

SNS Application Programming Infrastructure and Physics Applications (Java based!)

Paul Chu

Oct. 7, 2005

SSRL, Oct. 7, 2005

SPALLATION NEUTRON SOURCE

- SNS Application Programming Team: <u>P. Chu</u>, <u>J. Galambos</u>, <u>T. Pelaia</u>, <u>A. Shishlo</u>
- Active application programmers at SNS: D. N. Armstrong, S. Chevtsov, S. Cousineau, V. Danilov, Y. Zhang
- Other contributors: A. Aleksandrov, <u>C.K. Allen</u>, S. Bunch, I. Campisi, R. Dalesio, K. Danilova, A. Feshenko, D. Gurd, S. Henderson, J. Holmes, D. Jeon, R. Kennedy, W.D. Klotz, Y. Kiselev, I. Kriznar, A. Leahman, <u>C. McChesney</u>, N. Malitsky, D. Ottavio, N. Pattengale, M. Plesko, M. Plum, A. Pucelj, H. Sako, C. Sibley, E. Tanke, J. Wei, E. Williams, and A. Zupanc...

SNS

Outline

- SNS application infrastructure (XAL)
 - Overview
 - Accelerator hierarchy
 - Database
 - Connections
 - Data Correlation
 - Online Model
 - GUI framework
 - Utility tools
- Applications

SSRL, Oct. 7, 2005

XAL Overview

- High level physics application software is for modeling, integrated operation and accelerator physics studies
- SNS application software environment --

SNS

XAL Accelerator Hierarchy

- XAL is Java based
- Includes a class hierarchy describing the accelerator structure
- Methods exist to directly work with accelerator devices

SNS

The Database Connection

- XAL uses "Beamline Device", "Device Setting" and other hardware related tables in the global SNS database
- Creates the accelerator hierarchy
- Serves as a common configuration for all applications
- Provides the "map" from the flat list of EPICS signals to the accelerator hierarchy
- Use an intermediate XML file

- Channel Class
 - An abstract class that provides an interface to the control system.
 - Includes convenience functions to hide details of the connection mechanism.
- JcaChannel
 - A concrete class that uses the Java Channel Access (JCA) interface to EPICS channel access protocol -- each EPICS signal is called a *process variable* (PV).
- Transformations: allows modification of the value of the signal coming from the control system
 - Can map one signal to > one "Channel" object, with and without the transformation.
 - Facilitates quick fixes, changes to signals
 - Magnetic field calculated from power supply current.
 - BPM polarity fixes.

The Online Model

- Calculate beam parameters.
- A lattice view of the machine is constructed from the "device" structure (via a set of rules.
 - Drifts are added, elements are split.
 - Device view -> intermediate lattice -> online model lattice
- Lattice element values can be updated from the machine, design or logged values.
- Can do 'what-if' with any one of the above data sources.
- Mostly use an envelope model for single-pass linac tracking or closed orbit for ring.

SSRL, Oct. 7, 2005

Online Model vs. MAD

Online model HEBT results (design setting)

Comparison of online model and MAD results

SSRL, Oct. 7, 2005

Online Model (cont.)

- Many applications based on the online model.
- A 'virtual accelerator' application using online model and a portable channel access server (PCAS) as the engines.

•Beta functions through the SNS SCL and Linac dump line for a machine snapshot during Sep. 05 commissioning.

•The app can server as orbit difference tool with live BPM and profile monitor data.

- Orbit difference
- Orbit correction (also has empirical algorithm)
- Online model application
- Linac tuning apps
 - PASTA (for linac phase/amplitude)
 - SLACS (for superconducting phase setting)
 - Delta-T procedure
- Ring tuning apps
 - Injection
 - Ring measurement and optics tuning (beta-function, tune, etc.)

11

Application Programming Framework

•A GUI Application Framework is developed and used as a common starting point for application programs

- •Provides a common look feel for all apps
- •Quick jump-start for application development
- •Easy retro-fixes across many apps
- •Use familiar "windows" look feel paradigm

- Channel Correlator
 - SNS is a pulsed machine (up to 60Hz of rep rate)
 - Correlator gathers sets of signals from the same pulse
 - Different modes: stream correlation sets to listeners or periodic posting
 - Can use filters (triggered data acquisition)
 - RTDL (Real Time Data Link) ensure correct time-stamps for PV correlation

SNS

- Charting package
 - Designed for scientific purpose.
 - Can be light-weight and fast (e.g. for digital scope application).
- Communication tool (based on XML-RPC) ready for client-service implementation.

👻 📃 🗙 Applica	tionViewer					
File Edit View V	Vindow Help					
Garbage Collect	Force Quit					
update period (sec)	: 30					
Application	Host	Launch Time	Total Memory (KB)	Free Memory (kB)	Service Status	
ApplicationViewer	ics-srv-phy1	Sep 28, 2005 15:5	3,648.000	1,377.133	Okay	
ArchiveViewer	ics-opi-ccr10.ics.s	Sep 22, 2005-08:4	38,708.000	2,931.719	Okay	
ArchiveViewer	ics-opi-ccr10.ics.s	Sep 23, 2005-16:0	7,956.000	2,452.258	Okay	
ArchiveViewer	ics-opi-ccr11.ics.s	Sep 19, 2005 11:0	10,700.000	758.734	Okay	
ArchiveViewer	ics-opi-ccr10.ics.s	Sep 28, 2005 07:5	4,296.000	942.828	Okay	
ArchiveViewer	pps-opi-ccr13.ics	Sep 14, 2005 16:4	10,028.000	2,954.609	Okay	
?	?	?	30,912.000	18,383.203	Failed	
Launcher	ics-srv-phy1	Sep 12, 2005 00:0	3,688.000	992.969	Okay	
MPS Plotting Package	ics-accl-srv2.ics.sn	Sep 28, 2005 15:5	50,176.000	43,367.008	Okay	
						•

- DataTable
 - More powerful than the standard Java collections
 - Provides database like functionality with easy interface
- XML DataAdaptor
 - Easy file i.o. in XML format, for any hierarchy
 - Used in applications for saving settings etc.
- Math Tools
 - Optimization
 - Matrix
 - Fitting
 - ...
- Can export other modeling input files (via intermediate lattice)
 - Trace-3D, MAD
 - DYNAC, IMPACT are in progress

SNS

Scripting Interface to XAL

- Scripting interfaces are available with Jython (<u>www.jython.org</u>) and Matlab
 - No glue code, or extra compile steps etc needed!!! Mix XAL java classes seamlessly with scripting language
- Providing simple code examples.
- Coding up on-the-fly experiments.
- http://www.sns.gov/APGroup/appProg/xal/scripts/jythonScripts.html

<u>Jython</u>	MatLab
<pre># read the accelerator #acc_xml = "file:/user1/chu/xaldev/xal_xmls/sns.xml" acc_xml = "file:./sns.xml" acc = XmlDataSource.parseUrlAt(acc_xml, 0) # get the some primary sequences from the accelerator mebt = acc.getSequence("MEBT") dtl1 = acc.getSequence("DTL1") dtl2 = acc.getSequence("DTL2")</pre>	% scan the first quad % monitor beam positions in the last MEBT BPM for i =1:10 fld(i) = field; quad.setField(field); va_chan.putVal(1); % for virtual accelerator pause(1); % for virtual accelerator xpos(i) = bpm.getXAvg; ypos(i) = bpm.getYAvg; field = field * 1.015; % increment field value end
print " There are ", mebt.getAllNodes().size(), "nodes in the sequence", mebt.getId()	% Plot results plot(fld, ypos)

XAL Applications

SINS SPALLATION NEUTRON SOURCE

- Accelerator physics apps
 - Accelerator tuning
 - Physics experiment
- General purpose apps
 - Hardware monitor or diagnosis
- Service daemons
 - Minimize network traffic as multiple apps accessing the same PVs
 - Always running in the background
 - Examples: PV Logger, MPS first fault

- Orbit difference check steer and BPM polarities with online model.
- Orbit correction flatten trajectory.
- Energy manager find a good lattice when energy changed.
- Linac RF phase and amplitude tuning app.
- Emittance analysis process raw data from emittance device.
- Wire scanner analysis process raw data from wire scanner and compare with online model.
- Ring injection phase space painting.
- Ring measurement measure tune, β-function, dispersion chromaticity.
- Virtual Accelerator machine simulator.

SNS

- Use the online model app for orbit difference purpose (run it twice with a steer changed).
- Found CCL steer field wrong.

SSRL, Oct. 7, 2005

SPALLATIC

Linac Transverse Tuning Apps

- Use 3+ wire scanners for emittance measurement.
- Perform transverse matching using online model.
- Can work both on-line and off-line.

SNS

SPALLATION

- Measure tunes with BPM turn-by-turn data.
- Measure dispersion
- Perform quad tuning with betatron phase advance (in progress).

SPALLATION

XAL

Superconducting Linac Tuning

 Use drifting beam (RF cavity off) induced field for RF phase setup.

	😇 🔄 💥 SCL Phase Setting	g - Untitled.scl					×	
	File Edit Accelerator Mode	View Window Help						
	Select Cavity							
	Inputs		_					
	Energy (MeV):	185.662	Beam Current (mA):	0	Pulse_(us)	33		
	Eacc w/ TTF (MV/m):	10.139	Loaded Q:	320,000	Res. Error (Hz):	0		
	Cav Design Phase (deg):	-20.5	RmsSize (deg):	0	Cav Phase Avg.	0		
	Cavity type:	Medium Beta 🗖	 Field Set Pt.: 0 	Turn off Cav.	10-pulse Avg.	Phase Avg Range	:	
	Cavity: SCL_RP:CavU1a				Keset	Kun		
	Results							
	New Cav Phase Se	t Pt.: 160.5391	Loading (MV/m):	0 (Dutput Energy (MeV): 19	90.3475		
	Phase Set Pt.: 10.1 Set Cav. Phase							
		L						
/						\backslash		
						\backslash		
						\backslash		
						\backslash		
Calculated phase s	set point					\backslash		
•	•					\backslash		
						\backslash	x	
					C	alculated o	utnut on	
					U		uipui en	

SPALLATIO

External (to XAL) Lattice Generator

• Can generate MAD, Trace-3D, DYNAC input files on the fly.

SPALLATIO

- Application test tool when the machine is not running.
- Based on online model.
- Can set noise, off-set.

- XIO XAL I/O diagnostic tool, monitoring and plotting any beam-line device PVs.
- PV correlator display 2 or 3 PVs from the same beam pulse.
- Beam loss viewer display beam loss monitor readings.
- Scan apps scan 1 or 2 PVs and monitor some other PV(s).
- Scope a digital scope-like app.
- PV timestamp test display PV timestamps and plot them.
- Diagnostics device timing display and set timing for diagnostics devices.
- Archive viewer display archived data.

Xio Application

- General purpose value displayer (tables, and or plots).
- Browser the accelerator hierarchy to select what you are interested in.

SPALLATION

XYZ Correlator Application

- Pick 2 (or three) signals and monitor them together.
- Uses the time correlator to ensure signals are from the same pulse.
- Can export or fit the acquired data.

PV Timestamp Test

- Show multiple PV timestamps side by side.
- Can serve as a strip tool.
- Use Channel Access monitor.

Diagnostics Device Timing

- Display multiple diagnostics device timings in one place.
- Can set timing automatically or manually.

💌 🦳 🗶 diagnosticT	Timing - Untitled.dt											
File Edit Accelerator	View Window He	lp										
New Open., Save	Cut Copy Paste	Capture a	as PNG									
	Mara S commons	1										
LINAC BPMS RING BP	WIS WITE Stanners											
										BPM phase:		
BPM	Delay (us) no of min	BPM width	sampling	new Delay	new no inis	new BPM	new samn		0.00E0			
MEBT Diag BPM01 2	2617 0000 10 0000	1 000F-4	40 0000	new beidy	new no. pro.	new brin	new samp					
MEBT Diag BPM04 2	2617 0000 10 0000	1 000E-4	40 0000						-5.00E1			
MEBT Diag:BPM05 2	2617.0000 10.0000	1.000E-4	40.0000						1			
MEBT Diag: BPM 10 2	2617.0000 10.0000	1.000E-4	40.0000									
MEBT Diag: BPM11 2	2617.0000 10.0000	1.000E-4	40.0000					1_	-1.00EZ /r			
MEBT_Diag:BPM14 2	2617.0000 10.0000	1.000E-4	40.0000									
DTL_Diag:BPM203 2	2616.0000 10.0000	1.000E-4	40.0000						-1 50E2			
DTL_Diag:BPM209 2	2616.0000 10.0000	1.000E-4	40.0000									
DTL_Diag:BPM302_2	2616.0000 10.0000	1.000E-4	40.0000					H	3 0053			
DTL_Diag:BPM308 2	2616.0000 10.0000	1.000E-4	40.0000						-2.0082 ++++		+ + + + + + + + + + + + + + + + + + + +	+-++
DTL_Diag:BPM403 2	2616.0000 10.0000	1.000E-4	40.0000						0.00E) 1.00E2	2.00E2	3.00E2
DTL_Diag:BPM409 2	2616.0000 10.0000	1.000E-4	40.0000							pt.	no.	
DTL_Diag:BPM501 2	2616.0000 10.0000	1.000E-4	40.0000							BPM Amplitude:		
DTL_Diag:BPM507 2	2616.0000 10.0000	1.000E-4	40.0000						2 00E-1			
DTL_Diag:BPM603 2	2616.0000 10.0000	1.000E-4	40.0000					1				
DTL_Diag:BPM609 2	2616.0000 10.0000	1.000E-4	40.0000					1				
CCL_Diag:BPM101 2	2615.0000 10.0000	1.000E-4	40.0000					1	1.50L-1-			
CCL_Diag:BPM103 2	2615.0000 10.0000	1.000E-4	40.0000					1				
CCL_Diag:BPM112 2	2615.0000 10.0000	1.000E-4	40.0000					1	1.00E-1			
CCL_Diag:BPM202 2	2615.0000 10.0000	1.000E-4	40.0000					1	P			
CCL_Diag:BPM212 2	2615.0000 10.0000	1.000E-4	40.0000					1	1			
CCL_Diag:BPM302 2	2615.0000 10.0000	1.000E-4	40.0000						5.00E-2			
CCL_Diag:BPM312 2	2615.0000 10.0000	1.000E-4	40.0000									
CCL_Diag:BPM402 2	2615.0000 10.0000	1.000E-4	40.0000					-	0.00E0			
		_							0.00E	1 00E2	2 00E2	3 00E2
Find timing f	or the selected BPM								0.002	pt.	no.	
Creative C	when endered DEM											
Set timing fo	r the selected BPM											
		_										
Beam gate widt	n (turns): 33		Tin d			Canalla						
			Fina	an umings		Set all t	uming					

Summary

- XAL is a Java based hierarchal framework SNS is using to write high level applications.
 - Online modeling is available for both linac and ring.
 - The framework is matured: > 800 classes so far.
- Uses a database to initialize the hierarchy.
- Many tools are available.
- Applications are written and being used in the SNS commissioning.
 - > 40 applications written.
- Directions:
 - Adding more Ring applications.
 - Adding more ring online model features.
 - Adding more detailed information to the database.
 - Moving towards service applications.

Scope Application

XAL

- A Digital Oscilloscope with a similar user interface as analog scopes.
- Displays array waveforms vs. time (NOT vs arbitrary units).
- Uses the time correlator, has built-in math capability, triggered data acquisition+ many other features.
- Will use this for comparing waveforms from RF, diagnostics, etc.
- Requires input from signal providers describing how the array information is packaged, and offset from the cycle start.

31

SPALLATION NEU

1-D Scan Application

- Provides an easy way to scan one quantity and monitor others.
- Can average over pulses, scan multiple times, pause.
- Analysis includes fitting, intersection finding, min/max, etc.
- Easy way to do a quick unanticipated experiment.
- Predefined scans with specialized analysis are possible.
 - DTL and MEBT phase + amplitude setting applications.

XAL

Save-Compare-Restore (Score) Application

- Provides a means to capture machine setup, compare live values to a saved set, and to restore values to a saved set.
 - Grabs settable + readback signals.
- Can sort by system and device type.
 - Uses DataTable classes for querying.

Load devices/typ	pes (Open	Save As	Snapshot	Machine	Res	store	Capture	e as PNG			
Select Systems	RFQ	MEBT	DTL	Timing FE	DPlate	i						
DPlate	T	vpe	Setpo	int name	SP Save	Val	SP	live Val	Rea	adback Name	RB Save Val	RB live Val
DTL	RF											1
FE			RFQ:RF:Gaii	RF:Gain			0.35	00				
MEBT			RFQ:RF:Gain_Rot 1		116.9083 116.9083							
RFQ			RFQ:RF:Int_	scale	7000.00	7000.0000 7000.0000						
Timing			RFQ:RF:Loo	p	1.0000		1.00	00				
			RFQ:RF:cav/	AmpSet	0.5512		0.55	12	RFQ:RF:0	tavAmpAvg	0.5488	0.5493
			RFQ:RF:cav	PhaseSet	24.3920		24.3	920	RFQ:RF:	avPhaseAvg	24.3090	24.2417
			RFQ_HPRF:	4od1:VCTL_S	t 130.000	D	130.	0000	RFQ_HP	RF:Mod1:V_Mon	100.3780	100.3750
									RFQ:RF:	FwdPower	686.1238	673.1348
									RFQ:RF:	RfIPower	9.4841	9.0523
									RFQ_HP	RF:Mod1:I_Mon	48.8328	48.8791
	Temp											
Sys Set			RFQ:Chllr_2	2:T_Set	24.2000		24.2	000	RFQ:Chl	Ir_2:T	25.2192	25.3264
Coloct Types	14								RFQ:Chi	Ir_2:1_LB	24.1819	24.1849
Diag	vac									-10.3.0	0.7105.7	0.6045.7
Duty									REQ_Val	516_2;P	2.710E-7	2.094E-7
Duty									RFQ_Vac	CAV:SIS	1.0000	1.0000
Gale LEDT												
LERI												
Mag												
RF												
KK -												
Source												
Temp												
Vac												
Type Set	1			Mac	hine data :	savec	1 at S	at Aug 30) 19:36:5	9 EDT 2003		

Machine Protection System (MPS) Postmortem Application

- Captures MPS events, and sorts the signals in order of occurrence i.e. determines the root cause of a trip (uses correlator).
- Logs mps events.
- Provides statistics.

Loss Viewer Application

New Open... Save Cut Copy Paste Capture as PNG

Device

DTL_Diag:BLM00

DTL_Diag:BLM130

DTL_Diag:BLM160

DTL_Diag:BLM224

DTL_Diag:BLM248 DTL_Diag:BLM317

DTL_Diag:BLM334

DTL_Diag:BLM414

DTL_Diag:BLM428

DTL_Diag:BLM512

DTL_Diag:BLM524

35

- View a summary of beam loss by ٠ machine section.
 - "Zoomable" to specific BLMs.
 - Viewable as fraction of permissible loss.

SNS

SPALLATIC

Orbit Difference Application

- Compares differences in beam orbits, for both BPMs and calculated.
- Online model is also used in the Orbit Difference Application, in addition to running Trace 3D (external fortran code).

Kick applied here

•Orbit difference example using the online model.

•Used to observe orbit difference in the horizontal direction.

•Helped resolve sign issue in BPMs.

Starting on Ring Apps

- Ring applications using XAL tools.
- HEBT matching algorithms.
- Ring Optics settings.
- Injection.

New Open Save	Cut Cop	y Paste	Capture as PNG	
Tune Settings Chron	naticity 🦷	Arc Phase /	Advance Beta Functio	Harmonic Correction
Set Tune				Resonance Grid
Increment: 0.	crement: 0.001 🕶 Increment: 0.001 💌			Key: Order 1 Order 2 Order 3 Order 4
X tune:	X tune: % SS Foc 6.230 • 0.00		using Quad.:	6.45
Y tune: % SS Def 6.200 • 0.0		ocusing Quad.:	6.20 5.95	
	Quad. Set	Points:	Quad. Read Back:	C 9 5.70
Arc Defocusing:	-4.25058	7	-4.252205	5.45
Arc Focusing:	3.909989		3.915303	
Arc Focusing(26cm):	3.617235		3.609159	5.20
Arc Matching:	-3.023992		-3.023254	4.95
SS Defocusing:	-4.116582		-4.116582	4.95 5.20 5.45 5.70 5.95 6.20 6.45 Q_x
SS Focusing:	3.766255		3.766255	
	Submit		Get Read Back	Current Setpoint: X tune 6.230 Y tune 6.200

