
2008/08/26 8:02 AMStreamDevice: Protocol Files

Page 1 of 6http://epics.web.psi.ch/software/streamdevice/doc/protocol.html

StreamDevice: Protocol Files
1. General Information
A protocol file describes the communication with one device type. It contains protocols for each function of the
device type and variables which affect how the commands in a protocol work. It does not contain information
about the individual device or the used communication bus.
Each device type should have its own protocol file. I suggest to choose a file name that contains the name of
the device type. Don't use spaces in the file name and keep it short. The file will be referenced by its name in
the INP or OUT link of the records which use it. The protocol file must be stored in one of the directories listed
in the environment variable STREAM_PROTOCOL_PATH (see chapter Setup).
The protocol file is a plain text file. Everything not enclosed in quotes (single ' or double ") is not case
sensitive. This includes the names of commands, protocols and variables. There may be any amount of
whitespaces (space, tab, newline, ...) or comments between names, quoted strings and special characters,
such as ={};. A comment is everything starting from an unquoted # until the end of the line.

Example Protocol File:

This is an example protocol file

Terminator = CR LF;

Frequency is a float
use ai and ao records

getFrequency {
 out "FREQ?"; in "%f";
}

setFrequency {
 out "FREQ %f";
 @init { getFrequency; }
}

Switch is an enum, either OFF or ON
use bi and bo records

getSwitch {
 out "SW?"; in "SW %{OFF|ON}";
}

setSwitch {
 out "SW %{OFF|ON}";
 @init { getSwitch; }
}

Connect a stringout record to this to get
a generic command interface.
After processing finishes, the record contains the reply.

debug {
 ExtraInput = Ignore;
 out "%s"; in "%39c"

http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#proto
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#var
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/setup.html#sta
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#str
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#proto
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#var

2008/08/26 8:02 AMStreamDevice: Protocol Files

Page 2 of 6http://epics.web.psi.ch/software/streamdevice/doc/protocol.html

}

2. Protocols
For each function of the device type, define one protocol. A protocol consists of a name followed by a body in
braces {}. The name must be unique within the protocol file. It is used to reference the protocol in the INP or
OUT link of the record, thus keep it short. It should describe the function of the protocol. It must not contain
spaces or any of the characters ,;={}()$'"\#.
The protocol body contains a sequence of commands and optionally variable assignments separated by ;.

Referencing other protocols
To save some typing, a previously defined protocol can be called inside another protocol like a command
without parameters. The protocol name is replaced by the commands in the referenced protocol. However, this
does not include any variable assignments or exception handlers from the referenced protocol. See the @init
handlers in the above example.

Limitations
The StreamDevice protocol is not a programming language. It has neither loops nor conditionals (in this version
of StreamDevice). However, if an error occurs, e.g. a timeout or a mismatch in input parsing, an exception
handler can be called to clean up.

3. Commands
Seven different commands can be used in a protocol: out, in, wait, event, exec, disconnect, and
connect. Most protocols will consist only of a single out command to write some value, or an out command
followed by an in command to read a value. But there can be any number of commands in a protocol.

out string;
Write output to the device. The argument string may contain format converters which are replaced by the
formatted value of the record before sending.

in string;
Read and parse input from the device. The argument string may contain format converters which specify
how to interpret data to be put into the record. Input must match the argument string. Any input from the
device should be consumed with an in command. If a device, for example, acknowledges a setting, use
an in command to check the acknowledge, even though it contains no user data.

wait milliseconds;
Just wait for some milliseconds. Depending on the resolution of the timer system, the actual delay can be
slightly longer than specified.

event(eventcode) milliseconds;
Wait for event eventcode with some timeout. What an event actually means depends on the used bus.
Some buses do not support events at all, some provide many different events. If the bus supports only
one event, (eventcode) is dispensable.

exec string;
The argument string is passed to the IOC shell as a command to execute.

disconnect;
Disconnect from the hardware. This is probably not supported by all busses. Any in or out command
will automatically reconnect. Only records reading in "I/O Intr" mode will not cause a reconnect.

connect milliseconds;
Explicitely connect to the hardware with milliseconds timeout. Since connection is handled
automatically, this command is normally not needed. It may be useful after a disconnect.

4. Strings
In a StreamDevice protocol file, strings can be written as quoted literals (single quotes or double quotes), as a

http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#var
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#var
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#except
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#excep
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#str
http://epics.web.psi.ch/software/streamdevice/doc/formats.html
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#str
http://epics.web.psi.ch/software/streamdevice/doc/formats.html
http://epics.web.psi.ch/software/streamdevice/doc/businterface.html#event
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#str
http://epics.web.psi.ch/software/streamdevice/doc/processing.html#iointr

2008/08/26 8:02 AMStreamDevice: Protocol Files

Page 3 of 6http://epics.web.psi.ch/software/streamdevice/doc/protocol.html

sequence of bytes values, or as a combination of both.
Examples for quoted literals are:
"That's a string."
'Say "Hello"'

There is no difference between double quoted and single quoted literals, it just makes it easier to use quotes of
the other type in a string. To break long strings into multiple lines of the protocol file, close the quotes before
the line break and reopen them in the next line. Don't use a line break inside quotes.
As arguments of out or in commands, string literals can contain format converters. A format converter starts
with % and works similar to formats in the C functions printf() and scanf().
StreamDevice uses the backslash character \ to define some escape sequences in quoted string literals:
\", \', \%, and \\ mean literal ", ', %, and \.
\a means alarm bell (ASCII code 7).
\b means backspace (ASCII code 8).
\t means tab (ASCII code 9).
\n means new line (ASCII code 10).
\r means carriage return (ASCII code 13).
\e means escape (ASCII code 27).
\x followed by up to two hexadecimal digits means a byte with that hex value.
\0 followed by up to three octal digits means a byte with that octal value.
\1 to \9 followed by up to two more decimal digits means a byte with that decimal value.
\? in the argument string of an in command matches any input byte
\$ followed by the name of a protocol varible is replaced by the contents of that variable.
For non-printable characters, it is often easier to write sequences of byte values instead of escaped quoted
string literals. A byte is written as an unquoted decimal, hexadecimal, or octal number in the range of -128 to
255 (-0x80 to 0xff, -0200 to 0377). StreamDevice also defines some symbolic names for frequently used byte
codes as aliases for the numeric byte value:
EOT means end of transmission (ASCII code 4).
ACK means acknowledge (ASCII code 6).
BEL means bell (ASCII code 7).
BS means backspace (ASCII code 8).
HT or TAB mean horizontal tabulator (ASCII code 9).
LF or NL mean line feed / new line (ASCII code 10).
CR means carriage return (ASCII code 13).
ESC means escape (ASCII code 27).
DEL means delete (ASCII code 127).
SKIP in the argument string of an in command matches any input byte.
A single string can be built from several quoted literals and byte values by writing them separated by
whitespaces or comma.

Example:
The following lines represent the same string:
"Hello world\r\n"
'Hello',0x20,"world",CR,LF
72 101 108 108 111 32 119 111 114 108 100 13 10

5. Protocol Variables
StreamDevice uses three types of variables in a protocol file. System variables influence the behavior of in and
out commands. Protocol arguments work like function arguments and can be specified in the INP or OUT link
of the record. User variables can be defined and used in the protocol as abbreviations for often used values.
System and user variables can be set in the global context of the protocol file or locally inside protocols. When
set globally, a variable keeps its value until overwritten. When set locally, a variable is valid inside the protocol
only. To set a variable use the syntax:

http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/formats.html
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#var
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#usrvar
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#sysvar
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#argvar
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#cmd

2008/08/26 8:02 AMStreamDevice: Protocol Files

Page 4 of 6http://epics.web.psi.ch/software/streamdevice/doc/protocol.html

variable = value;

Set variables can be referenced outside of quoted strings by $variable or ${variable} and inside quoted
strings by \$variable or \${variable}. The reference will be replaced by the value of the variable at this
point.

System variables
This is a list of system variables, their default settings and what they influence.

LockTimeout = 5000;
Integer. Affects first out command in a protocol.
If other records currently use the device, how many milliseconds to wait for exclusive access to the
device before giving up?

WriteTimeout = 100;
Integer. Affects out commands.
If we have access to the device but output cannot be written immediately, how many milliseconds to wait
before giving up?

ReplyTimeout = 1000;
Integer. Affects in commands.
Different devices need different times to calculate a reply and start sending it. How many milliseconds to
wait for the first byte of the input from the device? Since several other records may be waiting to access
the device during this time, LockTimeout should be larger than ReplyTimeout.

ReadTimeout = 100;
Integer. Affects in commands.
The device may send input in pieces (e.g. bytes). When it stops sending, how many milliseconds to wait
for more input bytes before giving up? If InTerminator = "", a read timeout is not an error but a
valid input termination.

PollPeriod = $ReplyTimeout;
Integer. Affects first in command in I/O Intr mode (see chapter Record Processing).
In that mode, some buses require periodic polling to get asynchronous input if no other record executes
an in command at the moment. How many milliseconds to wait after last poll or last received input
before polling again? If not set the same value as for ReplyTimeout is used.

Terminator
String. Affects out and in commands.
Most devices send and expect terminators after each message, e.g. CR LF. The value of the
Terminator variable is automatically appended to any output. It is also used to find the end of input. It
is removed before the input is passed to the in command. If no Terminator or InTerminator is
defined, the underlying driver may use its own terminator settings. For example, asynDriver defines its
own terminator settings.

OutTerminator = $Terminator;
String. Affects out commands.
If a device has different terminators for input and output, use this for the output terminator.

InTerminator = $Terminator;
String. Affects in commands.
If a device has different terminators for input and output, use this for the input terminator. If no
Terminator or InTerminator is defined, the underlying driver may use its own terminator settings.
If InTerminator = "", a read timeout is not an error but a valid input termination.

MaxInput = 0;
Integer. Affects in commands.
Some devices don't send terminators but always send a fixed message size. How many bytes to read
before terminating input even without input terminator or read timeout? The value 0 means "infinite".

Separator = "";
String. Affects out and in commands.
When formatting or parsing array values in a format converter (see formats and waveform record), what

http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#str
http://epics.web.psi.ch/software/streamdevice/doc/processing.html#iointr
http://epics.web.psi.ch/software/streamdevice/doc/formats.html
http://epics.web.psi.ch/software/streamdevice/doc/waveform.html

2008/08/26 8:02 AMStreamDevice: Protocol Files

Page 5 of 6http://epics.web.psi.ch/software/streamdevice/doc/protocol.html

string to write or to expect between values? If the first character of the Separator is a space, it
matches any number of any whitespace characters in an in command.

ExtraInput = Error;
Error or Ignore. Affects in commands.
Normally, when input parsing has completed, any bytes left in the input are treated as parse error. If
extra input bytes should be ignored, set ExtraInput = Ignore;

Protocol arguments
Sometimes, protocols differ only very little. In that case it can be convenient to write only one protocol and use
protocol arguments for the difference. For example a motor controller for the 3 axes X, Y, Z requires three
protocols to set a position.

moveX { out "X GOTO %d"; }
moveY { out "Y GOTO %d"; }
moveZ { out "Z GOTO %d"; }

It also needs three versions of any other protocol. That means basically writing everything three times. To make
this easier, protocol arguments can be used:

move { out "\$1 GOTO %d"; }

Now, the protocol can be references in the OUT link of three different records as move(X), move(Y) and
move(Z). Up to 9 parameters, referenced as $1 ... $9 can be specified in parentheses, separated by comma.
The variable $0 is replaced by the name of the protocol.

User variables
User defined variables are just a means to save some typing. Once set, a user variable can be referenced later
in the protocol.

f = "FREQ"; # sets f to "FREQ" (including the quotes)
f1 = $f " %f"; # sets f1 to "FREQ %f"

getFrequency {
 out $f "?"; # same as: out "FREQ?";
 in $f1; # same as: in "FREQ %f";
}

setFrequency {
 out $f1; # same as: out "FREQ %f";
}

6. Exception Handlers
When an error happens, an exception handler may be called. Exception handlers are a kind of sub-protocols in
a protocol. They consist of the same set of commands and are intended to reset the device or to finish the
protocol cleanly in case of communication problems. Like variables, exception handlers can be defined globally
or locally. Globally defined handlers are used for all following protocols unless overwritten by a local handler.
There is a fixed set of exception handler names starting with @.

@mismatch
Called when input does not match in an in command.
It means that the device has sent something else than what the protocol expected. If the handler starts

2008/08/26 8:02 AMStreamDevice: Protocol Files

Page 6 of 6http://epics.web.psi.ch/software/streamdevice/doc/protocol.html

with an in command, then this command reparses the old input from the unsuccessful in. Error
messages from the unsuccessful in are suppressed. Nevertheless, the record will end up in
INVALID/CALC state (see chapter Record Processing).

@writetimeout
Called when a write timeout occurred in an out command.
It means that output cannot be written to the device. Note that out commands in the handler are also
likely to fail in this case.

@replytimeout
Called when a reply timeout occurred in an in command.
It means that the device does not send any data. Note that in commands in the handler are also likely
to fail in this case.

@readtimeout
Called when a read timeout occurred in an in command.
It means that the device stopped sending data unexpectedly after sending at least one byte.

@init
Not really an exception but formally specified in the same syntax. This handler is called from iocInit
during record initialization. It can be used to initialize an output record with a value read from the device.
Also see chapter Record Processing.

Example:

setPosition {
 out "POS %f";
 @init { out "POS?"; in "POS %f"; }
}

After executing the exception handler, the protocol terminates. If any exception occurs within an exception
handler, no other handler is called but the protocol terminates immediately. An exception handler uses all
system variable settings from the protocol in which the exception occurred.

Next: Format Converters
Dirk Zimoch, 2006

http://epics.web.psi.ch/software/streamdevice/doc/processing.html#proc
http://epics.web.psi.ch/software/streamdevice/doc/processing.html#init
http://epics.web.psi.ch/software/streamdevice/doc/protocol.html#sysvar
http://epics.web.psi.ch/software/streamdevice/doc/formats.html

