 Some BPM-based applications used in SLC. (This is geared toward what I find interesting architecturally about what we used in the SLC, not meant to directly address Patrick’s LCLS requirements, but to communicate understanding of what SLC provided from a software perspective; some of these features may be more important than others for LCLS.)
Single-pulse updating BPM display (GADC,toroid).

Buffered BPM acquisition

Wirescans.

Feedback
All of these BPM-based applications have user options to acquire data at 120 Hz, or lower rate, due to rate-limiting, or due to wirescan range, cpu, user preferences, etc. Use pnet broadcast to specify a pattern of pulses to exclude/include.

Single-pulse updating BPM display.

 Acquire all BPMs in beamline on same pulse, optional average of 20 pulses (or 100?).

 Updating text or zplot display, <1hz update rate.
Buffered BPM acquisition.
Acquire chosen BPMs (including all BPMs in beamline), buffer 200 synchronized pulses in a row (or 1024 or 2800 as in post-slc era?). (MIA loves more data). Return pulse ids. Include toroid and GADC data. Save matlab file, do ffts, etc.
Dithered Buffered BPM acquisition.

Same as above, but add option to move control devices, synchronized with the acquisition. Move in a user-specified pattern, from a file. Only for 200 pulses, only moving devices in one micro at a time. Supported devices include correctors, pulsed amplitude units, maybe sbst phases, etc. Let user choose between dithering in BDES/VDES units, and in DAC counts. This is strictly a user-experiment created on the fly, not a database-driven application.
Wirescan

A lot like dithered buffered BPM acquisition, except the wirescan moves a stepping motor, and is database-driven with user options. FLY-wire scans have a stepping motor controller with programmable speed; the speed is based on the user-entered scan range. Before the scan, move the stepping motor near the beamline (different position for X,Y,U scans). After the scan, option to leave the stepping motor at the start position for the next plane, or to leave the stepping motor at the start position to repeat this scan.
When the scan begins, program the stepping motor to start moving; it accelerates, moves, decelerates. While the scan is running, acquire synchronized data for a variable number of BPMs and GADCs, not all of which are in a single micro.

Have a database-driven scan range which is different for X/Y for each wirescanner; let the user scan with a different range, and let the user decide when to make their personal choice public.
Read multiple GADC devices.

After the scan, collect the synchronized data, fit the BPMs into orbit changes at the position of the wire scanner, normalize the chosen GADC axis to the beam intensity. The X axis of the wire scan is position (in um or mm). Have a 120-Hz readback which is indicative of the stepping motor position at each point of the scan. Correct the position readback for the beam jitter, as fitted on the BPMs. Do an asymmetric Gaussian fit of position-jitter-corrected position vs intensity-jitter-normalized GADC readout. Display plot, and save fit parameters in history buffers. Have option for user to view data from the latest scan.
Options: fire the single-beam dumper during the wirescan? Rate-limit downstream during the wirescan?

Fast Feedback:

Receive BPM/GADC/TOROID data at 120 Hz, low latency. Database-driven measurements, actuators, feedback matrices in sparse form (includes transport matrices and controller design). Subtract gold orbit from measurements; let user choose to load, among multiple saved configs of gold orbit references. Linear feedback basis, options for nonlinear handling of measurements and actuators (i.e. intensity normalization of measurements; phase kink calculation for actuators), extra optional parameters available to special calculations (Steph). Implement actuators with low latency.
Cascaded feedback architecture:

Beam goes by.

BPMs digitize.

Feedback loops receive BPM data.

Each feedback calculates physical states (x,y,xang,yang).

Each upstream feedback ships physical states to downstream feedback loop.

Each downstream feedback loop receives physical states from upstream, and transports to

 this location, subtracting from its own states if applicable.

 (Transport matrices are calculated adaptively, online).

 Send to nearest single neighbor only in slc-style single cascade.

 (In nlc-style multicascade, send to all downstream).

Each feedback calculates actuator settings, and implements new settings.

Multimicro feedback architecture:

 Feedback is database-driven. This includes which measuments and actuators are used, and what states are calculated and controlled. A calculation engine (controller) receives measurement data which may be from local or remote sources. The controller sends new actuator settings to either local or remote destinations. Not sure we need multimicro feedbacks.

SOME LIMITATIONS OF SLC

1. Wirescans were too slow (time spent waiting for step check/trim, message waits, etc).

2. Would like to take BPM data without interrupting feedback; in SLC this was possible, but required effort and had limitations.

