File

In the main window, select Open... from the File menu. A file selection dialog pops up from which an
edl file may be selected. As mentioned previously, the default file selection directory may be set using
the Path menu before the open operation is performed. Once selected, the display window is opened and
positioned at the previously saved origin.

Using the Mouse
See edm online help topic Mouse Operations for more information.

Some Definitions

• Left B means left button, Right B means right button, etc.

• Press means press and hold

• Click means press and release

• Drag means press and hold the button while moving the cursor

• Shift middle B click means hold down the shift key and click the middle button

Simple Select Operations

Left B Click

• Select single object (deselect current)

43

Chapter 5. The Project Environment
Shft-Left B Click

• Toggle selection (add to current select group)

Ctrl-Left B Click

• Cycle single object selection

This is especially useful for finding one object among several stacked objects. Note that this
only works when one and only one object is selected.

Multiple Select Operations

Middle B drag select box from Top-L to Bot-R

• Select all enclosed

Middle B drag select box from Bot-R to Top-L

• Select by corners

Create/Edit Operations

Left B drag and release

• Create new object

Left Click on selected object(s)

• Edit object(s)

Control Middle B drag over object

• Drag-and-Drop PV name

Move and Resize Operations

Left B drag interior

• Move object

Left B drag control point

• Resize object

Ctrl-Left B drag interior or control point

• Move object (prevent unintentional resize)

This operation makes it possible to move very small objects.

44

Execute Mode Operations

Middle B drag over object

• Drag-and-Drop PV name

Control Middle B click over object

• Drag/Display object properties

Display Window Attributes
Various operations may be performed on edm displays and widgets from menus that are called up by
middle-clicking on the display background. Three different menus are available depending on whether
one, many, or no widgets are currently selected.

To set display attributes, make sure no widgets are selected and then middle-click on an edm display
background. Select the Display Properties menu item.

Attributes include size and position, window title, the display scheme (colors and fonts), and several edit
mode parameters (grip,snap...).

Note that some edit mode parameters are listed with a pair of shortcut key labels in parentheses [e.g.
Show Grid (G/g)]. The shortcut keys set (uppercase) and clear (lowercase) the corresponding attribute
when the attributes dialog is not open.

The ID, Activate Callback, and Deactivate Callback attributes are not currently used.

Creating Objects (except lines)
See edm online help topic Creating Objects for more information.

Objects (rectangles, meters, buttons, etc.) are created by left-dragging a box on an edm display window
background. The initial size of the object is determined by the size of the box and when the left button is
released, a menu pops up listing available object types (graphics, monitors, controls). Selecting a type
calls up a sub-menu enumerating all available objects for the selected type. Selecting an object closes
the menu and calls up an object property dialog box. After the object attributes are specified and the OK
button pressed, the dialog is closed and the object is created.

Editing Objects (except lines)
See edm online help topic Editing Objects for more information.

Left-clicking on a selected object calls up the object property dialog box. New users often associate this
operation with a double-click. Avoid this temptation. Although it is true that two successive left clicks
will result in an edit operation, the clicks must be separated by some amount of delay. Object properties
may be modified as desired. Pressing the Apply button applies all modifications without closing the dia-
log box. Pressing OK applies modifications and closes the dialog. Pressing Cancel closes the dialog
without applying modifications.

The functions performed by the OK, Apply, and Cancel buttons may also be achieved by double click-
ing the left, center, and right mouse buttons respectively. This may, at times, eliminate excessive mouse

45

Chapter 5. The Project Environment
pointer movement.

If multiple objects are selected, clicking on one of them opens the first property dialog box.
When the OK button is pressed, the property box for the next item is opened, an so on, until
each selected object has been processed. The edit operation is terminated when all objects have
been visited or the Cancel button is pressed.

Creating Line Objects
See edm online help topic Line Objects for more information.

Lines are created by left-dragging a box on an edm display window background and choosing
Lines from the Graphics sub-menu. Doing this calls up the line object property dialog box. Af-
ter the object attributes are specified and the OK button pressed, the dialog is closed and the
cursor changes slightly. At this point, the following operations may be performed.

• Left B click appends a new line segment end-point

• Right B click inserts a line segment end-point after a reference end-point (mouse pointer
must be on reference end-point)

• Middle B drag moves segment end-points

• Ctrl Right B click deletes a line segment end-point (mouse pointer must be on the end-point
to be deleted)

• Ctrl middle B click deletes the last line segment end-point

• Shift Left B click or Left B double-click completes the create operation

Editing Line Objects
See edm online help topic Line Objects for more information.

Clicking on a lone selected line object calls up a menu which provides the option to edit line
properties or line segments. If the properties option is selected, editing proceeds in the same
manner as that for any edm object. If the segments option is selected, the object property dialog
is not called up, instead, the line is redrawn with control points around each segment end-point
and all line create operations may be performed. The edit operation is terminated in a manner
similar to the create operation, i.e. with a Shift Left B click or a Left B double-click. In addi-
tion, a Shift Right B click aborts all modifications and terminates the edit.

Aligning Objects
See edm online help topic Aligning Objects for more information.

When two or more objects are selected, various object alignment operations may be performed

46

by middle-clicking on the display window background and selecting the desired operation from a menu.
The following operations are possible:

Align Left, Right, Top, Bottom

• Aligns the specified edge of all objects with the most extreme instance (leftmost, topmost, etc.)

Center Vertical, Horizontal, Both

• This operation uses the location of the first object selected as a reference location. The operation is
then performed in the context of this reference. Center Vertical centers all objects on an imaginary
vertical line passing through the center of the reference object. Center Horizontal centers all objects
on an imaginary horizontal line passing through the center of the reference object. Center Both
centers all objects on an imaginary point at the center of the reference object.

Size Height, Width, Height & Width

• This operation uses the dimensions of the first object selected as reference dimensions. The operation
is then performed in the context of this reference. Size Height sets the height of all selected objects the
same as the reference height. The remaining operations work in a similar manner.

Distribute Vertical, Horizontal, Midpoint Vertical, Midpoint Horizontal, 2D

• This operation uses the location of the first object selected as a reference location. The operation is
then performed in the context of this reference. Distribute Vertical distributes all selected objects
along an imaginary vertical line passing through the center of the reference object with equal space
between the edges of successive objects. Distribute Midpoint Vertical distributes all selected objects
along an imaginary vertical line passing through the center of the reference object with equal space
between the midpoints of successive objects. Distribute Horizontal and Distribute Midpoint
Horizontal work in a similar fashion. Distribute 2D does not use a reference location. Instead, all
selected objects are distributed in a row/column format using the smallest imaginary box that would
contain all selected objects. The objects are distributed with equal space between the edges of
successive objects.

Miscellaneous Operations
Other operations that may be performed from the display window menus are listed below.

Execute

• Put display in execute mode. This is discussed at greater length in a later section of this document.

Save

• Save current display using existing file name.

Save As...

• Save current display using specified file name (file might not yet exist).

Save To Current Path

• Save current display to last directory specified by path menu item. This enables a read-only display to
be saved into a directory in which write access is permitted.

Select All

• Select all objects on the display.

47

Chapter 5. The Project Environment
Copy

• Copy all selected objects to the clipboard.

Cut

• Cut all selected objects to the clipboard.

Paste

• Paste objects in the clipboard to the current display using the current mouse location. Objects
may be copied from one display window and pasted into another that is managed by the
same edm process.

Paste in Place

• Paste in the clipboard to the current display using the exact location of the original copied
objects. This is usually used in conjunction with the Orthogonal Move mode to create arrays
of objects that are being manually aligned.

Close

• Close the current display window.

Open...

• Open a new display file and create a new window.

Load Display Scheme...

• Load a new display scheme file (which changes the display attribute colors and fonts).

Save Display Scheme...

• Save current display colors and fonts as a display scheme file.

Edit Outliers

• Find widgets located outside the dimensions of the curreny display window and edit the first
one found.

Find Main Window

• Find, deiconify if necessary, and raise the edm main window. Some window managers
iconify the window if it is currently on the desktop so this operation may have to be
performed twice.

Refresh

• Redraw entire contents of display window.

Help

• Launch online help.

Raise

48

• Raise stacking order of object(s) above all other objects.

Lower

• Lower stacking order of object(s) below all other objects.

Group

• Group all selected objects into a single composite object.

Ungroup

• Ungroup a composite object.

Rotate Clockwise

• ******* *************
* * *
* * *
***** becomes * *
* *
*
*

Not all objects may be rotated.

Rotate Counterclockwise

• *******
*
* *
***** becomes * *
* * *
* * *
* *************

Not all objects may be rotated.

Flip Horizontally

• ******* *******
* *
* *
****** becomes ******
* *
* *
******* *******

Not all objects may be flipped.

Flip Vertically

• * * *******
* * * *
* * * *
* * becomes * *
* * * *
* * * *
******* * *

Not all objects may be flipped.

49

Chapter 5. The Project Environment
Edit Display Info

• Calls up a dialog box in which color and font information may be modified for all selected
objects.

Edit PV Names

• Calls up a dialog box in which PV names may be modified for all selected objects.

Deselect

• Deselects all selected objects.

50

Chapter 8. Display Execution
To execute a newly created edm display window or one that has been opened in edit mode, make sure
no widgets are selected and then middle-click on an edm display background. Select the Execute menu
item.

In execute mode, edm connects to all PVs, creates and renders display widgets, and presents a live up-
date of all text and graphics content, changing displayed values, colors, and images as the values of as-
sociated PVs change.

If edm is executed with the -x option, all display windows are opened in execute mode by default. Fur-
thermore, if the -noedit option is specified, windows may not be deactivated and placed in edit mode
and new display windows may not be created.

51

Chapter 9. Macro Symbols and Values
When edm is executed, a list of symbol=value pairs may be entered from the command line as
follows:

 edm -m "sym1=val1,sym2=val2,sym3=val3..."

These symbols may be referenced in the specification of certain object properties by embed-
ding a reference like

 $(symbol)

into the property value string. A simple example will illustrate this.

Suppose edm was started as

 edm -m "1=one"

This associates the value one with symbol 1. Now if an object property is specified as

 $(1)_two_three

then, in execute mode, the property value would be expanded to one_two_three. Multiplexor
objects can also affect the value of symbols in execute mode and related display objects can
pass new symbols to child display windows.

Symbols are used to parameterize PV names and widget labels to build a single template dis-
play window, multiple instances of which may be used in systems containing arrays of similar
subsystems.

Chapter 10. Internal Symbols
A set of internal symbols may be used by the related display widget and the shell command widget. The
related display widget may assign internal symbol values to child macro arguments. The shell command
widget may likewise include internal symbols references in the shell command contents.

For example, one internal symbol is <DSPNAME> which translates to the X Window display name.

The related display widget might include the following in the contents of the macros field:

 Dsp=<DSPNAME>

The shell command widget might include the following in the contents of the shell command field:

 xterm -display <DSPNAME>

The list of internal symbols are given below.

<WINID>

The X Window ID - this is something you might use as shown below:

xwd -id <WINID>

<TITLE>

Title of the edm display

<HELPDIR>

edm help file directory

<DSPNAME>

X Window display name

<DSPID>

X Window display name with each "." translated to a "-" (host:0.1 becomes host:0-1)

<env:environment-variable-name>

The contents of the associated environment variable

for example, <env:OSTYPE> might translate to Linux

53

Chapter 11. EDM and CVS
EDM will display an embedded CVS revision in the title bar after the file name. The CVS revi-
sion is contained in the file comment area and is specified as shown in the following example:

$Revision: 1.1.2 $

This may initially be given as

$Revision$

CVS will expand this form to the one above it after a commit operation is performed.

An edm comment template file may be utilized to insert comments into an edl file when the file
is saved by setting the environment variable EDMCOMMENTS to the path of the template file.
This provides a method for automatically inserting the CVS Revision symbol into edl files
when they are created. So that the template file comments are inserted only once, edm
prepends the following line to the comment block:

<<<edm-generated-comments>>>

Chapter 12. Remote File Access

Introduction
It is possible to run edm on a local cpu (e.g. from home) and access edl files and some configuration
files remotely (e.g. at work) from a web server. If the associated EPICS PVs are accessible through a
channel access gateway, edm may be employed to monitor/troubleshoot a live production system from a
remote location.

This has been implemented in rather simple-minded manner to accomodate a single user running edm
from home in a technical support activity. If more that one user are using the same local cpu to run edm
in this manner, each must set the environment variable EDMTMPFILES to a unique value.

You may also control the permissions of temporary files using the environment variable EDMTM-
PUMASK.

==

BY DEFAULT EDM DOES NOT HAVE REMOTE FILE ACCESS CAPABILITY.

==

To verify the capability of a particular build instance, set the environment variable EDMDEBUGMODE
to 1 and run edm. If remote file access is turned on the following will be displayed on stdout

Using curl for URL-based access

If not, you will see

Using local access only

To turn on remote file access, you must edit Makefile.Host in $EPICS_EXTENSIONS/src/edm/lib. In
addition, curl must be installed on the build host and libcurl.so must be accessible.

For a linux build, add "-DUSECURL" to the line starting with

 USR_CXXFLAGS_Linux +=

and add "curl" to the line starting with

 USR_LIBS_Linux =

for example, change

 USR_CXXFLAGS_Linux += -Wall -D__linux__ -D_BSD_SOURCE \
 -DSINGLE_THREADED=1 -D__epics__=1

 USR_LIBS_Linux = Xm Xt Xp Xtst X11 pthread dl

to

 USR_CXXFLAGS_Linux += -Wall -DUSECURL -D__linux__ -D_BSD_SOURCE \

55

Chapter 12. Remote File Access
 -DSINGLE_THREADED=1 -D__epics__=1

 USR_LIBS_Linux = Xm Xt Xp Xtst X11 pthread dl curl

After making this change, cd back to $EPICS_EXTENSIONS/src/edm and do

make clean

make

Example Configurations
There are two ways to access remote files. The first is the most simple and makes it possible to
add a remote location to the normal search paths. The second replaces the entire file access en-
vironment and facilitates the case where edm is being run from home, for example, to perform
remote diagnostic activities.

Example 1 - Simple Remote Access

One way of accessing edl files on a remote http server is simply by adding a URL to the envi-
ronment EDMDATAFILES. This works for EDMFILES too, but EDMFILES points to a single
location.

For example, setting EDMDATAFILES as show below

export EDMDATAFILES=/top/one:/top/two:http://remoteNode/remoteTop/one

results in the following locations being searched when a file open is attempted:

 /top/one

 /top/two

 http://remoteNode/remoteTop/one

Example 2 - Remote File Access Only

In this example, file access is exclusively remote and local access is possible only by including
the "file://" prefix in some URL.

Given:

The files colors.list and fonts.list accessible via web server from
http://www.webserver.com/files/

Several edl files accessible via web server from

56

http://www.webserver.com/edlFiles/

Help files accessible via web server from
http://www.webserver.com/helpFiles/

Local edm print definition file is /edm/edmPrintDef

Local collection of .edl files in /edm/localEdlFiles

Define the following environment variables as shown below (bash syntax shown).

export EDMHTTPDOCROOT="http://www.webserver.com|file:///"

export EDMFILES=/files

export EDMDATAFILES=/edlFiles:/edm/localEdlFiles

export EDMHELPFILES=/helpFiles

export EDMPRINTDEF=/edm/edmPrintDef

When edm is executed, locations are searched for .edl files in the following order:

1) http://www.webserver.com/edlFiles

2) /edlFiles

3) http://www.webserver.com/edm/localEdlFiles

4) /edm/localEdlFiles

If you have trouble, set the environment variable EDMDEBUGMODE to 1 and run edm once again.
You may thus observe server, directory, and file names as edm searches for valid data sources.

When edm is run in this manner, performing interactive file open operations will result in some directo-
ries being invalid. The file selection box does not support remote access.

Note that local access also requires a URL-based name, hence the second document root specification

 file:///

Many web servers may be employed in this scheme. The environment variable EDMHTTPDOCROOT
is a list of locations separated by the "|" character. The following example is legal:

export EDMHTTPDOCROOT="http://web1.com|http://web2.com|http://web3.com"

57

Chapter 13. Input Filters

Introduction
In version 1-10-0p of edm, an input file filter mechanism was added which enables edm to read
foreign display files. Configuration of this facility involves the following steps:

• Create and populate the file named edmFilters.

• Define the environment variable EDMFILTERS to point to the directory in which
edmFilters resides.

• Create or obtain an executable that performs the conversion from the foreign file to an edm
compatible file.

File Format for edmFilters
The edmFilters file may contain multiple entries, one per line for each file extension type.
Comment and blank lines are not currently allowed.

One entry in edmFilters contains the foreign file extension and the conversion command with
its arguments. The input file name is given as the symbol %f which is replaced by the actual
name at run-time.

Example:

.adl adl2edl -rgb %f

.xml xml2edl %f

In the preceeding, both adl2edl and xml2edl are assumed to reside within the execution path.

Executable Requirements
The executable must accept the input file name on the command line and must send its output
to stdout. Error messages should be written to stderr or to a file.

