
2008/08/26 8:04 AMStreamDevice: Record Processing

Page 1 of 3http://epics.web.psi.ch/software/streamdevice/doc/processing.html

StreamDevice: Record Processing
1. Normal Processing
StreamDevice is an asynchronous device support (see IOC Application Developer's Guide chapter 12: Device
Support). Whenever the record is processed, the protocol is scheduled to start and the record is left active
(PACT=1). The protocol itself runs in another thread. That means that any waiting in the protocol does not
delay any other part of the IOC.
After the protocol has finished, the record is processed again, leaving PACT=0 this time, triggering monitors
and processing the forward link FLNK. Note that input links with PP flag pointing to a StreamDevice record will
read the old value first and start the protocol afterward. This is a problem all asynchronous EPICS device
supports have.
The first out command in the protocol locks the device for exclusive access. That means that no other record
can communicate with that device. This ensures that replies given by the device reach the record which has
sent the request. On a bus with many devices on different addresses, this normally locks only one device. The
device is unlocked when the protocol terminates. Another record trying to lock the same device has to wait and
might get a LockTimeout.
If any error happens, the protocol is aborted. The record will have its SEVR field set to INVALID and its STAT
field to something describing the error:

TIMEOUT
The device could not be locked (LockTimeout) or the device did not reply (ReplyTimeout).

WRITE
Output could not be written to the device (WriteTimeout).

READ
Input from the device started but stopped unexpectedly (ReadTimeout).

COMM
The device driver reported some other communication error (e.g. unplugged cable).

CALC
Input did not match the argument string of the in command or it contained values the record did not
accept.

UDF
Some fatal error happened or the record has not been initialized correctly (e.g. because the protocol is
erroneous).

If the protocol is aborted, an exception handler might be executed if defined. Even if the exception handler can
complete with no further error, the protocol will not resume and SEVR and STAT will be set according to the
original error.

2. Initialization
Often, it is required to initialize records from the hardware after booting the IOC, especially output records. For
this purpose, initialization is formally handled as an exception. The @init handler is called as part of the
initRecord() function during iocInit before any scan task starts.
In contrast to normal processing, the protocol is handled synchronously. That means that initRecord()
does not return before the @init handler has finished. Thus, the records initialize one after the other. The
scan tasks are not started and iocInit does not return before all @init handlers have finished. If the
handler fails, the record remains uninitialized: UDF=1, SEVR=INVALID, STAT=UDF.
The @init handler has nothing to do with the PINI field. The handler does not process the record nor does it
trigger forward links or other PP links. It runs before PINI is handled. If the record has PINI=YES, the PINI
processing is a normal processing after the @init handlers of all records have completed.

http://www.aps.anl.gov/epics/base/R3-14/8-docs/AppDevGuide.pdf
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#except
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#except
http://epics.web.psi.ch/software/streamdevice/doc/processing.html#proc
http://epics.web.psi.ch/software/streamdevice/doc/processing.html#proc

2008/08/26 8:04 AMStreamDevice: Record Processing

Page 2 of 3http://epics.web.psi.ch/software/streamdevice/doc/processing.html

Depending on the record type, format converters might work slightly different from normal processing. Refer to
the description of supported record types for details.
If the @inithandler has read a value and has completed without error, the record starts in a defined state.
That means UDF=0, SEVR=NO_ALARM, STAT=NO_ALARM and the VAL field contains the value read from the
device.
If no @init handler is installed, VAL and RVAL fields remain untouched. That means they contain the value
defined in the record definition, read from a constant INP or DOL field, or restored from a bump-less reboot
system (e.g. autosave from the synApps package).

3. I/O Intr
StreamDevice supports I/O event scanning. This is a mode where record processing is triggered by the device
whenever the device sends input.
In terms of protocol execution this means: When the SCAN field is set to I/O Intr (during iocInit or later),
the protocol starts without processing the record. With the first in command, the protocol is suspended. If the
device has been locked (i.e there was an out command earlier in the protocol), it is unlocked now. That means
that other records can communicate to the device while this record is waiting for input. This in command
ignores replyTimeout, it waits forever.
The protocol now receives any input from the device. It also gets a copy of all input directed to other records.
Non-matching input does not generate a mismatch exception. It just restarts the in command until matching
input is received.
After receiving matching input, the protocol continues normally. All other in commands are handled normally.
When the protocol has completed, the record is processed. It then triggers monitors, forward links, etc. After the
record has been processed, the protocol restarts.
This mode is useful in two cases: First for devices that send data automatically without being asked. Second to
distribute multiple values in one message to different records. In this case, one record would send a request to
the device and pick only one value out of the reply. The other values are read by records in I/O Intr mode.

Example:
Device dev1 has a "region of interest" (ROI) defined by a start value and an end value. When asked "ROI?", it
replies something like "ROI 17.3 58.7", i.e. a string containing both values.
We need two ai records to store the two values. Whenever record ROI:start is processed, it requests ROI
from the device. Record ROI:end updates automatically.

record (ai "ROI:start") {
 field (DTYP, "stream")
 field (INP, "@myDev.proto getROIstart dev1")
}
record (ai "ROI:end") {
 field (DTYP, "stream")
 field (INP, "@myDev.proto getROIend dev1")
 field (SCAN, "I/O Intr")
}

Only one of the two protocols sends a request, but both read their part of the same reply message.

getROIstart {
 out "ROI?";
 in "ROI %f %*f";
}
getROIend {
 in "ROI %*f %f";

http://epics.web.psi.ch/software/streamdevice/doc/recordtypes.html
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#except

2008/08/26 8:04 AMStreamDevice: Record Processing

Page 3 of 3http://epics.web.psi.ch/software/streamdevice/doc/processing.html

}

Note that the other value is also parsed by each protocol, but skipped because of the %* format. Even though
the getROIend protocol may receive input from other requests, it silently ignores every message that does not
start with "ROI", followed by two floating point numbers.

Next: Supported Record Types
Dirk Zimoch, 2005

http://epics.web.psi.ch/software/streamdevice/doc/formats.html
http://epics.web.psi.ch/software/streamdevice/doc/recordtypes.html

