LCLS Controls

SLC-Aware IOC Design

This is a work-in-progress. Debbie Rogind 11/22/04
Updated 11/23/04 DBS Utilities, dbHdlrThread
Last Updated: 12/06/04 Dictionary and DBS Utilites sections
Last Updated: 12/08/04 dbHdlr

​​​​​​​​​​​​​​​​​​__
Database Service (DBS) Design
Quick Links

Introduction
Design
 Data Structures
 Headers : Proxy and Supertype
 Supertype 0 Byte Stream
 Send/Receive Buffer Structure
 DB Queued Message Structure
 Dictionary
 Globals
 Data Flow
 dbRecvThread – Detailed Design
 dbSendThread – Detailed Design
 dbHdlrThread – Detailed Design
 DBS Utilities
1 Scope

The LCLS IOC contains two parts:

· “IOC” that maintains an EPICS database for “normal” EPICS device control, and

· “SLC IOC” that communicates directly with the SLC Control System.

This document addresses the SLC IOC that communicates with the SLC Control System.

Communication with the SLC Control System passes either through the Database Service or through the SLC Message Service. The SLC IOCs must mimic the iRMXmicros in control and timing, to minimize changes in the SLC Control System. This document discusses the design of the Linac Coherent Light Source (LCLS) Stanford Linear Collider (SLC) Input/Output Controller (IOC) Database Service (DBS). Specifically, the Database Service design, Database Input/Output Utilities, and Console commands are discussed. The database service implementation described herein could be incorporated into any SLAC subsystem that communicates with the SLC Control System and utilizes the EPICS toolkit for device control.

2 Introduction

The SLC IOC emulates many aspects of the SLC iRMX micro (micro), including maintaining its part of the VMS SLC database. Note that “database” is used to describe a “flat file architecture” throughout this document, and does not refer to a commercial or other relational database. Like a SLC micro, the SLC IOC DBS receives a piece of the entire SLC operational database at initialization time whose functionality is configured for it by the dbgen/dbinstall utilites running on the Alpha. Data is transmitted in a series of byte streams, called supertype (ST) blocks, or superblocks, over a TCP/IP LAN from the DBEX process running on the Alpha.

The data sent to the SLC IOC (and micro) is divided into four sections, physically in memory, according to its function and read/write attributes. Supertype 0 consists of pointer information (actually 4 byte offsets into the other ST 1-3 data blocks) by which each primary/unit/secondary name gets translated into memory address. (Primary/unit/secondary names are part of a naming convention which identifies a particular device.) Supertype 0 information gets written on the Alpha only at dbgen/dbinstall time. The other three Supertypes (1-3) of concern to the SLC IOC contain actual data. Supertype 1 is assumed to be stable, only changeable by the Alpha, and consists of configuration values. Supertype 2 data consists of setpoint values; any update of a Supertype 2 item in the control system originates only in VMS and causes both an update in memory in VMS and a message to the micro/ SLC IOC to do the same update in the micro/ SLC IOC copy of same memory. For the SLC IOC (as opposed to a micro), the EPICS database can also update Supertype 2 data, causing the SLC IOC to update both its local copy in its SLC database as well as send the Supertype 2 data to the Alpha. Any update of a Supertype 3 item originates in the micro/SLC IOC and causes an update in the micro's memory. A separate call sends accumulated updates to the Alpha to be stored in the corresponding VMS memory by DBEX. Any update of a supertype 4 item originates only in VMS and is never seen by the micro/SLC IOC (i.e., any micro/SLC IOC’s supertype 4 data resides only in VMS memory for use by application code in VMS).

Those familiar with the LINAC and PEPII iRMX micro computer code will recognize that most all “dbmain” functionality has been ported to the SLC IOC DBS to run on top of an EPICS OSI layer. The dbmain functionality has been split between dbRecv, dbSend, and dbHdlr threads, responsible for receiving, sending and handling data, respectively, from/to the Alpha.

2.1 Background

The Database Service provides most, if not all, of the functionality contained in the iRMX micro’s REF_:[RMX.DBS] DBMAIN.C module.

2.1.1 General DB Service Design Concepts

· Amount of change to VMS should be minimal.

· Use existing VMS include files wherever possible; refer to VMS directory REF_:[RMX.INCLUDE] *

· Port existing iRMX application code (c, fortran, assembly) wherever applicable.

· Goal – generate same amount of network traffic as SLC micros

· More memory is available for use on SLC IOC – use to advantage for database storage to make database access quicker, if possible.

· Higher performance CPUs are being used, compared with micros – use to advantage

· Use EPICS libcom OSI libraries and platform independent libCom facilities to reduce coding time and to benefit from collaboration knowledge

· Account for different platform byte orientation. VMS packs; solaris and vxWorks (and many 32 bit architectures) byte align on 4-byte boundaries.

· The Supertype byte stream header (supertypehdr_ts), shared between VMS and all micros/SLC IOCS, is problematic, as it has three 2-byte words followed by four 4-byte words. Supertype header sent to/from VMS contains no padding.

· Messages from VMS control system are little-endian, VMS format, and packed

· Support ASCII representations for primary, secondary names and units

· SLC IOC needs supplementary data definition:

· primary ASCII to #

· secondary (secn) ASCII to # mappings for given primary

· datum width (for I or Z)

2.2 References

References for various areas are listed below.

DBEX:

(References for handling data traffic between the SLC IOC and DBEX process executing on the Alpha control system):

· Use VMS procedures in REF_:[RMX.DBS] DBMAIN.C and REF_:[RMX.SLCLIB] exnet.c as the design basis for interface to the DBEX Server process on the Alpha.

· Use VMS assembly code REF_:[RMX.DBS] DBLISTU.A38 as the design basis for dblist and dbunits for accessing SLC supertype 0 database (used in dbIPL.c)
· Also, talk to the experts – Tony Gromme, Ken Underwood, Nancy Spencer, Ed Miller, Ron McKenzie, Ron Chestnut, Stephanie Allison, Terri Lahey.

EPICS references :

· IOC Application Developer's Guide, Release 3.14.6
· Where $LCLS = /afs/slac.stanford.edu/g/lcls/vol1/epics/site/src/slc, use $LCLS/msg/dbSend.c as a design reference for a queued thread and $LCLS/msg/msgRecv.c as design reference for a socket reading thread.

Also see SLC Executive and Message Service Design Presentations
Legacy SLC Database:

· POOP: Database Internals

· BUG: Database

· PG: Database

· Introduction to the SLC Database by Ken Underwood, 1988

· Notes on Existing SLC Operational Database by Tony Gromme (includes notes on TCP Proxy, 3/2004)

SLC-Aware IOC:

SLC-Aware IOC webpage
SLC IOC Message Service Design

SLC IOC Utilities

2.3 DB Service Functional Requirements

Please refer to: SLC Database Service (DBS) Functional Requirements , by Stephanie Allison, for the complete list of Database Service requirements.

2.3.1 DB Service Use Cases

· DBEX

· “Look like” a tcp micro – SLC IOC has the same functional requirements as an iRMX micro

· Same message formats, traffic, use proxy

· Req and Accept database (“IPL”)

· Accept updated setpoints from Alpha

· Provide updated data from IOC

· Supertype 3 (ST3) readbacks

· Supertype 2 (ST2)setpoints (new)

· Accept and reply to diagnostic inquiries

· Accept and Process DBEX up/down messages (up contains db version) (new)

· Console Users

· Utilities to edit, dump, get type of various slc data

· Application code

· Utilities to find, get, put, update slc data

· Coded “data flow dependancies”

· “Job” threads updating Alpha with ST data should wait for round trip confirmation that DBEX received it prior to acknowledging back to Alpha via the message service

· This dependency surfaced in the design review

· ??? What else
· As each “job” specification (bpm, magnet) becomes available, make sure that DBS meets its needs
3 Design

3.1 Service Description and Block Diagram

The primary function of the DBS is to keep its portion of the SLC database - shared data between the Alpha Control System and the SLC IOC – up to date. It accomplishes this by communicating to the DBEX process on the Alpha Control System. All of the database message communications between the SLC IOC and Alpha Control System is handled by the dbSend and dbRecv threads on the SLC IOC, and the DBEX process running on prod or dev Alpha. The SLC database transactions between VMS and SLC IOC occur through a TCP proxy.

There are two TCP/IP sockets per SLC IOC that handle DBS communications (“dbex” and “ctl”). These sockets are connections to a proxy, which also maintains two socket connections with DBEX. The proxy forwards data from DBEX to the proper SLC IOC after interpreting a proxy message “forward” header. Thus, the proxy allows DBEX to make two single socket connections in order to communicate with many micros/SLC IOCs.

The dbex socket is bi-directional and handles initial database downloads, updated data traveling in both directions, diagnostic messages, acknowledgements, and dbex up/down messages. The ctl socket is uni-directional and exists solely for DBEX to acknowledge back to the SLC IOC/micro that it received an update to the database.

DB Service consists of the dbSend thread, dbHdlr thread, dbRecv thread, database Input/Output utilities, database Console Commands, and DBS Utilities. The DB Input/Output utilities are global to all threads (refer to Specification for Database Input/Output Routines), while the DBS Utilities are used only by the db* threads and generally contain conversion utilities.

The Device Service function is shown in the DBS Block Diagram

3.1.1 DB Service Block Diagram
[image: image1.emf]DBEX

SCP

dbGen/

dbInstall

NFS

PRIMARY.MAP

Proxy

CTL socket

Alpha

dbRecv

dbSend

dbHdlr

SLC DB

DB Input/Output

Utilities

IOC

Shell

Console User

Device

Services

IOC DB

SLC IOC Database Service

IOC

SLC

IOC

DBS Utilities

(conversion)

slcExec

DB Msgs Ack

SLC DB

DBEX socket

Operational

The functionality contained in file REF_:[RMX.DBS] DBMAIN.C has been split into dbRecv and dbSend threads, while dbHdlr thread handles new data manipulations for the SLC IOC. The dbSend and dbHdlr threads are “queued message” threads, primarily taking direction from messages sent to their respective message queues. The dbRecv thread is considered a “socket” thread, as it primarily takes direction from incoming network messages from DBEX on the dbex socket.

dbRecv’s prime responsibility is to wait at the dbex socket for network messages from DBEX. It responds to incoming data messages by storing data, in VMS format, as well as by sending queued messages to dbSend to acknowledge DBEX back (when DBEX requests, via a flag in the supertype header) on the dbex socket. Note that currently, acknowledges back to DBEX are only requested by DBEX during IPL, and not during ST 2 data updates. After the SLC IOC receives a database download at startup, it sends a message to dbHdlr to convert the data.

dbSend takes direction from queued messages sent from the slcExec, dbRecv, and “device service” threads. As part of carrying out its functions, it sends all data to DBEX via the dbex socket. For outgoing network messages consisting of supertype 2 or 3 updated data, it requests DBEX to acknowledge back and waits for that acknowledgement on the (dedicated) CTL socket immediately after sending the message.

dbHdlr’s prime responsibility is to offload (large amounts of) data handling from dbRecv or dbSend. It initializes DBS globals and waits at its queue for the message from dbRecv to convert data (compressed ST0 data to string-based format). Upon DBS restart or exit, it resets globals and releases resources. It is desired to be able to stop/restart the DBS and redownload the database while the EPICS application code, co-existing in the SLC IOC, continues to run. dbHdlr coordinates these efforts.

3.1.2 External Interfaces

The following sections describe the ways in which to access the SLC IOC DBS.

3.1.2.1 DBS Sockets

The SLC IOC communicates with DBEX, the Database Executive process that runs on the SLC Control System under VMS on the Alpha. It uses a byte stream composed of a proxy header (intended for proxy use) followed by data service header (or supertype header, interpreted by DBS) followed by data (for data-carrying messages). These messages are tcp/ip, and are managed by a proxy host. The proxy host establishes TCP/IP connections with DBEX in order to communicate with many micro/SLC IOCS using their socket connections. The two DBS socket connections on each SLC IOC are:

· Dbex socket

· Ctl socket

Both dbRecv and dbSend threads are responsible for the bi-directional communications on the dbex socket, while dbSend communicates with the uni-directional Ctl socket.

3.1.2.2 dbSend Queue

When any job thread or other utility decides to update the Alpha with a job’s updated data, it calls the reentrant utility, “dbupdate(job)”, which sends the “DB_UPDATE” message to dbSend message queue.

dbRecv also sends messages to dbSend Queue in order to have it send DBEX acknowledgements for supertype data, as well as diagnostic requests.

3.1.2.3 DBS Input/Output (I/0) Utilities

General database input/output utilities direct the reading and writing of data from / to the slc database and application code (other job threads). See Database I/O Utilities.

3.1.2.4 DBS Console commands

Console commands entered at the EPICS iocsh, RTEMS Cexp shell, or vxWorks shell, access the database (eventually via the DBS I/O utilities above) for the user.

See Console Commands API.

3.1.3 Data Structures

For the SLC IOC, it is desired to be able to stop and restart the SLC-only threads while the EPICS applications continue running. Furthermore, it is desired to redownload the SLC database upon command, after which device threads reinitialize and clear their dblists. In order to prevent heap memory fragmentation, most data structures which are allocated by DBS will be under control of a memory pool manager, namely the EPICS freeListLib.

3.1.3.1 Headers : Proxy and Supertype

The byte stream messaging between DBEX and the SLC IOC always contains a fwd_hdr_ts proxy header which the proxy interprets, and a dbsuptypehdr_ts supertype header, which the Alpha DBEX process and SLC IOC db* threads use to communicate back and forth. (The supertype header is equivalent to the Message Service message header.)

	Name
	Data type
	Represents

	fwd_hdr_ts
	
	

	ip_port_u

len

user

cmd

crc
	ip_port_tu int4u

user_field_ts

int1u

int1u
	Lower half of the ip address, and the port number

Message bytecount - this fwdheader

User defined; chunk count for large buffers;

Fwd_server command, e.g.

8 bit crc over header; currently set to 0x55

	dbsuptypehdr_ts
	 or
	dbsuptype_tu = union

	network

netlsn

id

 <<<<< Note

len

micr

blkbeg

blkend

	int2u

int2u

int2u

 potential byte

int4u

Int4u

int4u

int4u
	Type of data

alignment mistmatch here >>>>>

Size of superblock

Microname

Copy to location in superblk

Copy from location in superblk

	datw[]
	Array of int2u
	type-specific data; packed; max size is NETBUFLEN minus sizeof(dbsuptypehdr_ts)/2

The format of the data (datw[]) following the supertype header is dependant upon flags in the supertype header. The dbsuptype_tu definition makes a union of the supertype header (dbsuptypehdr_ts) and the data, such that any element of the supertype header or the data following can be accessed as a 16-bit data word. (This is important when unpacking the packed VMS formatted supertype data into native, structured format.)

3.1.3.2 Supertype 0 Byte Stream

The legacy VMS ST 0 byte stream, comprised of pointers to primary/unit/secondary data, contains a hash table followed by a series (X number) of unit/primary/secondary (UPS) blocks. Each UPS block is followed by its associated nsub number of secondary blocks (secn). In order to save memory on the legacy micros, numbers were associated with each primary, unit, and secondary name in lieu of storing the 4-char ASCII representations for each. In the SLC IOC, ASCII names will be stored instead of numbers. The ASCII representation facilitates programmers and is necessary for console users when typing in primary/unit/secondary names. The ASCII name representations, along with its associated secondary data information (from ST0 block and file on NFS) is translated into a “dictionary” for the SLC IOC (refer to Dictionary).

	fwd_hdr_ts proxy header

	Dbsuptypehdr_ts supertype header

	 hash length

 array listhead ptrs

 array node counts

	 UPS block 0

 secn block [0 – nsub]:

 supn | subn

 fmt | slen

 sptr =

 offset in supn

 …

	 ….

	 UPS block X

 secn block [0 – nsub]

Where a UPS block contains:

	3 links – next UPS, unit,

 collided nodes

len - ups + nsub’s

catn - prim #

unit - unit #

nsub - # of secns

3.1.3.3 Supertype 1-3 Byte Stream

Supertype 1-3 byte stream data consists of actual data values (pointed to by ST 0).

	fwd_hdr_ts proxy header

	Dbsuptypehdr_ts supertype header

	 Data

	 Data

	 data

	 Data

	 Data

	 data

 ….

3.1.3.4 Send/Receive Buffer Structure

The dbRecv receive buffer and the dbSend send buffer, both allocated in their respective threads, have similar structure to the overall byte streams. They maintain both headers and contain data, all of which are in VMS format. Upon receiving the data stream into the receive buffer, dbRecv converts the incoming dbsuptypehdr_ts into native format so that it can check the contents of the message. The native format is stored in the thread’s queued message variable, the structure of which is shown in the next section.

	Name
	Data type
	Represents

	Dbsndrcvbuf_ts
	
	Receive and send buffers

	proxy_hdr

supblk

	Fwd_hdr_ts

dbsuptype_tu

	Proxy header

Superblock header + data

3.1.3.5 DB Queued Message Structure

The dbmsgmail_ts contains all information required when communicating from db thread to db thread. The msgheader_ts contains the message ID (function). The nativeSB contains the native supertypehdr_ts, converted in dbRecv. The diagnostic data field is to service the diagnostic message received by dbRecv from DBEX; the reply is formatted and sent to DBEX from dbSend.

	Name
	Data type
	Represents

	Dbmsgmail_ts
	
	Q messages

	Msgheader

nativeSB

dbdiag
	msgheader_ts

dbsuptypehdr_ts

dbdiagmsg_ts

	Msg header

Native superblk hdr

Diagnostic data

3.1.3.6 Dictionary

The dictionary is a string based hash table whose entries contain exemplary information (meta data) about each primary/unit/secondary (PUS) data, namely:

· Supertype number

· Format (I,A,R,Z,S,T)

· Length, or number of data elements (V= variable)

· Data width (1,2,4,8 bytes)

· Offset into supertype block (when added to that supertype block’s memory pointer, this becomes the address of the data locally)

· Secondary number (secn), this is no longer used by SLC IOC, but is copied from the ST0 subblock and stored anyway

3.1.3.6.1 PRIMARY.MAP file

The PRIMARY.MAP ASCII file is created as part of the dbGen/dbInstall process on the Alpha. It is then released to a TBD production area on NFS in order for the SLC IOC to read it. On each line it contains primary name, primary number (catn), secondary name, secondary number (secn), format, width of data (bytes), and number of data items. Note that for each primary, secondary numbers are relative to their associated primary. A secondary of one primary may have a different number than the same secondary name of another primary.

The PRIMARY.MAP file is created so that the SLC IOC can a) convert primary and secondary numbers into their ASCII name representation, and b) have access to the data width information for each secondary. Primary names that do not exist in the SLC IOC database are still entered in the dictionary for name validation.

The native dictionary structure is created from a) the converted number-oriented, compressed, VMS formatted superblock 0, and b) by reading the PRIMARY.MAP file, available on an nfs mount point at location pointed to by environment variable.

PRIMARY.MAP format:
 Primary catn Secondary secn format width number

 QUAD 1 BMON 135 R 4 1

 QUAD 1 KTIM 31 T 8 1 …

NOTE: file lines containing any given primary name must be contiguous in the file; the algorithm used by dbST0CreateDict() depends on this contiguousness.
3.1.3.6.2 Dbhash from gphash

For hash facilities, the dictionary uses EPICS libCom gphash (general purpose hash) as a base for its own dbhash facility. gphash sets up an internal hash table of ‘tablesize’ and returns a pointer to it. It also maintains a mutex which is not needed during a) single-threaded write-only initialization while other threads are locked out waiting for downloadEvent, and b) read-only access during operations. (This mutex requires less than 2 usecs when the mutex is available, so it doesn’t warrant modifying the gphash facility just for selectable mutex locking, unless we call it more than 100 times / second.)

However, gphash doesn’t use memory management facilities, thus it was decided to copy gphash to dbhash and modify it to use routines available in freeListLib. Dbhash will use memory pools for the hash array (ELLIST[tablesize]), and for each GPHENTRY. It will remove the mutex locking and it will substitute the strcmp call with strncmp such that hash strings will not need to be null-terminated.
3.1.3.6.3 Four use cases

When organizing the way data is accessed in the dictionary, there are four possible ways to arrange the data because there are four use cases that fall out of the various database input/output and shell routines. A primary (P) must always be specified, while the other two arguments, unit (U) and secondary (S), may be any combination of ALL*, or specified.

The four use cases are outlined in the bullets, and figure below.

· PUS - prim, unit, sec all known; ie dblist(lp, p, u, s)

· PU* - prim, unit, all secs; ie dbdump(p,u)

· P** - prim, all units; ie dblunits(lp, prim) or dbdump(p)
· P*S - prim, all units, sec; ie dblist (lp, p, ALL*, s)
[image: image2.emf]Int1u secn sec #

Int1u supn ST #

Int1u len word length

Int1u format (I,A,R,Z,S,T)

Int4u sptr word offset

Int1u width datum width

 (1,2,4,8)

“primary unit secondary”

“QUAD 701 BDES”

slcSubblk_ts

201 301

401 701

“primary” (not in ST 0)

primary = “QUAD”

Units

...

Count 2

Count 1

Count =

20

dict_p

Int tablesize

Int nShift

ELLIST ** list_pp

epicsMutexId lock

ST 1

ST2

ST3

Dictionary

dbnodes_p[supn]

slcSubblk_ts *

gphash

“primary secondary”

Count 20

“QUAD BDES”

Count 53

201 301

401

701

...

PSNM BCON

Z BMAX

...

“primary unit”

P * *: used for dblunits

P*S: used for dblist (lp, P,ALL*, S)

PUS: used for db* I/O utilities,

when prim, unit, sec are known

PU *: used for dbdump (prim, unit, *)

...

“QUAD 701”

...

...

...

“BDES”

GPHENTRY *

Secondaries

...

To implement all four optimizations would be costly in memory and may be overkill. At a minimum, the P** case should be implemented, as it can handle all four use cases. Shell commands do not need to be optimized, as they occur at “human speed”, so PU* does not need to be implemented. The P*S case can be handled by P** (not quite as efficiently), and will be re-evaluated for implementation when we address how often the magnet and bpm jobs receive SCP requests with ALL* for units. For those threads that respond to a specific SCP request, they will be implementing the PUC use case during runtime. This means that the P** and PUC cases will be implemented, at a minimum. Every “primary” in PRIMARY.MAP will be entered into the hash table, regardless of its presence in this particular SLC IOC for primary name error checking. Each “primary secondary” doublet from PRIMARY.MAP could also be entered for ease of secondary name error checking; at the moment this is a TBD.

3.1.3.6.4 Planned Dictionary Structure

The following figure shows the minimum Dictionary implementation:

[image: image3.emf]Int1u secn sec #

Int1u supn ST #

Int1u len word length

Int1u format (I,A,R,Z,S,T)

Int4u sptr word offset

Int1u width datum width

 (1,2,4,8)

“primary unit secondary”

“QUAD 701 BDES”

slcSubblk_ts

201 301

401 701

“primary” (not in ST 0)

primary = “QUAD”

Units

...

...

Secondaries

...

...

...

“primary unit secondary”

Count 2

Count 1

Count 1

Count =

20

“BDES”

GPHENTRY *

dict_p

Int tablesize

Int nShift

ELLIST ** list_pp

epicsMutexId lock

ST 1

ST2

ST3

Dictionary

dbnodes_p[supn]

slcSubblk_ts *

gphash

3.1.3.6.5 DBHENTRY structure – dictionary entry

Each dbhash table entry is of type DBHENTRY. The DBHENTRY is defined as:

	Name
	Data type
	Represents

	DBHENTRY
	
	Hash table entry

	node

name

userPvt

	ELLNODE

Const char *
Void *

	Link node

“primary unit secondary”

Pointer to either:
dbdictPUS_ts or dbdictP_ts

‘name’ in the above structure maintains our “hashing string” and points to a dictNameTriplet_ts (for PUS name) or points to a dbdictNameSgl_ts (for a single P, U, or S name), while userPvt points to either each dbdictUPS_ts secondary meta data entry or each dbdictP_ts primary entry.

3.1.3.6.6 dbdictNameTriplet_ts

For PUS, the “hashing string” consists of the unique “primary unit secondary” string. Memory is allocated for the dbdictNameTriplet_ts and a const char * pointer is established with the following:

	Name
	Data type
	Represents

	dictNameTriplet_ts
	
	Triplet PUS name string

	Name[12]
	Char
	Non- null-terminated “primary unit secondary” string name; length = 4-4-4 = 12 bytes

Note that gphash uses “strcmp” which requires use of null termination for the name string. This will be changed to “strncmp” in dbhash, such that we have char[12].

3.1.3.6.7 dbdictNameSgl_ts

For the hashing string used with primary, unit, or secondary name only, the following structure is used:

	Name
	Data type
	Represents

	dbdictNameSingle_ts
	
	Single P-U- or S name string

	Name[4]
	Char
	Non null-terminated “primary” or “unit” or “secondary” string name; length = 4 bytes

3.1.3.6.8 PUS entry – dbdictPUS_ts

Each DBHENTRY entry that points to a dbdictNameTriplet_ts also has its userPvt pointer pointing to a dbdictPUS_ts structure that contains the secondary meta data. The “primary unit secondary” meta data has the following structure definition:

	Name
	Data type
	Represents

	dbdictPUS_ts
	
	SLC Secondary data type

	supn

count
sptr

width

format

	short
short
unsigned long
short
char

	Supertype number

Word count
Word offset into supn block

1,2,4,8 bytes; data width

(I,A,R,Z,S,T)

3.1.3.6.9 dbdictP_ts entry

Entries for unique “primary” name will be entered into the hash table of the dictionary. When adding these, a pointer to dbdictNameSgl_ts, containing the primary - only name string is entered in the DBHENTRY name field, and the userPvt pointer of DBHENTRY will point to a dbdictP_ts structure. If the primary is not present in the SLC IOC, the userPvt pointer of DBHENTRY is null.

The dbdictP_ts structure represents a linked list head of its respective units present from the ST0 data for that primary.

Each primary entry has the following structure:

	Name
	Data type
	Represents

	dbdictP_ts
	
	Primary linked list head for units

	listUnits
	ELLLIST
	List head for linked units

Note: listUnits must be first element in structure.
3.1.3.6.10 dbdictU_ts entry

Each unit node in the units linked list is in monotonically increasing order by unit number, and is the linked list head for all secondaries contained in that primary/unit.

Each unit in the linked list has the following structure:

	Name
	Data type
	Represents

	dbdictU_ts
	
	Unit linked list node for each primary

	node

listSecns
name

	ELLNODE
ELLLIST
Const dbdictNameSgl_ts *

	Unit Linked list node
List head for linked secondaries
Unit (number) name

Note: node must be first element of structure.
3.1.3.6.11 dbdictS_ts entry

Each secondary node in the secondary linked list (which has a dictU_ts as its linked list head), has the following structure:

	Name
	Data type
	Represents

	dbdictS_ts
	
	Secn linked list node for each unit

	node

dictEntry

name
	ELLNODE

DBHENTRY *

Const dictNameSingle_ts *

	Secondary linked list node

Pointer to dict entry containing PUS

Secondary name

Note: node must be first element of structure.
Each secondary entry contains a pointer to the “primary unit secondary” DBHENTRY where the dbdictPUS_ts secondary meta information is pointed to.

The Dictionary figure is repeated below, with above structures labeled.

[image: image4.emf]Int1u secn sec #

Int1u supn ST #

Int1u len word length

Int1u format (I,A,R,Z,S,T)

Int4u sptr word offset

Int1u width datum width

 (1,2,4,8)

“primary unit secondary” “QUAD 701 BDES”

dictPUS_ts :

201

301

401

701

“primary” (not in ST 0)

primary = “QUAD”

Units

...

Secondaries

...

...

...

“primary unit secondary”

Count 2

Count 1

Count =

20

“BDES”

GPHENTRY *

dict_p

Int tablesize

Int nShift

ELLIST ** list_pp

epicsMutexId lock

ST 1

ST2

ST3

Dictionary

dbnodes_p[supn]

dbhPvt_ps:

dbhash

dictS_ts

dictP_ts

GPHENTRY:

ELLNODE node

Char * name

Void * userPvt

dictNameSingle_ts

dictNameTriple_ts

null

dictU_ts

dictNameSingle_ts

3.1.3.6.12 Dictionary memory management

The epics libCom memory manager utilities in freeListLib will be used to pool memory for storage of the dictionary structures. The freeList library of routines allocates a large pool of memory, and manages this large pool of memory as many smaller blocks of memory all of the same size. Thus, there must exist a memory pool manager for each different structure type. Dbhash will be rewritten to manage the memory pool for the hash table array and the GPHENTRY structures. File dbdict.c, whose utilities are called from dbHdlr, will mange the other six data structures defined above in support of the dictionary.

The following is an analysis of the different structures in support of the dictionary, as well as the estimated byte count of each structure. Note that byte count has been adjusted to the next largest 4 byte boundary to account for byte alignment on 4 byte boundaries.
dbhash allocates the following different structures:

dbhInitPvt –

· dbhPvt - the table structure (tableSize, nShift, ELLIST ** paplist, mutex)

· 12 bytes

· no memory manager - there is only one dbhPvt, and it is small in size

· paplist array – array of [ELLIST *] – hash table

· tableSize x 4 bytes ; array of ELLIST *

· paplistPool

dbhAdd –

· paplist list heads pointed to by each paplist[index]– ELLIST linked list head – if no previous entry exists

· 12 bytes x (number of PUS entries + number of P entries) (assuming no collisions)

· GPHENTRY(* pvtid, *name, *userPvt, ELLNODE (=* next, * prev, cnt))

· 24 bytes x Number of hash entries (points to all dictPUS, dictP, dictU, dictS entries)

dbHdlr, who creates and manages the dictionary allocates the following:

· dictNameTriplet_ts : char * name “primary unit secondary” for every PUS –

· 12 bytes x every PUS

· dictPUS_ts for every PUS

· 12 bytes x every PUS

· dictNameSingle_ts: char * name “primary “ for every P** -

· 4 bytes x every primary

· dictP_ts for every primary (ELLLIST)

· 12 bytes x every primary

· dictU_ps for every U of every P** - unit linked list (ELLNODE, ELLLIST, dictNameSingle_ts *)

· number of units for this primary (P/U) x 24 bytes

· dictNameSingle_ts: char * name “unit” for every unit of this primary

· 4 bytes x every unit/primary

· dictS_ts for every S of every unit in primary –sec linked list – (ELLNODE, GPHENTRY*, dictNameSingle_ts*)

· number of secondaries for this unit x 16 bytes

· dictNameSingle_ts: char * name “secondary” for every secondary of this unit

· 4 bytes x every PUS

3.1.3.7 DBS Globals

DBS Global data is shared between all DBS threads and initialized by dbHdlr thread. Even though the data is available in global space to all threads, only DBS threads or utilities use and manage this data.

	Name
	Type
	Represents

	dbnodes_p[4]
	dbsuptype_tu
	Pointers to superblocks 0-3

dbRecv mallocs, writes pointers & data while other threads are blocked at db download event.

After download event pointers read-only (ptr to ST0 & data deleted; rest never change)

	dict_p
	void *
	Pointer to dictionary; new char-based gphash table created for housing supertype 0 data (secondary data & location) and valid ASCII names.

gphash has its own mutex protection for add/delete/find dictionary utilities.

	dbex_up

dbVersion
	epicsBoolean

char *
	Status of dbex up (T) or down (F)

Db major / minor version w dbex_up msg

	dbRWMutex
	epicsMutexId
	Activiated for reads or writes from/to supertype 1-4 data. dbRecv (for Alpha VMS updates), and dbl* I/O utilities access

	dbhilo_updates

 [N_JOBS]
	Dbhilo_job_ts
	Each “job service” array contains pairs of offsets to upper and lower bounds of modified ST2/3 data. Acc’ed by utility rte dbhilo_update called from dblput.

	dbhiloMutex

 [N_JOBS]
	epicsMutexId
	Activiated for reads or writes from/to dbhilo_updates[]. Acced by dbSend, and private utility dbhilo_update called by dblput

	dbAckEvent

 [N_JOBS]
	epicsEventId
	Job service threads wait at this event until their updated data has been acknowledged by Alpha

	dbAckStatus

 [N_JOBS]
	vmsstat_t
	Job service threads receive this status after waiting at dbAckEvent until their updated data has been acknowledged by Alpha

3.1.3.8 SLC IOC Globals

3.1.3.8.1 dbExists, downloadEvent

There are two other globals, dbExists and downloadEvent, which are created prior to DBS thread creation, and thereafter are partially maintained by DBS (and partially by slcExec). These globals, dbExists, and downloadEvent, are initialized to dbExists = F and downloadEvent semaphore to blocking such that any threads who want to access data after they are created and before the database is downloaded, are blocked. Similarly, any console users who want to access data before the database is downloaded have an error immediately returned from their console command after the underlying code checks the dbExists flag. The dbHdlr thread is responsible for setting the dbExists flag and resetting the downloadEvent (after download) during initialization.
<Note, we decided not to implement a dbstop or dbinit:

Upon a “dbstop”, dbHdlr resets the dbExists flag. Upon a “dbinit” and after a re-download, dbHdlr sets the dbExists flag and unblocks the downloadEvent.>
3.1.3.8.2 dbStopEvent –Not implementing
The dbStopEvent is set by slcExec when a user types in ‘dbstop’ at the console. A
”DB_STOP” message is also sent to dbHdlr. This causes the DBS to clear the database, clear the dbhilo update lists, and to reset the dbExists flag. dbRecv throws away updates coming from the Alpha. If an IPL occurs during this state, an error is logged. Updates going to the Alpha are also thrown away by dbSend in this state. Diagnostic requests, as well as DXUP, DXDN messages from the Alpha are processed normally. Dbl* utilities should not be called, as job threads who access the db are blocked at the dbStopEvent.
Upon the user typing in ‘dbinit’ at the console, slcExec sets the downloadEvent to block, resets the dbStopEvent, and sends a “DB_DOWNLOAD” message to dbSend in order to initiate the IPL process. After download, dbHdlr sets the dbExists flag and sets the downloadEvent to unblock.
3.1.3.8.3 slcThreads

slcThreads[thread enum] is a global array of thread information. Each DBS thread must maintain the fields in its array.

	Name
	Type
	Represents

	tid
	EpicsThreadId
	Thread identifier

	active
	EpicsBoolean
	True if thread is active / looping; set by thread

	stop
	EpicsBoolean
	True if thread should stop; set by slcExec

	mqId
	epicsMessageQueueId
	Message queue identifier

During thread initialization, all of the DBS threads set :

· active = T

· mqId = message queue id from create call

slcExec sets tid = thread id from create call; it also sets stop = F

During operations, all threads must periodically check their stop flag, and if it is set T, they must exit gracefully. Exiting consists of

· releasing any resources that the thread manages

· set slcThreads[thread enum].active = F

· set slcThreads[thread enum].tid = NO_THREAD

3.1.3.8.4 slcSockets

dbRecv maintains slcSockets[slcDbex] and dbSend maintains slcSockets[slcCtl].

3.1.4 Data Flow

3.1.4.1 Introduction

3.1.4.2 DB Service Initialization

· slcExec starts Phase 1 message Q’ed threads dbSend, dbHdlr

· slcExec starts Phase 2 dbRecv after all Phase 1 active flags are set T

· All db threads :

· Create cmlog handle

· Init resources

· Message queue

· Sockets

· Memory heap

· Timers, semaphores

· Set active = T

· Wait (at message Q or socket)

· dbHdlr thread initializes shared db thread globals

· slcExec sends “DB_DOWNLOAD” to dbSend

· dbSend requests a download (IPL) from DBEX

3.1.4.3 DB Service Download (IPL)

The following describes, at a high level, the threads, data, and routines involved with downloading the database.

3.1.4.3.1 DB Service Download Block Diagram

[image: image5.emf]dbRecv

SLC DB

DBEX socket

CTL socket

dbnodes_p[0]

dbnodes_p[1]

dbnodes_p[2]

dbnodes_p[3]

ST 0

dbHdlr

DB_CONVERT

Ack

Supertype Data

DB_ACK_DBEX

DB_DOWNLOAD

1

Download Request

2

3

(reset dbRWMutex)

(set db RWMutex)

4

5

Repeat steps 3-7 as required by DBEX

8

7

Wait at socket

0, 6

ST 1

ST 3

ST 2

dbSend

Write supertype data

dbRWMutex

DBEX

Proxy

dbmicromail

 dbsuperalloc

 dbmsgcpy

3.1.4.3.2 dbSend Thread DB_DOWNLOAD Q request

· Receives “DB_DOWNLOAD” message from slcExec

· (dbdownloadme:)

· Formats msg.nativeSB with supertype header info indicating download request

· Converts msg.nativeSB to VMS format, copying into sndbuf.supblk (htoVMSSupHdr(sndbuf.supblk, msg.nativeSB))

· Pre-fixes appropriate proxy_hdr in sndbuf

· Sends sndbuf to dbex socket

3.1.4.3.3 dbRecv Thread receives supertype 0-3 data

· rcvbuf receives Supertype 0-3 messages from DBEX at dbex socket

· Converts VMS supertype header in rcvbuf to msg.nativeSB using utility VMStohSupHdr(msg.nativeSB, rcvbuf.supblk)

· Sends “DB_DBEX_ACK” queued message in message header id to dbSend Q to ack DBEX (if requested by DBEX ; flag in id field if supertype header)

· Msg.nativeSB contains native superblock

· Validates incoming data and proper sequence of download (dbmicromail)

· For first piece of a super block (if any super blocks 0-3 are larger than 8K, they are downloaded in pieces) - allocates super block memory (dbsuperalloc) from heap according to len (for all pieces) in supertype header; populates dbnode_p[superblock number] with pointer

· Copies rcvbuf (dbmsgcopy) to alloc’ed memory; drops proxyhdr

· Lock / unlock dbRWMutex around memcpy to alloc’ed memory

· dbRecv sends a DB_CONVERT queued message to dbHdlr after it receives the last piece of supertype 3 data (all data has been downloaded).

3.1.4.3.4 dbSend Thread DB_DBEX_ACK Q request

· Receives “DB_DBEX_ACK” messages from dbRecv for each ST 0-3 block received

· Sends “ack” to DBEX socket

· uses msg.nativeSB.id;

· htoVMSSupHdr(sndbuf.supblk, msg.nativeSB)

· Pre-fixes proxy_hdr

· Sends sndbuf to dbex socket

· DBEX does not currently request an ack when it updates the micro with ST3 data; so this dbex acking only occurs during IPL.

3.1.4.4 DB Hdlr Thread Transfers ST0 to Dictionary

dbRecv sends a DB_CONVERT queued message to dbHdlr after it receives the last piece of supertype 3 data. It is up to the dbHdlr thread to implement all steps necessary to transfer the ST0 data into the dictionary format.

[image: image6.emf]dbRecv

SLC DB

DBEX socket

dbnodes_p[0]

dbnodes_p[1]

dbnodes_p[2]

dbnodes_p[3]

ST 0

DB_CONVERT 8

ST 1

ST 3

ST 2

dbSend

dbRWMutex

Dictionary

dbHdlr

dict_p

NFS

PRIMARY.MAP

SLC IOC

Signal downloadEvent

dbExists = epicsTrue

3.1.4.4.1 DB Hdlr Thread DB_CONVERT request

· Receives “DB_CONVERT” Q message from dbRecv

· Replace ST0 num-oriented hash table with string based hash table dictionary

· Step 1 VMS Conversion:

· Walk thru all ST0 byte stream structures to swap words and longs in place (if architecture is not little endian) (VMStohST0)

· Step 2 Transfer structures:

· Initialize dictionary memory

· Read PRIMARY.MAP file and make entries into dictionary, each combining
· Existing secondary data from ST0

· File data – data width, ASCII names

 into dictPUS_ts structure

· Hash on “primary unit secondary” (PUS case)

· add dictPUS_ts entry to dictionary

· optimized for SCP commands to job threads that make dblists, etc on the fly

· Hash on “primary”

· Links “ALL*” units

· Every unit in primary is a node in linked list of monotonically increasing unit numbers

· Each unit in primary is a linked list head for linked list of secondaries

· Each secondary node points to its PUS entry

· For primary name error checking

· Enter “primary” even if it doesn’t exist in ST0

· Hash on “primary secondary” - TBD

· For faster secondary name error checking

· For P*S use case in dblist(lp, P, ALL*, S)

· Step 3, Finalize:

· Delete ST0

· Set dbExists flag

· Signal downloadEvent

3.1.4.4.2 Correlation of PRIMARY.MAP and ST0 data

The following is PDL for creating dictionary entries based on file data and ST0 data.

For each unique primary name in PRIMARY.MAP file

Make “primary” entry in dictionary

call dbunitsST0 (ld_p, catn)

 if (status OK and ld_p.len>0)

 for each unit# in list

 dbgetUpsST0(uptr, catn, unit)

 link unit in “primary” (for ALL*)

 for every secondary in file

 dbgetSecST0(sptr,uptr,secn)

 store “primary unit sec” with

 combined ST0 & file data;

 + link sec in unit entry (for ALL*)

3.1.4.5 DB Service Receives Updates from Alpha

During normal operations, tasks on the Alpha may issue a dbput which cause an update of supertype 2 data to be sent to micros/SLC IOCs. The byte stream is similar to the supertype 2 data received during IPL. The id of the supertype header is masked for:

3.1.4.5.1 DB Service Updates Block Diagram

[image: image7.emf]DBEX

S

L

C

D

B

Proxy

dbRecv

DBEX socket

CTL socket

dbHdlr

EPICS

Application

ST 2

EPICS DB

Dictionary

Channel

access

deviceControl

Alpha ST2 Update

dbRWMutex

(lock

write

unlock)

Alpha

SLC IOC

ST 3

dbSend

IOC

3.1.4.5.2 dbRecv Thread Receives Update from Alpha

· Receives Supertype 2 (setpoint) update messages from DBEX

· Note: Currently DBEX does not set the request ack flag in the supertype id header which would cause dbRecv to send “DB_DBEX_ACK” msg to dbSend.

· Lock dbRWMutex

· Copies super block recv’ed (dbmsgcopy) to SLC IOC ST2 block

· Unlock dbRWMutex

3.1.4.5.3 dbSend Thread – no action

3.1.4.6 DB Service Sends Updates (originating in EPICS) to Alpha

Updated data flowing from the SLC IOC to the Alpha is dicussed in this section.

3.1.4.6.1 Updates originate from dblput calls

Supertype 2 and 3 data is updated in the EPICS database by various ioc tasks. The SLC IOC has various asynch and handler jobs that read the data from the EPICS database and then update the slc database using dblput calls. Dblput reentrant utility stores the data to the slc database (locking and unlocking dbRWMutex around the memcpys) and then calls dbhilo_update utility in order to store the upper and lower bounds of the data offset (hi/lo offset pair). These hi/lo offset pairs are the actual offsets into the supertype 2 or supertype 3 data memory and are stored in a dbhilo_update array unique for each job and for each supertype (2, or 3). The dbhilo_mutex[job] is locked and unlocked around the memcpy when updating the dbhilo_update array.

[image: image8.emf]DBEX

S

L

C

D

B

Proxy

DBEX socket

CTL socket

EPICS

Applications

ST 3

EPICS DB

Dictionary

dblput / dblget:

dbhilo.update[job]

Channel

access

deviceService

ST 2 or 3 update

dbRWMutex

dbhilo.mutex[job]

(lock)

Alpha

SLC IOC

ST 2

ST 2 or 3

dbSend

ST 2

ST 3

IOC

write / read

(unlock)

Q

dbhilo_update:

(lock)

 write

 (unlock)

hi, lo sptr

dblput calls

3.1.4.6.2 Updates to Alpha Data Flow

When a job thread has determined that it wants to send its updated data to the Alpha, it calls the reentrant utility dbupdate(). Dbupdate() determines the calling job’s job id from slcThreads[thread enum] global and then sends the message “DB_UPDATE”, along with job id to dbSend queue. Dbupdate() then waits on the ackEvent[job],

[image: image9.emf]DBEX

S

L

C

D

B

Proxy

DBEX socket

CTL socket

EPICS

Applications

ST 3

EPICS DB

Dictionary

dbhilo.update[job]

Channel

access

deviceService

Ack

ST 2 or 3 update

dbRWMutex

dbhilo.mutex[job]

Alpha

SLC IOC

ST 2

dbSend

ST2/3 Update

ST 2

ST 3

IOC

(lock)

(unlock)

(lock)

(unlock)

DB_UPDATE

read

 Clear dbhilo.update[job]

Timeout/err – no clear

Q

micro_dbsend (job) :

microdbsendc

microdbsendb

wait ackEvent[job]

signal ackEvent[job]

read

d

b

l

p

u

t

d

b

l

g

e

t

3.1.4.6.3 dbSend Thread Sends Updates to Alpha

· Receives DB_UPDATE messages from various “job threads” to send update

· Jobs call dbupdate utility which ultimately sends the DB_UPDATE Q message and job id

· Lock dbhilo_mutex[job]

· Prevents writing to dbhilo_update[job] table while reading & writing

· Compress job’s list of pending update pairs, if possible (microdbsendc)

 For each update pair in dbhilo_update[job], do the following:

· Lock dbRWMutex

· Read dbhilo_update[job] sptr pair

· memcpy data from ST block indicated by sptr pair into sndbuf (microdbsendb)

· Unlock dbRWMutex

· Increment msg seq # (1-256), write in proxyhdr.user_byte

· store msg seq #, “job id” locally

· Send sndbuf (already in VMS format) to dbex socket

· After sending data to dbex socket, loop waiting at CTL socket for Ack from DBEX (CTL socket is non-blocking read)*

· Further updates for this job are blocked; other job updates q’ed

· Timeout after ~15 sec (less if !dbex_up)

· Wait 1 sec at ctl socket

· Check for slcExec “stop flag”

· CTL loop exit conditions:

1) Successful Ack

· Clear pair from dbhilo_update[job] that was just sent

· If (! dbex_up), set dbex_up flag

· dbAckStatus[job]= success

2) Invalid msg seq #

· If (! dbex_up), set dbex_up flag

· no clear

· dbAckStatus[job]= invalid; error

3) Timeout

· no clear

· dbAckStatus[job]= timeout ; error

4) Socket error

· Set “lost connection flag” ; no clear

· Loop waiting for connection

· Check for slcExec “stop flag”

· dbAckStatus[job]= socket error

 When all updates for job have been sent, or there was an exit condition:

· Unlock dbhilo_mutex[job]

· Signal ackEvent[job]
· Upon dbex_up / connection up

· Send updates for all jobs

*Note that if it is too hard to configure the CTL socket with non-blocking reads, a new thread will be created, dbCtrl, which will synchronize with dbSend. dbSend will issue sleeps() of 1 second each and check the ctlEvent[job] flag each time, for up to timeout value of 15 seconds. It will also compare the msg seq # received by dbCtrl to determine whether it was a valid ack or not.

3.2 dbRecvThread – Detailed Design

3.2.1 Functional Flow

Also see: Also refer to DB Service Download (IPL)
 And DB Service Receives Updates from Alpha
3.2.1.1 Initialization

The dbRecv thread performs the following at initialization

· Allocate rcvbuf receive buffer for DBEX messages

· Create the sdDbex socket and connect with the proxy

· Set its slcThreads[dbRecv].active = epicsTrue;

3.2.1.2 Normal Processing Loop

· While slcThreads[msgRecv].stop != epicsTrue

· Receive the message into rcvbuf buffer (dbRead()) using a getBuffer utility.

· interpret the fwdheader

· converts supertype header into native format by placing it in queued message nativeSB field – uses DBS utility VMStohSupHdr()

· if supertype header requests ack to DBEX (true for all ST 0-2 downloads), send queued message to dbSend with message id = DB_DBEX_ACK

· switch on supertype header id

· diagnostic request: SUPERHDR_FUNC_DGINQ

1. copy incoming data to queued message and send to dbSend with message id = DB_DIAG (dbmdiag_sendrpy())

· dxup message: SUPERTYPE_ID_OVERRIDE | SUPERHDR_FUNC_NOTFY followed by “DXUP”

1. copy dbVersion

2. if dxup was previously epicsFalse

1. call dbupdate(ALL*)

· dbupdate sends DB_UPDATE(ALL*) to dbSend; doesn’t block on any ackEvent for ALL* case

3. set dxup flag = epicsTrue

· IPL block or ST 2 Alpha update: SUPERTYPE_ID_OVERRIDE

1. dbmicromail() validates message using incoming headers and ensures specific download sequence is followed

2. dbsuperallo() creates memory for each superblock

3. dbmsgcpy() copies from rcvbug to superblock memory
Also see: Also refer to DB Service Download (IPL)
 And DB Service Receives Updates from Alpha
3.2.1.3 Termination

When the slcThreads[msgRecv].stop flag == epicsTrue

· Set slcThreads[msgRecv].active = epicsFalse

· Destroy the sdDbex socket

· Set slcThreads[dbRecv].tid = NO_THREAD

· Return

3.2.2 Data

The dbRecv thread uses the following globals:

· slcThreads[dbRecv].tid = is set to NO_THREAD just before dbRecv exits.

· slcThreads[dbRecv].active – is set to epicsTrue when the socket is created and connected, set to epicsFalse just before dbRecv releases resources and exits.

· slcThreads[dbRecv].stop – is polled within the dbRecv main loop

· slcThreads[dbRecv].mqId - NULL always, as the dbRecv thread has no msg queue.

· slcThreads[dbRecv].msgSource – the source of the current incoming message.

· slcSockets[sdDbex] = socket descriptor returned when the socket connection is made, it is set to INVALID_SOCKET whenever a failure is detected with the socket, or when the socket is destroyed.

3.2.3 Resource management

3.2.3.1 Connection management

The dbRecv thread manages the slcSockets[sdDbex] Database Service socket. Whenever a failure is detected the dbRecv thread is responsible for re-connecting with the Proxy (dbSockConns()).

3.2.3.2 Memory Pool

The epics libCom memory manager freeList will be used to pool memory for local storage of the supertype data received. This library of routines allocates a large pool of memory, and manages this large pool of memory as many smaller blocks of memory (all of the same size). The granularity of “smaller blocks” will most likely be the maximum DBS message size (from DBEX) of 8k bytes.

3.2.4 Message Logging

The slcCmlog utilities are used for logging the following status and error messages:

TBD

3.2.5 Diagnostics

TBD

3.2.6 Major routines

epicsShareFunc void epicsShareAPI dbRecvThread(void)

local vmsstat_t dbInitGlob(void);

local void cleanup(void);

local vmsstat_t dbSockConns(void);

local void dbSockClose (void);

local vmsstat_t dbRead (

 dbsndrcvbuf_ts *inmsg_ps,

 const unsigned short *max_bytecount_p,

 int *actual_bytecount_p,

 int *sbbytecnt);

local void dbmicromail(const dbsndrcvbuf_ts *mail2_p,

 const unsigned long actrcvbc,

 const int sbbytecnt);

local void dbmsgcopy(const dbsndrcvbuf_ts *mail2_p,

 unsigned long supblkx,

 unsigned long nwords);

local vmsstat_t dbsuperallo (const dbsndrcvbuf_ts *mail2_p,

unsigned long supblkx);

local void dbmdiag_sendrpy(dbsndrcvdiagmsg_ts *diagmsgbuf_p,

unsigned short dgmsgbc);
local vmsstat_t formST2Ack (const unsigned short id);

3.3 dbSendThread – Detailed Design

3.3.1 Functional Flow

Also refer to DB Service Download (IPL)
And DB Service Sends Updates (originating in EPICS) to Alpha
3.3.1.1 Initialization

The dbSend thread performs the following as initialization

· Create the message queue

· Set its slcThreads[dbSend].mqId = message queue id

· Set its slcThreads[dbSend].active = epicsTrue;

3.3.1.2 Normal Processing Loop

· While (slcThreads[dbSend].stop) != epicsTrue

· Read from message queue

· Switch on message id

· DB_DOWNLOAD_REQ

· dbdownloadme()

· DB_ACK_DBEX

· dbAck()

· DB_DIAG_DBEX

· dbDiagReply()

· DB_UPDATE

· micro_dbsend(job)

· Refer to dbSend Thread Sends Updates
· Inside each specific routine :

1. Check/wait for valid socket

2. Convert the nativeSB header to VMS;

3. Convert any message data content from native to VMS

4. Fill in the forward header

5. Send message to Proxy

3.3.1.3 Termination

When the slcThreads[dbSend].stop flag == epicsTrue

· Set slcThreads[dbSend].active = epicsFalse

· Destroy the message queue

· Set slcThreads[dbSend].mqId = NULL

· Set slcThreads[dbSend].tid = NO_THREAD

· Return

3.3.2 Data

The dbSend thread uses the following globals:

· slcThreads[dbSend].tid = is set to NO_THREAD just before dbSend exits.

· slcThreads[dbSend].active – is set to epicsTrue when the socket is valid and connected, set to epicsFalse just before dbSend releases resources and exits.

· slcThreads[dbSend].stop – is polled within the dbSend main loop

· slcThreads[dbSend].mqId – is set to the dbSend message queue id. Set to NULL when exiting.

· slcThreads[dbSend].msgSource – the source of the current incoming message.

· slcSockets[sdMsg] = socket descriptor returned when the Message Service socket connection is made, checked for failure indicated by INVALID_SOCKET.

3.3.3 Resource management

3.3.4 Message Logging

3.3.5 Diagnostics

3.3.6 Major routines

epicsShareFunc void epicsShareAPI dbSendThread(void)

static void cleanup(void);

static void chkSockConnection(void);

static vmsstat_t dbdownloadme(void);

static vmsstat_t dbWriteDbs(int sd,

 const unsigned short id,

 dbsndrcvbuf_ts *outmsg_ps,

 const unsigned short *max_bytecount_p,

 unsigned short *actual_bytecount_p);

static vmsstat_t dbAck (fwd_hdr_ts *pFwd, dbsuptypehdr_ts *pSup);

static vmsstat_t dbDiagReply (fwd_hdr_ts *pFwd, dbsndrcvdiagdata_tu *pDiag);

3.4 dbHdlrThread – Detailed Design

3.4.1 Functional Flow

3.4.1.1 Initialization

The dbHdlr thread performs the following at initialization

· Create the message queue

· Set its slcThreads[dbHdlr].mqId = message queue id

· Set its slcThreads[dbHdlr].active = epicsTrue;

· Create DBS globals: - allocate memory (from pools), initialize; see Data section

3.4.1.2 Normal Processing Loop

· While (slcThreads[dbHdlr].stop) != epicsTrue

· Read from dbHdlr message queue

· If message = DB_CONVERT
1. dbST0Convert (void)

2. dbExists = epicsTrue

3. unblock downloadEvent

3.4.1.3 Termination

When the slcThreads[dbHdlr].stop flag == epicsTrue, or any other detected “terminal” failure:
· If dbdownloadEvent is set, clear (to unblock waiting tasks)

· Set slcThreads[dbHdlr].active = epicsFalse

· Destroy the message queue

· Set slcThreads[dbHdlr].mqId = NULL

· Set slcThreads[dbHdlr].tid = NO_THREAD

· De-allocate and release DBS global memory and resources

· Return

3.4.2 Data

The following DBS global variables are initialized by dbHdlr:

	dbnodes_p[4]
	dbsuptype_tu
	Pointers to superblocks 0-3

dbHdlr mallocs, writes pointers & data while other threads are blocked at db download event.

After download event pointers read-only (ptr to ST0 & data deleted; rest never change)

	dict_p
	void *
	Pointer to dictionary

	dbex_up

dbVersion
	epicsBoolean

char *
	Status of dbex up (T) or down (F)

Db major / minor version w DXUP messagesents on IPL and when DBEX comes up

	dbRWMutex
	epicsMutexId
	Activiated for reads or writes from/to supertype 1-4 data. dbRecv (for Alpha VMS updates), and dbl* I/O utilities access

	Dbhilo_updates

 [N_JOBS]
	Dbhilo_job_ts
	Each “job service” array contains pairs of offsets to upper and lower bounds of modified ST2/3 data. Acc’ed by utility rte dbhilo_update called from dblput.

	dbhiloMutex

 [N_JOBS]
	epicsMutexId
	Activiated for reads or writes from/to dbhilo_updates[]. Acced by dbSend, and private utility dbhilo_update called by dblput

	dbAckEvent

 [N_JOBS]
	epicsEventId
	Job service threads wait at this event until their updated data has been acknowledged by Alpha

	dbAckStatus

 [N_JOBS]
	vmsstat_t
	Job service threads receive this status after waiting at dbAckEvent until their updated data has been acknowledged by Alpha

3.4.3 Resource management

Refer to Dictionary memory management
3.4.4 Message Logging

The slcCmlog utilities are used for logging the following status and error messages:

TBD

3.4.5 Diagnostics

TBD
3.4.6 Major routines

epicsShareFunc void epicsShareAPI dbHdlrThread(void)

File dbIPL.c contains routines to transfer (or convert, but here convert does not include endian or byte alignment) the VMS ST0 structure to the dictionary structure. See DBS Utilities section below.
3.5 DBS Utilities

This section describes utilities that only the DB Service threads call.

3.5.1 dbUtil

dbUtil.c contains conversion and debugging utilities that print to the console.

· int VMStohSupHdr(dbsuptypehdr_ts * suphdr, dbsuptype_tu * const supblk);

· int htoVMSSupHdr (dbsuptype_tu * supblk, dbsuptypehdr_ts * const suphdr);

· int4u VMStohST0 (void);

· void printhSupHdr (char *bufname, dbsuptypehdr_ts *pBuf, int bytecnt);

· void printVMSSupHdr (char *bufname, dbsuptype_tu *pBuf, int bytecnt);

· void printdblist (dbheader_ts * *const dbdata_pp);
3.5.2 dbST0
File dbST0.c contains routines to transfer (or convert, but here convert does not include endian or byte alignment) the VMS ST0 structure to the dictionary structure. Since the routines operate on VMS formatted data from DBEX, some “legacy-style” data types are used (int2u, int4u, etc) for compatibility.
The utility :
· vmsstat_t dbST0Convert (void);

called from dbHdlr

uses the following local static procedures to process the downloaded ST0 meta data, along with reading PRIMARY.MAP file:
· LOCAL vmsstat_t dbST0alloc(dbST0header_ts **const dbdata_pp,

 const int2u bytes_in_element,
 const int2u num_elements);

· LOCAL vmsstat_t dbST0list (dbST0header_ts **const dblist_pp,

 const int2u prim,

 const int2u unit,

 const int2u secn);

· LOCAL vmsstat_t dbST0units (dbST0header_ts **const dbdata_pp, const int2u prim);

· LOCAL int4u dbST0GetUpsBlk (unsigned short catn, unsigned short unit, suptype0_ts *sb0);

· LOCAL vmsstat_t dbST0GetSubBlk (int4u ups_offset, char secNum, suptype0_ts *sb0);

· LOCAL vmsstat_t dbST0ChkClist (dbST0header_ts * * const dbdata_pp, int4u orgCnt, int4u maxCnt);

Above uses suptype0_ts as the definition of the ST0 structue:

typedef struct

{

 int2u headerw[11]; /* packed supertype header */

 int2u hshl; /* size of hash array */

 int4u hTbl[DBHASH]; /* Hash table - array of offsets */

 int2u hcTbl[DBHASH]; /* Counts of nodes in above array */

} suptype0_ts;

Above uses dbST0header_ts as the ST0-type of list populated by dbST0list() and dbST0units().

typedef struct

{

 int4u max; /* max length of list (words; includes this hdr) */

 int4u cur; /* current length of list */

} dbST0header_ts;

All ST0-type lists used in discovering which primaries and units are configured in ST0 are currently malloc’ed and free’ed. This design should be modified to use the new-style dictionary free lists.
3.5.3 dbdict

dbdict.c contains utilities (mainly used by dbST0) to insert entries from ST0 into the dictionary. Please reference the Dictionary section for dictionary structure and data structures used. The dbdict.c routines use dbhash.c utilities for hash table management.
· void dbdictInitFreeLists (void);

· void dbdictDelFreeLists (void);

· dbhEntry_ts * dbdictInsP(const char *prim_p, const epicsBoolean hasunits);

· vmsstat_t dbdictInsAllUnits (const dbdictP_ts * unitList_ps,const dbST0header_ts * dbunits_ps);

· vmsstat_t dbdictInsSecnInAllUnits (const dbdictP_ts * unitList_ps,

 const dbST0header_ts * dbunits_ps,

 const char * prim_p,

 const char * secn_p,

 const dbST0header_ts * dblist_ps,

 const short supn, const short count,

 const short width, const char fmt);

Utility dbdictInsSecnInAllUnits() uses local static dbdictInsPUS() procedure to insert a “prim secn unit” entry in hash table as it inserts a linked list of units belonging to a given prim:
· LOCAL dbhEntry_ts * dbdictInsPUS (const char * prim, const char *unit, const char *secn,

 const short supn, const short count,

 const long sptr, const short width, const char fmt);
3.5.4 dbhash

gphash* has been copied to dbhash and the following modifications have been made to dbhash.c (and dbhash.h):

· DBHENTRY entries are allocated and released from a freeList manager.

· Paplist hash array is allocated and released from a freeList manager.

· epicsMutexId lock has been removed from dbhPvt structure

· pvtid has been removed from DBHENTRY

· to save memory, strcmp has been changed to strncmp everywhere and namelen arg has been added to dbhFind(), dbhAdd(), dbhDelete(). The const char * name element of DBHENTRY points to non-null terminated free list blocks of the correct size.
3.5.5 dblist

Dblist.c contains utilities for managing the two free lists used by the DB I/O utilities – dblistSmFreeList and dblistBigFreeList. The dblist routines use epics utility freeListLib.c; refer to freeList.h for the prototypes.
· void dblistInitFreeLists (void);

· void dblistDelFreeLists (void);

· void dblistNew (const unsigned long bytes_to_allocate, dbheader_ts * dbdata_p);

· void dblistEnlarge (const unsigned long bytes_to_allocate, dbheader_ts * dbdata_p);
When a small list runs out of room, it gets a big list, copies the small list contents to the big list, and frees the small list. Similarly, when a big list runs out of room it gets more space directly from the heap, copies its contents to the new memory, and frees the big list. If the dbheader_ts (refer to Database Input/Output Utilities) list size is other than DBL_SZBIG or DBL_SZSM, it is assumed the list came from the heap for later freeing purposes (logic in dbfree()).
3.5.6 dbShell for Callbacks (and dbshellUtil for utilities)
dbShell contains the implementation (callbacks) for the Shell Commands.

The callbacks for the shell commands have the name “<shell command>Callback” . The callbacks will, in general, first check the dbExists flag. If the database exists, they call underlying routines which return vmsstat_t and pass the desired return data in the first argument (as a 2-byte integer). If the underlying routine had an error, the error is output, otherwise the callback routine converts desired value(s) to ASCII prior to output to the console.
Any support utility is contained in dbshellUtil.c. If it is desired to use these utilities from other threads, they can be moved.
3.5.6.1 dbgetformatCallback(const char * const prim, const char * const secn)

 Returns the native data type (R,I,Z,A,S,T) format as a single character
· if (! dbExists) print error; return

· if (verifyPUS(prim,*,secn))

· dbhEntry_p = dbhFind(“P”)

· get first unit from unit linked list
· fmt = dbgetformat(P,U,S)

· if error, print

· output fmt

3.5.6.1.1 dbshellUtil:
epicsBoolean dbverifyPUS(const char * const prim, const char * const unit, const char * const secn,)
· dbhEntry_p = dbhFind(“PUS”)

· if dbhEntry_p != null, return true

· else dbhEntry_p = dbhFind(“P”)
· if dbhEntry_p->userPvt = null, then it’s a primary name error

· log error (console or cmlog)

· return false

· Else
· get first unit from unit linked list

· find match for secn – return true

· if no match, log error (console or cmlog)

· return false

3.5.6.1.2 dbshellUtil:
char * dbgetformat (const char * const prim, const char * unit, const char * const secn)
Returns the single character format of PUS; returns ‘/0’ (null) if not found in dictionary.
· dbhFind(“PUS”)

· return dbhEntry_p ->userPvt->format
3.5.6.2 dbgetwidthCallback(const char * const prim, const char * const secn)

 Returns the data type data width: 1,2,4 or 8 bytes.

· if (! dbExists) print error; return

· if (dbverifyPUS(prim,*, secn))

· dbhEntry_p = dbhFind(“P”)

· get first unit from unit linked list

· width = dbgetwidth (P,U,S)

· scanf (width) and output ASCII

3.5.6.2.1 dbshellUtil:

int dbgetwidth(const char * const prim, const char * const unit, const char * const secn)
Returns the integer byte width of PUS; returns zero if not found in dictionary.
· dbhFind(“PUS”)

· get dbhEntry_p ->userPvt->width

· byte swap, return value
3.5.6.3 dbgetcountCallback(const char * const prim, const char * const unit, const char * const secn)

 Returns the number of elements for the secondary.
· if (! dbExists) print error; return

· if (dbverifyPUS(prim,*, secn))

· if (dbverifyPUS(prim,*, secn))

· dbhEntry_p = dbhFind(“P”)

· get first unit from unit linked list

· count = dbgetcount (P,U,S)

· scanf (count) and output ASCII

3.5.6.3.1 dbshellUtil:

int dbgetcount(const char * const prim, const char * const unit, const char * const secn)

Returns the integer number of elements for the secondary; returns zero if not found in dictionary.
· dbhEntry_p = dbhFind(“PUS”)

· if null, then its an error

· get dbhEntry_p ->userPvt->count

· byte swap, return value
3.5.6.4 dbgetmetaCallback(const char * const prim, const char * const unit, const char * const secn)

Returns the meta data for the secondary – count (number of elements), followed by format (R,I,Z,A,S,T), followed by width ie “23A4”

The callback routine calls

dbgetcount(PUS); convert to ASCII
dbgetformat(PUS), and
dbgetwidth(PUS); convert to ASCII
Then concatenates the three strings for output to console of the form <count><format><width>
3.5.6.5 dbdumpCallback(const char * const prim, const char * const unit,

 const char * const secn)

 Dump the primary/unit/secondary value.

 One of the following fields can be ALL* (not both): unit, secn.

 TBD: have both unit and secn be ALL*

· if (dbverify(PUS))

· dballoc(lp)

· dblist (lp, P, U, S)
· dblget (lp, ld)

· convert to ASCII and output
3.5.6.6 dbdumpunitsCallback(const char * const prim)

 Dump all the units, if any, for given primary.

· if (dbverify(PUS))

· dballoc(ld)

· dblunits(ld, P)

· for each unit in ld list, output

3.5.6.7 dbeditCallback(const char * const prim, const char * const unit,

 const char * const secn,

 char * const value1, char * const value2, ...)

 Converts ASCII values to proper format and puts them into the

 SLC database. User will need to know native data type in order to input proper values.

· Dballoc(dblist)

· if (SUCCESS(iss = dblist (dblist, P,U,S))
· dblget(dblist, dbdata)

· with dblist :

· if (ptr->supn = 1) and (! editST1) output error message, return

· if number of values != sptr->count output error, return
· convert each ASCII value to proper format, based on ptr->fmt, ptr->width
· convert data to packed VMS
· form address (dbnode[ptr->supn] + ptr->sptr) lo and hi (lo + count * width)
· lock dbRWMutex

· write data

· unlock dbRWMutex

· log the edit to cmlog
· log success to console and return

3.5.6.8 dbupdateCallback(const char * const jobName)

 Force update of any outstanding supertype 2 and 3 data changes

 for jobName to DBEX. If jobName is "ALL*", forces update for all jobs.

· If (SUCCESS (iss = dbupdate(jobName))

· Output “successfully queued”

· Else, output proper error message

3.5.6.9 dbdumphashCallback(void)

 Dump the hash table.

· Call dbhDump()

3.5.6.10 dbdumpdatabaseCallback(no args)

 Dump the entire SLC database.

 TBD: Database meta data as well as data values are output.

 Note that output can be piped to a filename.

· Expand on dbhDump to display data along with hash meta data.
3.5.6.11 dbexistsCallback(void)

· if dbExists() output True (1)

· else output False (0)
3.5.6.12 dbgetversionCallback(no args)
 Returns the current database version in an 8 character string.

· Output dbgetVersion();

3.5.6.12.1 dbshellUtil:

 char * dbgetVersion(void)

· Return (dbVersion) global variable.

3.5.7 dbio

dbio.c contains implementation for the Database Input/Output Utilities . Please refer to the document for full details.
_1162116675.vsd
Text

Text

Data

dbRecv

_1162198337.vsd
Data

Text

Text

dbHdlr

SLC DB

DBEX

_1162201463.vsd
Data

Text

Text

SLC DB

DBEX

_1163853331.vsd
Text

Text

Text

Text

Text

Int1u secn sec #
Int1u supn ST #
Int1u len word length
Int1u format (I,A,R,Z,S,T)
Int4u sptr word offset
Int1u width datum width
 (1,2,4,8)

Count 1

“primary unit secondary”

“QUAD 701 BDES”

dictPUS_ts :

201

401

301

701

“primary” (not in ST 0)

primary = “QUAD”

_1162201293.vsd
Data

Text

Text

SLC DB

DBEX

_1162125386.vsd
Text

Text

Data

dbRecv

_1162111307.vsd
Text

Text

Text

Text

Text

Count 1

Int1u secn sec #
Int1u supn ST #
Int1u len word length
Int1u format (I,A,R,Z,S,T)
Int4u sptr word offset
Int1u width datum width
 (1,2,4,8)

Count 1

“primary unit secondary”

“QUAD 701 BDES”

slcSubblk_ts

201

401

301

701

“primary” (not in ST 0)

primary = “QUAD”

_1162116386.vsd
Text

Text

Data

DBEX

SCP

dbGen/dbInstall

NFS

PRIMARY.MAP

Proxy

_1162109936.vsd
Text

Text

Text

Text

Text

Secondaries

...

Int1u secn sec #
Int1u supn ST #
Int1u len word length
Int1u format (I,A,R,Z,S,T)
Int4u sptr word offset
Int1u width datum width
 (1,2,4,8)

Count 1

“primary unit secondary”

“QUAD 701 BDES”

slcSubblk_ts

201

401

301

701

“primary” (not in ST 0)

primary = “QUAD”

