
7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 1 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

EPICS R3.14 Channel Access Reference Manual
Jeffrey O. Hill

Los Alamos National Laboratory, SNS Division

Ralph Lange

Helmholtz-Zentrum Berlin (BESSY II)

Copyright © 2009 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH.

Copyright © 2002 The University of Chicago, as Operator of Argonne National Laboratory.

Copyright © 2002 The Regents of the University of California, as Operator of Los Alamos National Laboratory.

Copyright © 2002 Berliner Speicherringgesellschaft für Synchrotronstrahlung GmbH.

EPICS BASE Versions 3.13.7 and higher are distributed subject to a Software License Agreement found in the file LICENSE that is included with this distribution.

Modified on $Date: 2009/07/30 23:09:54 $

Table of Contents

Configuration

EPICS Environment Variables
CA and Wide Area Networks
IP Network Administration Background Information
IP port numbers
WAN Environment
Disconnect Time Out Interval / Server Beacon Period
Dynamic Changes in the CA Client Library Search Interval
Configuring the Maximum Search Period
The CA Repeater
Configuring the Time Zone
Configuring the Maximum Array Size
Configuring a CA server

Building an Application

Required Header (.h) Files
Required Libraries
Compiler and System Specific Build Options

Command Line Utilities

acctst - CA client library regression test
caEventRate - PV event rate logging
casw - CA server beacon anomaly logging
catime - CA client library performance test
ca_test - dump the value of a PV in each external data type to the console
excas - an example server

Command Line Tools

caget - Get and print value for PVs
camonitor - Set up monitor and continuously print incoming values for PVs
caput - Put value to a PV
cainfo - Print all available channel status and information for a PV

http://www.w3.org/Amaya/
http://validator.w3.org/check/referer
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configuration
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#EPICS
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#CA%20and%20Wide%20Area%20Networks
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Network
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#port
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Environmen
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Disconnect
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Dynamic
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configurin3
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Repeater
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configurin
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configurin1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configurin2
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Building
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Required1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Required
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Compiler
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#CommandUtils
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#acctst
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#caEventRat
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#casw
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#catime
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_test
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#excas
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#CommandTools
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#caget
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#camonitor
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#caput
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#cainfo

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 2 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Troubleshooting

When Clients Do Not Connect to Their Server
Client and Server Broadcast Addresses Dont Match
Client Isnt Configured to Use the Server's Port
Unicast Addresses in the EPICS_CA_ADDR_LIST Does not Reliably Contact Servers Sharing
the Same UDP Port on the Same Host
Client Does not See Server's Beacons
A server's IP address was changed

Put Requests Just Prior to Process Termination Appear to be Ignored
ENOBUFS Messages

Function Call Interface Guidelines

Flushing and Blocking
Status Codes
Channel Access Data Types
User Supplied Callback Functions
Channel Access Exceptions
Server and Client Share the Same Address Space on The Same Host
Arrays
Connection Management
Thread Safety and Preemptive Callback to User Code
CA Client Contexts and Application Specific Auxillary Threads
Polling the CA Client Library From Single Threaded Applications
Avoid Emulating Bad Practices that May Still be Common
Calling CA Functions from the vxWorks Shell Thread
Calling CA Functions from POSIX signal handlers

Functionality Index

create CA client context
terminate CA client context
create a channel
delete a channel
write to a channel
write to a channel and wait for initiated activities to complete
read from a channel
subscribe for state change updates
cancel a subscription
block for certain requests to complete
test to see if certain requests have completed
process CA client library background activities
flush outstanding requests to the server
replace the default exception handler
dump dbr type to standard out

Function Call Interface Index

ca_add_exception_event
ca_add_fd_registration
ca_array_get
ca_array_get_callback
ca_array_put
ca_array_put_callback
ca_attach_context
ca_clear_channel
ca_clear_subscription
ca_client_status
ca_context_create
ca_context_destroy
ca_context_status
ca_create_channel

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Troublesho
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#When
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Broadcast
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Unicast
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Server1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Requests
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Problems
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Function
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Flushing
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Status
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#User
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Channel1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Server
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Arrays
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Connection
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Thread
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client2
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Polling
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Avoid
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Calling
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Calling1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_destroy
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_clear_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_put
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_put
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_clear_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_test_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L3249
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_flush_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_exception_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_dump_db
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Function%20Call%20Reference
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_exception_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_fd_
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_put
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_put
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_attach_context
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_clear_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_clear_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_client_status
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_destroy
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_client_status
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 3 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

ca_create_subscription
ca_current_context
ca_dump_dbr
ca_detach_context
ca_element_count
ca_field_type
ca_flush_io
ca_get
ca_get_callback
ca_host_name
ca_message
ca_name
ca_read_access
ca_replace_access_rights_event
ca_replace_printf_handler
ca_pend_event
ca_pend_io
ca_poll
ca_puser
ca_put
ca_set_puser
ca_signal
ca_sg_block
ca_sg_create
ca_sg_delete
ca_sg_array_get
ca_sg_array_put
ca_sg_reset
ca_sg_test
ca_state
ca_test_event
ca_test_io
ca_write_access
channel_state
dbr_size[]
dbr_size_n
dbr_value_size[]
dbr_type_to_text
SEVCHK

Deprecated Function Call Interface Function Index

ca_add_event
ca_clear_event
ca_search
ca_search_and_connect
ca_task_exit
ca_task_initialize

Return Codes

Configuration

Why Reconfigure Channel Access

Typically reasons to reconfigure EPICS Channel Access:

Two independent control systems must share a network without fear of interaction
A test system must not interact with an operational system
Use of address lists instead of broadcasts for name resolution and server beacons
Control system occupies multiple IP subnets
Nonstandard client disconnect time outs or server beacon intervals

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_current_context
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_dump_db
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_detach_
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_element_count
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6925
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_flush_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6927
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6929
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6931
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6933
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_replace
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_replace_printf_handler
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L3249
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L3249
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_puser
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_put
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_set_puser
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_signal
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_block
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_delete
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_put
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_reset
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_test
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_state
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_test_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_test_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6941
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_state
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#dbr_size%5B%5D
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6946
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#dbr_value_size
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#dbr_type_t
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_signal
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_clear_event
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_destroy
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Return

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 4 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Specify the local time zone
Transport of large arrays

EPICS Environment Variables

All Channel Access (CA) configuration occurs through EPICS environment variables. When searching for
an EPICS environment variable EPICS first looks in the environment using the ANSI C getenv() call. If no
matching variable exists then the default specified in the EPICS build system configuration files is used.

Name Range Default
EPICS_CA_ADDR_LIST {N.N.N.N N.N.N.N:P ...} <none>
EPICS_CA_AUTO_ADDR_LIST {YES, NO} YES
EPICS_CA_CONN_TMO r > 0.1 seconds 30.0
EPICS_CA_BEACON_PERIOD r > 0.1 seconds 15.0
EPICS_CA_REPEATER_PORT i > 5000 5065
EPICS_CA_SERVER_PORT i > 5000 5064
EPICS_CA_MAX_ARRAY_BYTES i >= 16384 16384
EPICS_CA_MAX_SEARCH_PERIOD r > 60 seconds 300
EPICS_TS_MIN_WEST -720 < i <720 minutes 360

Environment variables are set differently depending on the command line shell that is in use.

C shell setenv EPICS_CA_ADDR_LIST 1.2.3.4
bash export EPICS_CA_ADDR_LIST=1.2.3.4
vxWorks shell putenv ("EPICS_CA_ADDR_LIST =1.2.3.4")
DOS command line set EPICS_CA_ADDR_LIST=1.2.3.4
Windows NT / 2000 / XP control panel / system / environment tab

CA and Wide Area Networks

Normally in a local area network (LAN) environment CA discovers the address of the host for an EPICS
process variable by broadcasting frames containing a list of channel names (CA search messages) and
waiting for responses from the servers that host the channels identified. Likewise CA clients efficiently
discover that CA servers have recently joined the LAN or disconnected from the LAN by monitoring
periodically broadcasted beacons sent out by the servers. Since hardware broadcasting requires special
hardware capabilities, we are required to provide additional configuration information when EPICS is
extended to operate over a wide area network (WAN).

IP Network Administration Background Information

Channel Access is implemented using internet protocols (IP). IP addresses are divided into host and network
portions. The boundary between each portion is determined by the IP netmask. Portions of the IP address
corresponding to zeros in the netmask specify the hosts address within an IP subnet. Portions of the IP
address corresponding to binary ones in the netmask specify the address of a host's IP subnet. Normally the
scope of a broadcasted frame will be limited to one IP subnet. Addresses with the host address portion set to
all zeros or all ones are special. Modern IP kernel implementations reserve destination addresses with the
host portion set to all ones for the purpose of addressing broadcasts to a particular subnet. In theory we can
issue a broadcast frame on any broadcast capable LAN within the interconnected internet by specifying the
proper subnet address combined with a host portion set to all ones. In practice these "directed broadcasts"
are frequently limited by the default router configuration. The proper directed broadcast address required to
reach a particular host can be obtained by logging into that host and typing the command required by your
local operating environment. Ignore the loop back interface and use the broadcast address associated with an
interface connected to a path through the network to your client. Typically there will be only one Ethernet
interface.

UNIX ifconfig -a
vxWorks ifShow
Windows ipconfig

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 5 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

IP ports are positive integers. The IP address, port number, and protocol type uniquely identify the source
and destination of a particular frame transmitted between computers. Servers are typically addressed by a
well known port number. Clients are assigned a unique ephemeral port number during initialization. IP ports
below 1024 are reserved for servers that provide standardized facilities such as mail or file transfer. Port
number between 1024 and 5000 are typically reserved for ephemeral port number assignments.

IP port numbers

The two default IP port numbers used by Channel Access may be reconfigured. This might occur when a
site decides to set up two or more completely independent control systems that will share the same network.
For instance, a site might set up an operational control system and a test control system on the same
network. In this situation it is desirable for the test system and the operational system to use identical PV
names without fear of collision. A site might also configure the CA port numbers because some other
facility is already using the default port numbers. The default Channel Access port numbers have been
registered with IANA.

Purpose Default Environment Variable
CA Server 5064 EPICS_CA_SERVER_PORT
CA Beacons (sent to CA repeater daemon) 5065 EPICS_CA_REPEATER_PORT

If a client needs to communicate with two servers that are residing at different port numbers then an
extended syntax may be used with the EPICS_CA_ADDR_LIST environment variable. See WAN
Environment below.

WAN Environment

When the CA client library connects a channel it must first determine the IP address of the server the
channels Process Variable resides on. To accomplish this the client sends name resolution (search) requests
to a list of server destination addresses. These server destination addresses can be IP unicast addresses
(individual host addresses) or IP broadcast addresses. Each name resolution (search) request contains a list
of Process Variable names.If one of the servers reachable by this address list knows the IP address of a CA
server that can service one or more of the specified Process Variables, then it sends back a response
containing the server's IP address and port number.

During initialization CA builds the list of server destination addresses used when sending CA client name
resolution (search) requests. This table is initialized by introspecting the network interfaces attached to the
host. For each interface found that is attached to a broadcast capable IP subnet, the broadcast address of that
subnet is added to the list. For each point to point interface found, the destination address of that link is
added to the list. This automatic server address list initialization can be disabled if the EPICS environment
variable "EPICS_CA_AUTO_ADDR_LIST" exists and its value is either of "no" or "NO". The typical
default is to enable network interface introspection driven initialization with
"EPICS_CA_AUTO_ADDR_LIST" set to "YES" or "yes".

Following network interface introspection, any IP addresses specified in the EPICS environment variable
EPICS_CA_ADDR_LIST are added to the list of destination addresses for CA client name resolution
requests. In an EPICS system crossing multiple subnets the EPICS_CA_ADDR_LIST must be set so that
CA name resolution (search requests) frames pass from CA clients to the targeted CA servers unless a CA
proxy (gateway) is installed. The addresses in EPICS_CA_ADDR_LIST may be dotted IP addresses or host
names if the local OS has support for host name to IP address translation. When multiple names are added
to EPICS_CA_ADDR_LIST they must be separated by white space. There is no requirement that the
addresses specified in the EPICS_CA_ADDR_LIST be a broadcast addresses, but this will often be the
most convenient choice.

C shell setenv EPICS_CA_ADDR_LIST "1.2.3.255 8.9.10.255"
bash export EPICS_CA_ADDR_LIST="1.2.3.255 8.9.10.255"
vxWorks putenv ("EPICS_CA_ADDR_LIST=1.2.3.255 8.9.10.255")

If a client needs to communicate with two servers that are residing at different port numbers then an
extended syntax may be used with the EPICS_CA_ADDR_LIST environment variable. Each host name or
IP address in the EPICS_CA_ADDR_LIST may be immediately followed by a colon and an IP port number
without intervening whitespace. Entries that do not specify a port number will default to
EPICS_CA_SERVER_PORT.

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Environmen

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 6 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

C shell setenv EPICS_CA_ADDR_LIST "1.2.3.255 8.9.10.255:10000"

Routing Restrictions on vxWorks Systems

Frequently vxWorks systems boot by default with routes limiting access only to the local subnet. If a EPICS
system is operating in a WAN environment it may be necessary to configure routes into the vxWorks
system which enable a vxWorks based CA server to respond to requests originating outside it's subnet.
These routing restrictions can also apply to vxWorks base CA clients communicating with off subnet
servers. An EPICS system manager can implement an rudimentary, but robust, form of access control for a
particular host by not providing routes in that host that reach outside of a limited set of subnets. See
"routeLib" in the vxWorks reference manual.

Disconnect Time Out Interval

If the CA client library does not see a beacon from a server that it is connected to for
EPICS_CA_CONN_TMO seconds then an state-of-health message is sent to the server over TCP/IP. If this
state-of-health message isn't promptly replied to then the client library will conclude that channels
communicating with the server are no longer responsive and inform the CA client side application via
function callbacks. The parameter EPICS_CA_CONN_TMO is specified in floating point seconds. The
default is typically 30 seconds. For efficient operation it is recommended that EPICS_CA_CONN_TMO be
set to no less than twice the value specified for EPICS_CA_BEACON_PERIOD.

Prior to EPICS R3.14.5 an unresponsive server implied an immediate TCP circuit disconnect, immediate
resumption of UDP based search requests, and immediate attempts to reconnect. There was concern about
excessive levels of additional activity when servers are operated close to the edge of resource limitations.
Therefore with version R3.14.5 and greater the CA client library continues to inform client side applications
when channels are unresponsive, but does not immediately disconnect the TCP circuit. Instead the CA client
library postpones circuit shutdown until receiving indication of circuit disconnect from the IP kernel. This
can occur either because a server is restarted or because the IP kernel's internal TCP circuit inactivity keep
alive timer has expired after a typically long duration (as is appropriate for IP based systems that need to
avoid thrashing during periods of excessive load). The net result is less search and TCP circuit setup and
shutdown activity suring periods of excessive load.

Dynamic Changes in the CA Client Library Search Interval

The CA client library will continuously attempt to connect any CA channels that an application has created
until it is successful. The library periodically queries the server destination address list described above with
name resolution requests for any unresolved channels. Since this address list frequently contains broadcast
addresses, and because nonexistent process variable names are frequently configured, or servers may be
temporarily unavailable, then it is necessary for the CA client library internals to carefully schedule these
requests in time to avoid introducing excessive load on the network and the servers.

When the CA client library has many channels to connect, and most of its name resolution requests are
responded to, then it sends name resolution requests at an interval that is twice the estimated round trip
interval for the set of servers responding, or at the minimum delay quantum for the operating system -
whichever is greater. The number of UDP frames per interval is also dynamically adjusted based on the past
success rates.

If a name resolution request is not responded to, then the client library doubles the delay between name
resolution attempts and reduces the number of requests per interval. The maximum delay between attempts
is limited by EPICS_CA_MAX_SEARCH_PERIOD (see Configuring the Maximum Search Period). Note
however that prior to R3.14.7, if the client library did not receive any responses over a long interval it
stoped sending name resolution attempts altogether until a beacon anomaly was detected (see below).

The CA client library continually estimates the beacon period of all server beacons received. If a particular
server's beacon period becomes significantly shorter or longer then the client is said to detect a beacon
anomaly. The library boosts the search interval for unresolved channels when a beacon anomaly is seen or
when any successful search response is received, but with a longer initial interval between requests than is
used when the application creates a channel. Creation of a new channel does not (starting with EPICS
R3.14.7) change the interval used when searching for preexisting unresolved channels. The program "casw"
prints a message on standard out for each CA client beacon anomaly detect event.

See also When a Client Does not See the Server's Beacon.

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configurin3
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client1

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 7 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Configuring the Maximum Search Period

The rate at which name resolution (search) requests are sent exponentially backs off to a plateau rate. The
value of this plateau has an impact on network traffic because it determines the rate that clients search for
channel names that are miss-spelled or otherwise don't exist in a server. Furthermore, for clients that are
unable to see the beacon from a new server, the plateau rate may also determine the maximum interval that
the client will wait until discovering a new server.

Starting with EPICS R3.14.7 this maximum search rate interval plateau in seconds is determined by the
EPICS_CA_MAX_SEARCH_PERIOD environment variable.

See also When a Client Does not See the Server's Beacon.

The CA Repeater

When several client processes run on the same host it is not possible for all of them to directly receive a
copy of the server beacon messages when the beacon messages are sent to unicast addresses, or when
legacy IP kernels are still in use. To avoid confusion over these restrictions a special UDP server, the CA
Repeater, is automatically spawned by the CA client library when it is not found to be running. This
program listens for server beacons sent to the UDP port specified in the EPICS_CA_REPEATER_PORT
parameter and fans any beacons received out to any CA client program running on the same host that have
registered themselves with the CA Repeater. If the CA Repeater is not already running on a workstation,
then the "caRepeater" program must be in your path before using the CA client library for the first time.

If a host based IOC is run on the same workstation with standalone CA client processes, then it is probably
best to start the caRepeater process when the workstation is booted. Otherwise it is possible for the
standalone CA client processes to become dependent on a CA repeater started within the confines of the
host based IOC. As long as the host based IOC continues to run there is nothing wrong with this situation,
but problems could arise if this host based IOC process exits before the standalone client processes which
are relying on its CA repeater for services exit.

Since the repeater is intended to be shared by multiple clients then it could be argued that it makes less sense
to set up a CA repeater that listens for beacons on only a subset of available network interfaces. In the worst
case situation the client library might see beacon anomalies from servers that it is not interested in.
Modifications to the CA repeater forcing it to listen only on a subset of network interfaces might be
considered for a future release if there appear to be situations that require it.

Configuring the Time Zone

Note: Starting with EPICS R3.14 all of the libraries in the EPICS base distribution rely on facilities built
into the operating system to determine the correct time zone. Nevertheless, several programs commonly
used with EPICS still use the original "tssubr" library and therefore they still rely on proper configuration
of EPICS_TS_MIN_WEST.

While the CA client library does not translate inbetween the local time and the time zone independent
internal storage of EPICS time stamps, many EPICS client side applications call core EPICS libraries which
provide these services. To set the correct time zone users must compute the number of positive minutes west
of GMT (maximum 720 inclusive) or the negative number of minutes east of GMT (minimum -720
inclusive). This integer value is then placed in the variable EPICS_TS_MIN_WEST.

Time Zone EPICS_TS_MIN_WEST
USA Eastern 300
USA Central 360
USA Mountain 420
USA Pacific 480
Alaska 540
Hawaii 600
Japan -540
China -420
Germany -120
United Kingdom 0

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client1

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 8 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Configuring the Maximum Array Size

Starting with version R3.14 the environment variable EPICS_CA_MAX_ARRAY_BYTES determines the
size of the largest array that may pass through CA. Prior to this version only arrays smaller than 16k bytes
could be transfered. The CA libraries maintains a free list of 16384 byte network buffers that are used for
ordinary communication. If EPICS_CA_MAX_ARRAY_BYTES is larger than 16384 then a second free
list of larger data buffers is established and used only after a client send its first large array request.

The CA client library uses EPICS_CA_MAX_ARRAY_BYTES to determines the maximum array that it
will send or receive. Likewise, the CA server uses EPICS_CA_MAX_ARRAY_BYTES to determine the
maximum array that it may send or receive. The client does not influence the server's message size quotas
and visa versa. In fact the value of EPICS_CA_MAX_ARRAY_BYTES need not be the same in the client
and the server. If the server receives a request which is too large to read or respond to in entirety then it
sends an exception message to the client. Likewise, if the CA client library receives a request to send an
array larger than EPICS_CA_MAX_ARRAY_BYTES it will return ECA_TOLARGE.

A common mistake is to correctly calculate the maximum datum size in bytes by multiplying the number of
elements by the size of a single element, but neglect to add additional bytes for the compound data types
(for example DBR_GR_DOUBLE) commonly used by the more sophisticated client side applications.
Based on this confusion, one could arrive at the conclusion that EPICS_CA_MAX_ARRAY_BYTES might
have been better named EPICS_CA_MAX_DATUM_BYTES, or that the software should be changed
internally to round the users request up by the size of the maximum scalar datum (nothing has been done to
address this issue so far).

Configuring a CA Server

Name Range Default
EPICS_CAS_SERVER_PORT i > 5000 EPICS_CA_SERVER_PORT
EPICS_CAS_AUTO_BEACON_ADDR_LIST {YES, NO} EPICS_CA_AUTO_ADDR_LIST
EPICS_CAS_BEACON_ADDR_LIST {N.N.N.NN.N.N.N:P...} EPICS_CA_ADDR_LIST1

EPICS_CAS_BEACON_PERIOD r > 0.1 seconds EPICS_CA_BEACON_PERIOD
EPICS_CAS_BEACON_PORT i > 5000 EPICS_CA_REPEATER_PORT
EPICS_CAS_INTF_ADDR_LIST {N.N.N.NN.N.N.N:P...} <none>
EPICS_CAS_IGNORE_ADDR_LIST {N.N.N.NN.N.N.N:P...} <none>

Server Port

The server configures its port number from the EPICS_CAS_SERVER_PORT environment variable if it is
specified. Otherwise the EPICS_CA_SERVER_PORT environment variable determines the server's port
number. Two servers can share the same UDP port number on the same machine, but there are restrictions -
see a discussion of unicast addresses and two servers sharing the same UDP port on the same host.

Server Beacons

The EPICS_CAS_BEACON_PERIOD parameter determines the server's beacon period and is specified in
floating point seconds. The default is typically 15 seconds. See also EPICS_CA_CONN_TMO and Dynamic
Changes in the CA Client Library Search Interval.

CA servers build a list of addresses to send beacons to during initialization. If
EPICS_CAS_AUTO_BEACON_ADDR_LIST has the value "YES" then the beacon address list will be
automatically configured to contain the broadcast addresses of all LAN interfaces found in the host and the
destination address of all point-to-point interfaces found in the host. However, if the user also defines
EPICS_CAS_INTF_ADDR_LIST then beacon address list automatic configuration is constrained to the
network interfaces specified therein, and therefore only the broadcast addresses of the specified LAN
interfaces, and the destination addresses of all specified point-to-point links, will be automatically
configured.

If EPICS_CAS_BEACON_ADDR_LIST is defined then its contents will be used to augment any automatic
configuration of the beacon address list. Individual entries in EPICS_CAS_BEACON_ADDR_LIST may
override the destination port number if ":nnn" follows the host name or IP address there. Alternatively, when
both EPICS_CAS_BEACON_ADDR_LIST and EPICS_CAS_INTF_ADDR_LIST are not defined then the

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Unicast
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Disconnect
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Dynamic

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 9 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

contents of EPICS_CA_ADDR_LIST is used to augment the list. Otherwise, the list is not augmented.

The EPICS_CAS_BEACON_PORT parameter specifies the destination port for server beacons. The only
exception to this occurs when ports are specified in EPICS_CAS_BEACON_ADDR_LIST or possibly in
EPICS_CA_ADDR_LIST. If EPICS_CAS_BEACON_PORT is not specified then beacons are sent to the
port specified in EPICS_CA_REPEATER_PORT.

Binding a Server to a Limited Set of Network Interfaces

The parameter EPICS_CAS_INTF_ADDR_LIST allows a ca server to bind itself to, and therefore accept
messages only over, a limited set of the local host's network interfaces (each specified by it's IP address).
On UNIX systems type "netstat -i" (type "ipconfig" on windows) to see a list of the local host's network
interfaces. Specifically, UDP search messages addressed to both the IP addresses in
EPICS_CAS_INTF_ADDR_LIST and also to the broadcast addresses of the corresponding LAN interfaces
will be accepted by the server. By default, the CA server is accessible from all network interfaces
configured into its host. In R3.14 and previous releases the CA server employed by iocCore does not
implemet this feature.

Ignoring Process Variable Name Resolution Requests From Certain Hosts

Name resolution requests originating from any of the IP addresses specified in the
EPICS_CAS_IGNORE_ADDR_LIST parameter are not replied to.In R3.14 and previous releases the CA
server employed by iocCore does not implemet this feature.

Client Configuration that also Applies to Servers

See also Configuring the Maximum Array Size.

See also Routing Restrictions on vxWorks Systems.

Building an Application

Required Header (.h) Files

An application that uses the CA client library functions described in this document will need to include the
cadef.h header files as follows.

#include "cadef.h"

This header file is located at "<EPICS base>/include/". It includes many other header files (operating system
specific and otherwise), and therefore the application must also specify "<EPICS base>/include/os/<arch>"
in its header file search path.

Required Libraries

An application that uses the Channel Access Client Library functions described in this document will need
to link with the EPICS CA Client Library and also the EPICS Common Library. The EPICS CA Client
Library calls the EPICS Common Library. The following table shows the names of these libraries on UNIX
and Windows systems.

UNIX Object UNIX Shareable Windows Object Windows Shareable
EPICS CA Client Library libca.a libca.so ca.lib ca.dll
EPICS Common Library libCom.a libCom.so Com.lib Com.dll

The above libraries are located in "<EPICS base>/lib/<architechture>".

Compiler and System Specific Build Options

If you do not use the EPICS build environemnt (layered make files) then it may be helpful to run one of the
EPICS make files and watch the compile/link lines. This may be the simplest way to capture the latest
system and compiler specific options required by your build environment. I have included some snapshots
of typical build lines below, but expect some risk of this information becoming dated.

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Configurin1
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Routing

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 10 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Typical Linux Build Options

/usr/bin/gcc -c -D_POSIX_C_SOURCE=199506L -D_POSIX_THREADS -D_XOPEN_SOURCE=500 -
DOSITHREAD_USE_DEFAULT_STACK -D_X86_ -DUNIX -D_BSD_SOURCE -Dlinux -D_REENTRANT -ansi -O3
-Wall -I. -I.. -I../../../include/os/Linux -I../../../include ../acctst.c

/usr/bin/g++ -o acctst -L/home/user/epicsR3.14/epics/base/lib/linux-x86/ -Wl,-
rpath,/mnt/bogart_home/hill/epicsR3.14/epics/base/lib/linux-x86 acctstMain.o acctst.o -
lca -lCom

Typical Solaris Build Options

/opt/SUNWspro/bin/cc -c -D_POSIX_C_SOURCE=199506L -D_XOPEN_SOURCE=500 -
DOSITHREAD_USE_DEFAULT_STACK -DUNIX -DSOLARIS=9 -mt -D__EXTENSIONS__ -Xc -v -xO4 -I. -
I.. -I./../../../include/os/solaris -I./../../../include ../acctst.c

/opt/SUNWspro/bin/CC -o acctst -L/home/phoebus1/JHILL/epics/base/lib/solaris-sparc/ -mt
-z ignore -z combreloc -z lazyload -R/home/disk1/user/epics/base/lib/solaris-sparc
acctstMain.o acctst.o -lca -lCom

Typical Windows Build Options

cl -c /nologo /D__STDC__=0 /Ox /GL /W3 /w44355 /MD -I. -I.. -
I..\\..\\..\\include\\os\\WIN32 -I..\\..\\..\\include ..\\acctst.c

link -nologo /LTCG /incremental:no /opt:ref /release /version:3.14 -out:acctst.exe
acctstMain.obj acctst.obj d:/user/R3.14.clean/epics/base/lib/WIN32-x86/ca.lib
d:/user/R3.14.clean/epics/base/lib/WIN32-x86/

Typical vxWorks Build Options

/usr/local/xcomp/ppc/bin/ccppc -c -D_POSIX_SOURCE -DCPU=PPC603 -DvxWorks -include
/home/vx/tornado20/target/h/vxWorks.h -ansi -O3 -Wall -mcpu=603 -mstrict-align -fno-
builtin -I. -I.. -I../../../include/os/vxWorks -I../../../include -
I/home/vx/tornado20/target/h ../acctst.c

Other Systems and Compilers

Contributions gratefully accepted.

Command Line Utilities

acctst

acctst <PV name> [progress logging level] [channel duplication count]
 [test repetition count] [enable preemptive callback]

Description

Channel Access Client Library regression test.

The PV used with the test must be native type DBR_DOUBLE or DBR_FLOAT, and modified only by
acctst while the test is running. Therefore, periodically scanned hardware attached analog input records do
not work well. Test failure is indicated if the program stops prior to printing "test complete". If unspecified
the progress logging level is zero, and no messages are printed while the test is progressing. If unspecified,
the channel duplication count is 20000. If unspecified, the test repetition count is once only. If unspecified,
preemptive callback is disabled.

catime

catime <PV name> [channel count] [append number to pv name if true]

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 11 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Description

Channel Access Client Library performance test.

If unspecified, the channel count is 10000. If the "append number to pv name if true" argument is specified
and it is greater than zero then the channel names in the test are numbered as follows.

<PV name>000000, <PV name>000001, ... <PV name>nnnnnn

casw

casw [-i <interest level>]

Description

CA server "beacon anomaly" logging.

CA server beacon anomalies occur when a new server joins the network, a server is rebooted, network
connectivity to a server is reestablished, or if a server's CPU exits a CPU load saturated state.

CA clients with unresolved channels reset their search request scheduling timers whenever they see a
beacon anomaly.

This program can be used to detect situations where there are too many beacon anomalies. IP routing
configuration problems may result in false beacon anomalies that might cause CA clients to use unnecessary
additional network bandwidth and server CPU load when searching for unresolved channels.

If there are no new CA servers appearing on the network, and network connectivity remains constant, then
casw should print no messages at all. At higher interest levels the program prints a message for every
beacon that is received, and anomalous entries are flagged with a star.

caEventRate

caEventRate <PV name> [subscription count]

Description

Connect to the specified PV, subscribe for monitor updates the specified number of times (default once), and
periodically log the current sampled event rate, average event rate, and the standard deviation of the event
rate in Hertz to standard out.

ca_test

ca_test <PV name> [value to be written]

Description

If a value is specified it is written to the PV. Next, the current value of the PV is converted to each of the
many external data type that can be specified at the CA client library interface, and each of these is formated
and then output to the console.

Command Line Tools

caget

caget [options] <PV name> ...

Description

Get and print value for PV(s).

The values for one or multiple PVs are read and printed to stdout. The DBR_... format in which the data is
read, the output format, and a number of details of how integer and float values are represented can be

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 12 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

controlled using command line options.

When getting multiple PVs, their order on the command line is retained in the output.

Option Description
-h Print usage information

CA options:
-w
<sec> Wait time, specifies CA timeout, default is 1.0 second(s)

-c Asynchronous get (use ca_get_callback and wait for completion)
-p
<prio> CA priority (0-99, default 0=lowest)

Format and data type options:
Default output format is "name value"

-t Terse mode - print only value, without name
-a Wide mode "name timestamp value stat sevr" (read PVs as DBR_TIME_xxx)
-n Print DBF_ENUM values as number (default are enum strings)

-d
<type>

Request specific dbr type; use string (DBR_ prefix may be omitted)

or number of one of the following types:

DBR_STRING 0 DBR_STS_FLOAT 9 DBR_TIME_LONG 19 DBR_CTRL_SHORT 29
DBR_INT 1 DBR_STS_ENUM 10 DBR_TIME_DOUBLE 20 DBR_CTRL_INT 29
DBR_SHORT 1 DBR_STS_CHAR 11 DBR_GR_STRING 21 DBR_CTRL_FLOAT 30
DBR_FLOAT 2 DBR_STS_LONG 12 DBR_GR_SHORT 22 DBR_CTRL_ENUM 31
DBR_ENUM 3 DBR_STS_DOUBLE 13 DBR_GR_INT 22 DBR_CTRL_CHAR 32
DBR_CHAR 4 DBR_TIME_STRING 14 DBR_GR_FLOAT 23 DBR_CTRL_LONG 33
DBR_LONG 5 DBR_TIME_INT 15 DBR_GR_ENUM 24 DBR_CTRL_DOUBLE 34
DBR_DOUBLE 6 DBR_TIME_SHORT 15 DBR_GR_CHAR 25 DBR_STSACK_STRING 37
DBR_STS_STRING 7 DBR_TIME_FLOAT 16 DBR_GR_LONG 26 DBR_CLASS_NAME 38
DBR_STS_SHORT 8 DBR_TIME_ENUM 17 DBR_GR_DOUBLE 27
DBR_STS_INT 8 DBR_TIME_CHAR 18 DBR_CTRL_STRING 28

Arrays:
Value format: Print number of requested values, then list of values

Default: Print all values
-#
<count> Print first <count> elements of an array

-S Print array of char as a string (long string)
Floating point type format:

Default: Use %g format
-e <nr> Use %e format, with <nr> digits after the decimal point
-f <nr> Use %f format, with <nr> digits after the decimal point
-g <nr> Use %g format, with <nr> digits after the decimal point
-s Get value as string (may honour server-side precision)

Integer number format:
Default: Print as decimal number
-0x Print as hex number
-0o Print as octal number
-0b Print as binary number

camonitor

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 13 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

camonitor [options] <PV name> ...

Description

Subscribe to and print value updates for PV(s).

Option Description
-h Print usage information

CA options:
-w <sec> Wait time, specifies CA timeout, default is 1.0 second(s)
-m
<mask>

Specify CA event mask to use, with <mask> being any combination of 'v' (value), 'a' (alarm), 'l'
(log). Default: va

-p <prio> CA priority (0-99, default 0=lowest)
Timestamps:

Default: Print absolute timestamps (as reported by CA server)

-t <key>

Specify timestamp source(s) and type, with <key> containing
's' = CA server (remote) timestamps
'c' = CA client (local) timestamps (shown in '()'s)
'n' = no timestamps
'r' = relative timestamps (time elapsed since start of program)
'i' = incremental timestamps (time elapsed since last update)
'I' = incremental timestamps (time elapsed since last update, by channel)
Enum Format:

-n Print DBF_ENUM values as number (default are enum strings)
Arrays:
Value format: Print number of requested values, then list of values

Default: Print all values
-#
<count> Print first <count> elements of an array

-S Print array of char as a string (long string)
Floating point type format:

Default: Use %g format
-e <nr> Use %e format, with <nr> digits after the decimal point
-f <nr> Use %f format, with <nr> digits after the decimal point
-g <nr> Use %g format, with <nr> digits after the decimal point
-s Get value as string (may honour server-side precision)

Integer number format:
Default: Print as decimal number
-0x Print as hex number
-0o Print as octal number
-0b Print as binary number

caput

caput [options] <PV name> <value>
caput -a [options] <PV name> <no of elements> <value> ...

Description

Put value to a PV.

The specified value is written to the PV (as a string). The PV value is read before and after the write
operation and printed as "Old" and "new" values on stdout.

The array variant writes an array to the specified PV. The first numeric argument specifying the number of

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 14 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

array elements is kept for compatibility with the array data format of caget - the actual number of values
specified on the command line is used.

Option Description
-h Print usage information

CA options:
-w <sec> Wait time, specifies CA timeout, default is 1.0 second(s)
-c Asynchronous put (use ca_put_callback and wait for completion)
-p <prio> CA priority (0-99, default 0=lowest)

Format options:
-t Terse mode - print only sucessfully written value, without name

Enum Format:
Auto - try value as ENUM string, then as index number

-n Force interpretation of values as numbers
-s Force interpretation of values as strings

Arrays:
-a Put array data

Value format: Print number of requested values, then list of values
-S Put string as an array of char (long string)

cainfo

cainfo [options] <PV name> ...

Description

Get and print channel and connection information for PV(s).

All available Channel Access related information about PV(s) is printed to stdout.

The -s option allows to specify an interest level for calling Channel Access' internal report function
ca_client_status(), that prints lots of internal informations on stdout, including environment settings, used
CA ports etc.

Option Description
-h Print usage information

CA options:
-w <sec> Wait time, specifies CA timeout, default is 1.0 second(s)
-s <level> Call ca_client_status with the specified interest level
-p <prio> CA priority (0-99, default 0=lowest)

excas

excas [options]

This is an example CA server that is sometimes used for testing purposes. An example server can be created
with the makeBaseApp perl script, as descibed in the application Developer's Guide.

Option Description
-d
<uuuu> set level uuuu for debug messages, where uuuu is an positive integer number

-p
<aaaa> prefix all of the PV names below with aaaa changing, for example, the name of "bill" to "xyz:bill"

-t
<n.n> set execution time where n.n is a positive real number

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 15 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

-c
<uuuu> set the numbered alias count

-s
<nnn>

the default, nnn is one, enables periodic scanning of the PV replacing the PV with its value added
with a small random change, when nnn is zero it turns off this type of periodic scanning

-ss
<nnn>

the default, nnn is one, enables synchronous scanning, and if nnn is zero it turns on asynchronous
scanning

-ad
<n.n> set the delay before asynchronous operations complete (defaults to 0.1 seconds)

-an
<nnn> set the maximum number of simultaneous asynchronous operations (defaults to 1000)

The example server has a compile time fixed set of example variables.

Process
Variable Name

Number of
Elements IO Type Data Type High

Limit
Low

Limit Scan Period

jane 1 Synchronous float point,
64 bits 10.0 0.0 0.1 Seconds, random

noise changes

fred 1 Synchronous float point,
64 bits 10.0 -10.0 2.0 Seconds, random

noise changes

janet 1 Asynchronous float point,
64 bits 10.0 0.0 0.1 Seconds, random

noise changes

freddy 1 Asynchronous float point,
64 bits 10.0 -10.0 2.0 Seconds, random

noise changes

alan 100 Synchronous float point,
64 bits 10.0 -10.0 2.0 Seconds, random

noise changes

albert 1000 Synchronous float point,
64 bits 10.0 -10.0 20.0 Seconds, random

noise changes

boot 1 Synchronous enumerated,
16 bits 10.0 -10.0 changed only by client

booty 1 Asynchronous enumerated,
16 bits 10.0 -10.0 1.0 Seconds, random

noise changes

bill 1 Synchronous float point,
64 bits 10.0 -10.0 changed only by client

billy 1 Asynchronous float point,
64 bits 10.0 -10.0 changed only by client

bloaty 100000 Synchronous float point,
64 bits 10.0 -10.0 changed only by client

Bugs

Not all of the options listed above have been tested recently.

Troubleshooting

When Clients Do Not Connect to Their Server

Client and Server Broadcast Addresses Dont Match

Verify that the broadcast addresses are identical on the server's host and on the client's host. This can be
checked on UNIX with "netstat -i" or "ifconfig -a"; on vxWorks with ifShow; and on windows with
ipconfig. It is normal for the broadcast addresses to not be identical if the client and server are not directly
attached to the same IP subnet, and in this situation the EPICS_CA_ADDR_LIST must be set. Otherwise, if
the client and server are intended to be on the same IP subnet, then the problem may be that the IP netmask
is incorrectly set in the network interface configuration. On most operating systems, when the host's IP
address is configured, the host's IP subnet mask is also configured.

Client Isn't Configured to Use the Server's Port

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 16 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Verify that the client and server are using the same UDP port. Check the server's port by running "netstat -a
| grep nnn" where nnn is the port number configured in the client. If you do not set
EPICS_CA_SERVER_PORT or EPICS_CAS_SERVER_PORT then the default port will be 5064.

Unicast Addresses in the EPICS_CA_ADDR_LIST Does not Reliably Contact Servers Sharing the
Same UDP Port on the Same Host

Two servers can run on the same host with the same server port number, but there are restrictions. If the
host has a modern IP kernel it is possible to have two or more servers share the same UDP port. It is not
possible for these servers to run on the same host using the same TCP port. If the CA server library detects
that a server is attempting to start on the same port as an existing CA server then both servers will use the
same UDP port, and the 2nd server will be allocated an ephemeral TCP port. Clients can be configured to
use the same port number for both servers. They will locate the 2nd server via the shared UDP port, and
transparently connect to the 2nd server's ephemeral TCP port. Be aware however that If there are two
server's running on the same host sharing the same UDP port then they will both receive UDP search
requests sent as broadcasts, but unfortunately (due to a weakness of most IP kernel implementations) only
one of the servers will typically receive UDP search requests sent to unicast addresses (i.e. a single specific
host's ip address).

Client Does not See Server's Beacons

Two conclusions deserve special emphasis. First, if a client does not see the server's beacons, then it will
use additional network and server resources sending periodic state-of-health messages. Second, if a client
does not see a newly introduced server's beacon, then it will take up to
EPICS_CA_MAX_SEARCH_PERIOD to find that newly introduced server. Also, starting with EPICS
R3.14.7 the client library does not suspend searching for a channel after 100 unsuccessful attempts until a
beacon anomaly is seen. Therefore, if the client library is from before version R3.14.7 of EPICS and it
timed out attempting to find a server whoose beacon cant be seen by the client library then the client
application might need to be restarted in order to connect to this new beacon-out-of-range server. The
typical situation where a client would not see the server's beacon might be when the client isnt on the same
IP subnet as the server, and the client's EPICS_CA_ADDR_LIST was modified to include a destination
address for the server, but the server's beacon address list was not modified so that it's beacons are received
by the client.

A Server's IP Address Was Changed

When communication over a virtual circuit times out, then each channel attached to the circuit enters a
disconnected state and the disconnect callback handler specified for the channel is called. However, the
circuit is not disconnected until TCP/IP's internal, typically long duration, keep alive timer expires. The
disconnected channels remain attached to the beleaguered circuit and no attempt is made to search for, or to
reestablish, a new circuit. If, at some time in the future, the circuit becomes responsive again, then the
attached channels enter a connected state again and reconnect call back handlers are called. Any monitor
subscriptions that received an update message while the channel was disconnected are also refreshed. If at
any time the library receives an indication from the operating system that a beleaguered circuit has
shutdown or was disconnected then the library will immediately reattempt to find servers for each channel
and connect circuits to them.

A well known negative side effect of the above behavior is that CA clients will wait the full (typically long)
duration of TCP/IP's internal keep alive timer prior to reconnecting under the following scenario (all of the
following occur):

An server's (IOC's) operating system crashes (or is abruptly turned off) or a vxWorks system is
stopped by any means
This operating system does not immediately reboot using the same IP address
A duplicate of the server (IOC) is started appearing at a different IP address

It is unlikely that any rational organization will advocate the above scenario in a production system.
Nevertheless, there are opportunities for users to become confused during control system development, but it
is felt that the robustness improvements justify isolated confusion during the system integration and
checkout activities where the above scenarios are most likely to occur.

Contrast the above behavior with the CA client library behavior of releases prior to R3.14.5 where the
beleaguered circuit was immediately closed when communication over it timed out. Any attached channels
were immediately searched for, and after successful search responses arrived then attempts were made to

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 17 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

build a new circuit. This behavior could result in undesirable resource consumption resulting from periodic
circuit setup and teardown overhead (thrashing) during periods of CPU / network / IP kernel buffer
congestion.

Put Requests Just Prior to Process Termination Appear to be Ignored

Short lived CA client applications that issue a CA put request and then immediately exit the process (return
from main or call exit) may find that there request isn't executed. To guarantee that the request is sent call
ca_flush followed by ca_context_destroy prior to terminating the process.

ENOBUFS Messages

Many Berkley UNIX derived Internet Protocol (IP) kernels use a memory management scheme with a fixed
sized low level memory allocation quantum called an "mbuf". Messages about "ENOBUFS" are an
indication that your IP kernel is running low on mbuf buffers. An IP kernel mbuf starvation situation may
lead to temporary IP communications stalls or reduced throughput. This issue has to date been primarily
associated with vxWorks systems where mbuf starvation on earlier vxWorks versions is rumored to lead to
permanent IP communications stalls which are resolved only by a system reboot. IP kernels that use mbufs
frequently allow the initial and maximum number of mbufs to be configured. Consult your OS's
documentation for configuration procedures which vary between OS and even between different versions of
the same OS.

Contributing Circumstances

The total number of connected clients is high. Each active socket requires dedicated mbufs for
protocol control blocks, and for any data that might be pending in the operating system for
transmission to Channel Access or to the network at a given instant. If you increase the vxWorks limit
on the maximum number of file descriptors then it may also be necessary to increase the size of the
mbuf pool.

The server has multiple connections where the server's sustained event (monitor subscription update)
production rate is higher than the client's or the network's sustained event consumption rate. This ties
up a per socket quota of mbufs for data that are pending transmission to the client via the network. In
particular, if there are multiple clients that subscribe for monitor events but do not call
ca_pend_event() or ca_poll() to process their CA input queue, then a significant mbuf consuming
backlog can occur in the server.

The server does not get a chance to run (because some other higher priority thread is running) and the
CA clients are sending a high volume of data over TCP or UDP. This ties up a quota of mbufs for
each socket in the server that isn't being reduced by the server's socket read system calls.

The server has multiple stale connections. Stale connections occur when a client is abruptly turned off
or disconnected from the network, and an internal "keepalive" timer has not yet expired for the virtual
circuit in the operating system, and therefore mbufs may be dedicated to unused virtual circuits. This
situation is made worse if there are active monitor subscriptions associated with stale connections
which will rapidly increase the number of dedicated mbufs to the quota available for each circuit.
When sites switch to the vxWorks 5.4 IP kernel they frequently run into network pool exhaustion
problems. This may be because the original vxWorks IP kernel expanded the network pool as needed
at runtime while the new kernel's pool is statically configured at compile time, and does not expand as
needed at runtime. Also, at certain sites problems related to vxWorks network driver pool exhaustion
have also been reported (this can also result in ENOBUF diagnostic messages).

Related Diagnostics

The EPICS command "casr [interest level]" displays information about the CA server and how many
clients are connected.
The vxWorks command "inetstatShow" indicates how many bytes are pending in mbufs and indirectly
(based on the number of circuits listed) how many mbuf based protocol control blocks have been
consumed. The vxWorks commands (availability depending on vxWorks version) mbufShow,
netStackSysPoolShow, and netStackDataPoolShow indicate how much space remains in the network
stack pool.
The RTEMS command "netstat [interest level]" displays network information including mbuf
consumption statistics.

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 18 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Server Subscription Update Queuing

If the subscription update producer in the server produces subscription updates faster than the subscription
update consumer in the client consumes them, then events have to be discarded if the buffering in the server
isn’t allowed to grow to an infinite size. This is a law of nature – based on queuing theory of course.

What is done depends on the version of the CA server. All server versions place quotas on the maximum
number of subscription updates allowed on the subscription update queue at any given time. If this limit is
reached, an intervening update is discarded in favor of a more recent update. Depending on the version of
the server, rapidly updating subscriptions are or are not allowed to cannibalize the quotas of slow updating
subscriptions in limited ways. Nevertheless, there is always room on the queue for at least one update for
each subscription. This guarantees that the most recent update is always sent.

Adding further complication, the CA client library also implements a primitive type of flow control. If the
client library sees that it is reading a large number of messages one after another w/o intervening delay it
knows that it is not consuming events as fast as they are produced. In that situation it sends a message
telling the server to temporarily stop sending subscription update messages. When the client catches up it
sends another message asking the server to resume with subscription updates. This prevents slow clients
from getting time warped, but also guarantees that intervening events are discarded until the slow client
catches up.

There is currently no message on the IOC’s console when a particular client is slow on the uptake. A
message of this type used to exist many years ago, but it was a source of confusion (and what we will call
message noise) so it was removed.

There is unfortunately no field in the protocol allowing the server to indicate that an intervening
subscription update was discarded. We should probably add that capability in a future version. Such a
feature would, for example, be beneficial when tuning an archiver installation.

Function Call Interface General Guidelines

Flushing and Blocking

Significant performance gains can be realized when the CA client library doesn't wait for a response to
return from the server after each request. All requests which require interaction with a CA server are
accumulated (buffered) and not forwarded to the IOC until one of ca_flush_io, ca_pend_io, ca_pend_event,
or ca_sg_pend are called allowing several operations to be efficiently sent over the network together. Any
process variable values written into your program's variables by ca_get() should not be referenced by your
program until ECA_NORMAL has been received from ca_pend_io().

Status Codes

If successful, the routines described here return the status code ECA_NORMAL. Unsuccessful status codes
returned from the client library are listed with each routine in this manual. Operations that appear to be
valid to the client can still fail in the server. Writing the string "off" to a floating point field is an example
of this type of error. If the server for a channel is located in a different address space than the client then the
ca_xxx() operations that communicate with the server return status indicating the validity of the request and
whether it was successfully enqueued to the server, but communication of completion status is deferred until
a user callback is called, or lacking that an exception handler is called. An error number and the error's
severity are embedded in CA status (error) constants. Applications shouldn't test the success of a CA
function call by checking to see if the returned value is zero as is the UNIX convention. Below are several
methods to test CA function returns. See ca_signal() and SEVCHK for more information on this topic.

status = ca_XXXX();
SEVCHK(status, "ca_XXXX() returned failure status");

if (status & CA_M_SUCCESS) {
 printf ("The requested ca_XXXX() operation didn't complete successfully");
}

if (status != ECA_NORMAL) {
 printf("The requested ca_XXXX() operation didn't complete successfully because \"%s\"\n",
 ca_message (status));
}

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_signal

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 19 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Channel Access Data Types

CA channels form a virtual circuit between a process variable (PV) and a client side application program. It
is possible to connect a wide variety of data sources into EPICS using the CA server library. When a CA
channel communicates with an EPICS Input Output Controller (IOC) then a field is a specialization of a PV,
and an EPICS record is a plug compatible function block that contains fields, and the meta data below
frequently are mapped onto specific fields within the EPICS records by the EPICS record support (see the
EPICS Application Developer Guide).

Arguments of type chtype specifying the data type you wish to transfer. They expect one of the set of
DBR_XXXX data type codes defined in db_access.h. There are data types for all of the C primitive types,
and there are also compound (C structure) types that include various process variable properties such as
units, limits, time stamp, or alarm status. The primitive C types follow a naming convention where the C
typedef dbr_xxxx_t corresponds to the DBR_XXXX data type code. The compound (C structure) types
follow a naming convention where the C structure tag dbr_xxxx corresponds to the DBR_XXXX data type
code. The following tables provides more details on the structure of the CA data type space. Since data
addresses are passed to the CA client library as typeless "void *" pointers then care should be taken to
ensure that you have passed the correct C data type corresponding to the DBR_XXXX type that you have
specified. Architecture independent types are provided in db_access.h to assist programmers in writing
portable code. For example "dbr_short_t" should be used to send or receive type DBR_SHORT. Be aware
that type name DBR_INT has been deprecated in favor of the less confusing type name DBR_SHORT. In
practice, both the DBR_INT type code and the DBR_SHORT type code refer to a 16 bit integer type, and
are functionally equivalent.

Channel Access Primitive Data Types
CA Type Code Primitive C Data Type Data Size
DBR_CHAR dbr_char_t 8 bit character
DBR_SHORT dbr_short_t 16 bit integer
DBR_ENUM dbr_enum_t 16 bit unsigned integer
DBR_LONG dbr_long_t 32 bit signed integer
DBR_FLOAT dbr_float_t 32 bit IEEE floating point
DBR_DOUBLE dbr_double_t 64 bit IEEE floating point
DBR_STRING dbr_string_t 40 character string

Structure of the Channel Access Data Type Space

CA Type Code
Read

/
Write

Primitive C Data
Type Process Variable Properties

DBR_<PRIMITIVE
TYPE> RW dbr_<primitive

type>_t value

DBR_STS_<PRIMITIVE
TYPE> R

struct
dbr_sts_<primitive
type>

value, alarm status, and alarm severity

DBR_TIME_<PRIMITIVE
TYPE> R

struct
dbr_time_<primitive
type>

value, alarm status, alarm severity, and time
stamp

DBR_GR_<PRIMITIVE
TYPE> R

struct
dbr_gr_<primitive
type>

value, alarm status, alarm severity, units, display
precision, and graphic limits

DBR_CTRL_<PRIMITIVE
TYPE> R

struct
dbr_ctrl_<primitive
type>

value, alarm status, alarm severity, units, display
precision, graphic limits, and control limits

DBR_PUT_ACKT W dbr_put_ackt_t
Used for global alarm acknowledgement. Do
transient alarms have to be acknowledged? (0,1)
means (no, yes).

DBR_PUT_ACKS W dbr_put_acks_t
Used for global alarm acknowledgement. The
highest alarm severity to acknowledge. If the
current alarm severity is less then or equal to this
value the alarm is acknowledged.

struct

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 20 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

DBR_STSACK_STRING R struct
dbr_stsack_string value, alarm status, alarm severity, ackt, ackv

DBR_CLASS_NAME R dbr_class_name_t
name of enclosing interface (name of the record
if channel is attached to EPICS run time
database)

Channel value arrays can also be included within the structured CA data types. If more than one element is
requested, then the individual elements can be accessed in an application program by indexing a pointer to
the value field in the DBR_XXX structure. For example, the following code computes the sum of the
elements in a array process variable and prints its time stamp. The dbr_size_n function can be used to
determine the correct number of bytes to reserve when there are more than one value field elements in a
structured CA data type.

#include <stdio.h>
#include <stdlib.h>

#include "cadef.h"

int main (int argc, char ** argv)
{
 struct dbr_time_double * pTD;
 const dbr_double_t * pValue;
 unsigned nBytes;
 unsigned elementCount;
 char timeString[32];
 unsigned i;
 chid chan;
 double sum;
 int status;

 if (argc != 2) {
 fprintf (stderr, "usage: %s <channel name>", argv[0]);
 return -1;
 }

 status = ca_create_channel (argv[1], 0, 0, 0, & chan);
 SEVCHK (status, "ca_create_channel()");
 status = ca_pend_io (15.0);
 if (status != ECA_NORMAL) {
 fprintf (stderr, "\"%s\" not found.\n", argv[1]);
 return -1;
 }

 elementCount = ca_element_count (chan);
 nBytes = dbr_size_n (DBR_TIME_DOUBLE, elementCount);
 pTD = (struct dbr_time_double *) malloc (nBytes);
 if (! pTD) {
 fprintf (stderr, "insufficient memory to complete request\n");
 return -1;
 }

 status = ca_array_get (DBR_TIME_DOUBLE, elementCount, chan, pTD);
 SEVCHK (status, "ca_array_get()");
 status = ca_pend_io (15.0);
 if (status != ECA_NORMAL) {
 fprintf (stderr, "\"%s\" didnt return a value.\n", argv[1]);
 return -1;
 }

 pValue = & pTD->value;
 sum = 0.0;
 for (i = 0; i < elementCount; i++) {
 sum += pValue[i];
 }

 epicsTimeToStrftime (timeString, sizeof (timeString),
 "%a %b %d %Y %H:%M:%S.%f", & pTD->stamp);

 printf ("The sum of elements in %s at %s was %f\n",
 argv[1], timeString, sum);

 ca_clear_channel (chan);
 ca_task_exit ();
 free (pTD);

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L6946

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 21 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

 return 0;
}

User Supplied Callback Functions

Certain CA client initiated requests asynchronously execute an application supplied call back in the client
process when a response arrives. The functions ca_put_callback, ca_get_callback, and ca_add_event all
request notification of asynchronous completion via this mechanism. The event_handler_args structure is
passed by value to the application supplied callback. In this structure the dbr field is a void pointer to any
data that might be returned. The status field will be set to one of the CA error codes in caerr.h and will
indicate the status of the operation performed in the IOC. If the status field isn't set to ECA_NORMAL or
data isn't normally returned from the operation (i.e. put call back) then you should expect that the dbr field
will be set to a nill pointer (zero). The fields usr, chid, and type are set to the values specified when the
request was made by the application. The "dbr" pointer, and any data that it points to, are valid only when
executing within the user's callback function.

typedef struct event_handler_args {
 void *usr; /* user argument supplied with request */
 chanId chid; /* channel id */
 long type; /* the type of the item returned */
 long count; /* the element count of the item returned */
 const void *dbr; /* a pointer to the item returned */
 int status; /* ECA_XXX status of the requested op from the server */
} evargs;

void myCallback (struct event_handler_args args)
{
 if (args.status != ECA_NORMAL) {
 }
 if (args.type == DBR_TIME_DOUBLE) {
 const struct dbr_time_double * pTD =
 (const struct dbr_time_double *) args.dbr;
 }
}

Channel Access Exceptions

When the server detects a failure, and there is no client call back function attached to the request, then an
exception handler is executed in the client. The default exception handler prints a message on the console
and exits if the exception condition is severe. Certain internal exceptions within the CA client library, and
failures detected by the SEVCHK macro may also cause the exception handler to be invoked. To modify
this behavior see ca_add_exception_event().

Server and Client Share the Same Address Space on The Same Host

If the Process Variable's server and it's client are colocated within the same memory address space and the
same host then the ca_xxx() operations bypass the server and directly interact with the server tool
component (commonly the IOC's function block database). In this situation the ca_xxx() routines frequently
return the completion status of the requested operation directly to the caller with no opportunity for
asynchronous notification of failure via an exception handler. Likewise, callbacks may be directly invoked
by the CA library functions that request them.

Arrays

For routines that require an argument specifying the number of array elements, no more than the process
variable's maximum native element count may be requested. The process variable's maximum native
element count is available from ca_element_count() when the channel is connected. If less elements than the
process variable's native element count are requested the requested values will be fetched beginning at
element zero. By default CA limits the number of elements in an array to be no more than approximately
16k divided by the size of one element in the array. Starting with EPICS R3.14 the maximum array size may
be configured in the client and in the server.

Connection Management

Application programs should assume that CA servers may be restarted, and that network connectivity is
transient. When you create a CA channel its initial connection state will most commonly be disconnected. If
the Process Variable's server is available the library will immediately initiate the necessary actions to make

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_exception_event

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 22 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

a connection with it. Otherwise, the client library will monitor the state of servers on the network and
connect or reconnect with the process variable's server as it becomes available. After the channel connects
the application program can freely perform IO operations through the channel, but should expect that the
channel might disconnect at any time due to network connectivity disruptions or server restarts.

Three methods can be used to determine if a channel is connected: the application program might call
ca_state to obtain the current connection state, block in ca_pend_io until the channel connects, or install a
connection callback handler when it calls ca_create_channel. The ca_pend_io approach is best suited to
simple command line programs with short runtime duration, and the connection callback method is best
suited to toolkit components with long runtime duration. Use of ca_state is appropriate only in programs
that prefer to poll for connection state changes instead of opting for asynchronous notification. The
ca_pend_io function blocks only for channels created specifying a nill connection handler callback
function. The user's connection state change function will be run immediately from within
ca_create_channel if the CA client and CA server are both hosted within the same address space (within
the same process).

Thread Safety and Preemptive Callback to User Code

Starting with EPICS R3.14 the CA client libraries are fully thread safe on all OS (in past releases the library
was thread safe only on vxWorks). When the client library is initialized the programmer may specify if
preemptive call back is enabled. Preemptive call back is disabled by default. If preemptive call back is
enabled then the user's call back functions might be called by CA's auxiliary threads when the main
initiating channel access thread is not inside of a function in the channel access client library. Otherwise, the
user's call back functions will be called only when the main initiating channel access thread is executing
inside of the CA client library. When the CA client library invokes a user's call back function it will always
wait for the current callback to complete prior to executing another call back function. Programmers
enabling preemptive callback should be familiar with using mutex locks to create a reliable multi-threaded
program.

To set up a traditional single threaded client you will need code like this (see ca_context_create and CA
Client Contexts and Application Specific Auxiliary Threads) .

SEVCHK (ca_context_create(ca_disable_preemptive_callback), "application pdq calling
ca_context_create");

To set up a preemptive callback enabled CA client context you will need code like this (see
ca_context_create and CA Client Contexts and Application Specific Auxiliary Threads).

SEVCHK (ca_context_create(ca_enable_preemptive_callback), "application pdq calling
ca_context_create");

CA Client Contexts and Application Specific Auxiliary Threads

It is often necessary for several CA client side tools running in the same address space (process) to be
independent of each other. For example, the database CA links and the sequencer are designed to not use
the same CA client library threads, network circuits, and data structures. Each thread that calls
ca_context_create() for the first time either directly, or implicitly when calling any CA library function for
the first time, creates a CA client library context. A CA client library context contains all of the threads,
network circuits, and data structures required to connect and communicate with the channels that a CA
client application has created. The priority of auxiliary threads spawned by the CA client library are at fixed
offsets from the priority of the thread that called ca_context_create(). An application specific auxiliary
thread can join a CA context by calling ca_attach_context() using the CA context identifier that was
returned from ca_current_context() when it is called by the thread that created the context which needs to be
joined. A context which is to be joined must be preemptive - it must be created using
ca_context_create(ca_enable_preemptive_callback). It is not possible to attach a thread to a non-preemptive
CA context created explicitly or implicitly with ca_create_context(ca_disable_preemptive_callback). Once a
thread has joined with a CA context it need only make ordinary ca_xxxx() library calls to use the context.

A CA client library context can be shut down and cleaned up, after destroying any channels or application
specific threads that are attached to it, by calling ca_context_destroy(). The context may be created and
destroyed by different threads as long as they are both part of the same context.

Polling the CA Client Library From Single Threaded Applications

If preemptive call back is not enabled, then for proper operation CA must periodically be polled to take care

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_state
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_state
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client2
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Client2
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_attach_context
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_current_context
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_create
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_context_destroy

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 23 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

of background activity. This requires that your application must either wait in one of ca_pend_event(),
ca_pend_io(), or ca_sg_block() or alternatively it must call ca_poll() at least every 100 milli-seconds. In
single threaded applications a file descriptor manager like Xt or the interface described in fdManager.h can
be used to monitor both mouse clicks and also CA's file descriptors so that ca_poll() can be called
immediately when CA server messages arrives over the network.

Avoid Emulating Bad Practices that May Still be Common

With the embryonic releases of EPICS it was a common practice to examine a channel's connection state, its
native type, and its native element count by directly accessing fields in a structure using a pointer stored in
type chid. Likewise, a user private pointer in the per channel structure was also commonly set by directly
accessing fields in the channel structure. A number of difficulties arise from this practice, which has long
since been deprecated. For example, prior to release 3.13 it was recognized that transient changes in certain
private fields in the per channel structure would make it difficult to reliably test the channels connection
state using these private fields directly. Therefore, in release 3.13 the names of certain fields were changed
to discourage this practice. Starting with release 3.14 codes written this way will not compile. Codes
intending to maintain the highest degree of portability over a wide range of EPICS versions should be
especially careful. For example you should replace all instances off channel_id->count with
ca_element_count(channel_id). This approach should be reliable on all versions of EPICS in use today.
The construct ca_puser(chid) = xxxx is particularly problematic. The best mechanisms for setting the per
channel private pointer will be to pass the user private pointer in when creating the channel. This approach
is implemented on all versions. Otherwise, you can also use ca_set_puser(CHID,PUSER), but this function
is available only after the first official (post beta) release of EPICS 3.13.

Calling CA Functions from the vxWorks Shell Thread

Calling CA functions from the vxWorks shell thread is a somewhat questionable practice for the following
reasons.

The vxWorks shell thread runs at the very highest priority in the system and therefore socket calls are
made at a priority that is above the priority of tNetTask − a practice that has caused the WRS IP
kernel to get sick in the past. That symptom was observed some time ago, but we don’t know if WRS
has fixed the problem.

The vxWorks shell thread runs at the very highest priority in the system and therefore certain CA
auxiliary threads will not get the priorities that are requested for them. This might cause problems
only when in a CPU saturation situations.

If the code does not call ca_context_destroy (ca_task_exit in past releases) then resources are left
dangling.

In EPICS R3.13 the CA client library installed vxWorks task exit handlers behaved strangely if CA
functions were called from the vxWorks shell, ca_task_exit() wasn’t called, and the vxWorks shell
restarted. In EPICS R3.14 vxWorks task exit handlers are not installed and therefore cleanup is solely
the responsibility of the user. With EPICS R3.14 the user must call ca_context_destroy or
ca_task_exit to clean up on vxWorks. This is the same behavior as on all other OS.

Calling CA Functions from POSIX signal handlers

As you might expect, it isnt safe to call the CA client library from a POSIX signal handler. Likewise, it isnt
safe to call the CA client library from interrupt context.

Function Call Reference

ca_context_create()

#include <cadef.h>
enum ca_preemptive_callback_select
 { ca_disable_preemptive_callback, ca_enable_preemptive_callback };
int ca_context_create (enum ca_preemptive_callback_select SELECT);

Description

This function, or ca_attach_context(), should be called once from each thread prior to making any of the

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_attach_context

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 24 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

other Channel Access calls. If one of the above is not called before making other CA calls then a non-
preemptive context is created by default, and future attempts to create a preemptive context for the current
threads will fail.

If ca_disable_preemptive_callback is specified then additional threads are not allowed to join the CA
context using ca_context_attach() because allowing other threads to join implies that CA callbacks will be
called preemptively from more than one thread.

Arguments

SELECT
This argument specifies if preemptive invocation of callback functions is allowed. If so your callback
functions might be called when the thread that calls this routine is not executing in the CA client
library. There are two implications to consider.

First, if preemptive callback mode is enabled the developer must provide mutual exclusion protection
for his data structures. In this mode it's possible for two threads to touch the application's data
structures at once: this might be the initializing thread (the thread that called ca_context_create) and
also a private thread created by the CA client library for the purpose of receiving network messages
and calling callbacks. It might be prudent for developers who are unfamiliar with mutual exclusion
locking in a multi-threaded environment to specify ca_disable_preemptive_callback.

Second, if preemptive callback mode is enabled the application is no longer burdened with the
necessity of periodically polling the CA client library in order that it might take care of its background
activities. If ca_enable_preemptive_callback is specified then CA client background activities,
such as connection management, will proceed even if the thread that calls this routine is not executing
in the CA client library. Furthermore, in preemptive callback mode callbacks might be called with less
latency because the library is not required to wait until the initializing thread (the thread that called
ca_context_create) is executing within the CA client library.

Returns

ECA_NORMAL - Normal successful completion

ECA_ALLOCMEM - Failed, unable to allocate space in pool

ECA_NOTTHREADED - Current thread is already a member of a non-preemptive callback CA context
(possibly created implicitly)

See Also

ca_context_destroy()

ca_context_destroy()

#include <cadef.h>
void ca_context_destroy();

Description

Shut down the calling thread's channel access client context and free any resources allocated. Detach the
calling thread from any CA client context.

Any user-created threads that have attached themselves to the CA context must stop using it prior to its
being destroyed. A program running in an IOC context must delete all of its channels prior to calling
ca_context_destroy() to avoid a crash.

A CA client application that calls epicsExit() must install an EPICS exit handler that calls
ca_context_destroy() only after first calling ca_create_context(). This will guarantee that the EPICS exit
handlers get called in the correct order.

On many OS that execute programs in a process based environment the resources used by the client library
such as sockets and allocated memory are automatically released by the system when the process exits and
ca_context_destroy() hasn't been called, but on light weight systems such as vxWorks or RTEMS no

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 25 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

cleanup occurs unless the application call ca_context_destroy().

Returns

ECA_NORMAL - Normal successful completion

See Also

ca_context_create()

ca_create_channel()

#include <cadef.h>
typedef void (*pCallBack) (
 struct connection_handler_args);
int ca_create_channel
(
 const char *PROCESS_VARIABLE_NAME,
 caCh *USERFUNC,
 void *PUSER,
 capri priority,
 chid *PCHID
);

Description

This function creates a CA channel. The CA client library will attempt to establish and maintain a virtual
circuit between the caller's application and a named process variable in a CA server. Each call to
ca_create_channel allocates resources in the CA client library and potentially also a CA server. The function
ca_clear_channel() is used to release these resources. If successful, the routine writes a channel identifier
into the user's variable of type "chid". This identifier can be used with any channel access call that operates
on a channel.

The circuit may be initially connected or disconnected depending on the state of the network and the
location of the channel. A channel will only enter a connected state after server's address is determined, and
only if channel access successfully establishes a virtual circuit through the network to the server. Channel
access routines that send a request to a server will return ECA_DISCONNCHID if the channel is currently
disconnected.

There are two ways to obtain asynchronous notification when a channel enters a connected state.

The first and simplest method requires that you call ca_pend_io(), and wait for successful completion,
prior to using a channel that was created specifying a nil connection call back function pointer.
The second method requires that you register a connection handler by supplying a valid connection
callback function pointer. This connection handler is called whenever the connection state of the
channel changes. If you have installed a connection handler then ca_pend_io() will not block waiting
for the channel to enter a connected state.

The function ca_state(CHID) can be used to test the connection state of a channel. Valid connections may
be isolated from invalid ones with this function if ca_pend_io() times out.

Due to the inherently transient nature of network connections the order of connection call backs relative to
the order that ca_create_channel() calls are made by the application can't be guaranteed, and application
programs may need to be prepared for a connected channel to enter a disconnected state at any time.

Example

See caExample.c in the example application created by makeBaseApp.pl.

Arguments

PROCESS_VARIABLE_NAME
A nil terminated process variable name string. EPICS process control function block database variable
names are of the form "<record name>.<field name>". If the field name and the period separator are
omitted then the "VAL" field is implicit. For example "RFHV01" and "RFHV01.VAL" reference the

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 26 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

same EPICS process control function block database variable.

USERFUNC
Optional address of the user's call back function to be run when the connection state changes. Casual
users of channel access may decide to set this field to nil or 0 if they do not need to have a call back
function run in response to each connection state change event.

The following structure is passed by value to the user's connection connection callback function. The
op field will be set by the CA client library to CA_OP_CONN_UP when the channel connects, and to
CA_OP_CONN_DOWN when the channel disconnects. See ca_puser if the PUSER argument is required in
your callback handler.

struct ca_connection_handler_args {
 chanId chid; /* channel id */
 long op; /* one of CA_OP_CONN_UP or CA_OP_CONN_DOWN */
};

PUSER
The value of this void pointer argument is retained in storage associated with the specified channel.
See the MACROS manual page for reading and writing this field. Casual users of channel access may
wish to set this field to nil or 0.

PRIORITY
The priority level for dispatch within the server or network with 0 specifying the lowest dispatch
priority and 99 the highest. This parameter currently does not impact dispatch priorities within the
client, but this might change in the future. The abstract priority range specified is mapped into an
operating system specific range of priorities within the server. This parameter is ignored if the server
is running on a network or operating system that does not have native support for prioritized delivery
or execution respectively. Specifying many different priorities within the same program can increase
resource consumption in the client and the server because an independent virtual circuit, and
associated data structures, is created for each priority that is used on a particular server.

PCHID
The user supplied channel identifier storage is overwritten with a channel identifier if this routine is
successful.

Returns

ECA_NORMAL - Normal successful completion

ECA_BADTYPE - Invalid DBR_XXXX type

ECA_STRTOBIG - Unusually large string

ECA_ALLOCMEM - Unable to allocate memory

ca_clear_channel()

#include <cadef.h>
int ca_clear_channel (chid CHID);

Description

Shutdown and reclaim resources associated with a channel created by ca_create_channel().

All remote operation requests such as the above are accumulated (buffered) and not forwarded to the IOC
until one of ca_flush_io, ca_pend_io, ca_pend_event, or ca_sg_pend are called. This allows several requests
to be efficiently sent over the network in one message.

Clearing a channel does not cause its disconnect handler to be called, but clearing a channel does shutdown
and reclaim any channel state change event subscriptions (monitors) registered with the channel.

Arguments

CHID
Identifies the channel to delete.

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_puser

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 27 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Returns

ECA_NORMAL - Normal successful completion

ECA_BADCHID - Corrupted CHID

ca_put()

#include <cadef.h>
int ca_put (chtype TYPE,
 chid CHID, void *PVALUE);
int ca_array_put (chtype TYPE,
 unsigned long COUNT,
 chid CHID, const void *PVALUE);
typedef void (*pCallBack) (struct event_handler_args);
int ca_put_callback (chtype TYPE,
 chid CHID, const void *PVALUE,
 pCallBack PFUNC, void *USERARG);
int ca_array_put_callback (chtype TYPE,
 unsigned long COUNT,
 chid CHID, const void *PVALUE,
 pCallBack PFUNC, void *USERARG);

Description

Write a scalar or array value to a process variable.

When ca_array_put or ca_put are invoked the client will receive no response unless the request can not be
fulfilled in the server. If unsuccessful an exception handler is run on the client side.

When ca_array_put_callback are invoked the user supplied asynchronous call back is called only after the
initiated write operation, and all actions resulting from the initiating write operation, complete.

If unsuccessful the call back function is invoked indicating failure status.

If the channel disconnects before a put callback request can be completed, then the client's call back
function is called with failure status, but this does not guarantee that the server did not receive and process
the request before the disconnect. If a connection is lost and then resumed outstanding ca put requests are
not automatically reissued following reconnect.

All of these functions return ECA_DISCONN if the channel is currently disconnected.

All put requests are accumulated (buffered) and not forwarded to the IOC until one of ca_flush_io,
ca_pend_io, ca_pend_event, or ca_sg_pend are called. This allows several requests to be efficiently
combined into one message.

Description (IOC Database Specific)

A CA put request causes the record to process if the record's SCAN field is set to passive, and the field
being written has it's process passive attribute set to true. If such a record is already processing when a put
request is initiated the specified field is written immediately, and the record is scheduled to process again as
soon as it finishes processing. Earlier instances of multiple put requests initiated while the record is being
processing may be discarded, but the last put request initiated is always written and processed.

A CA put callback request causes the record to process if the record's SCAN field is set to passive, and the
field being written has it's process passive attribute set to true. For such a record, the user's put callback
function is not called until after the record, and any records that the record links to, finish processing. If
such a record is already processing when a put callback request is initiated the put callback request is
postponed until the record, and any records it links to, finish processing.

If the record's SCAN field is not set to passive, or the field being written has it's process passive attribute set
to false then the CA put or CA put callback request cause the specified field to be immediately written, but
they do not cause the record to be processed.

Arguments

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 28 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

TYPE
The external type of the supplied value to be written. Conversion will occur if this does not match the
native type. Specify one from the set of DBR_XXXX in db_access.h

COUNT
Element count to be written to the specified channel. This must match the array pointed to by
PVALUE.

CHID
Channel identifier

PVALUE
Pointer to a value or array of values provided by the application to be written to the channel.

PFUNC
address of user supplied callback function to be run when the requested operation completes

USERARG
pointer sized variable retained and then passed back to user supplied function above

Returns

ECA_NORMAL - Normal successful completion

ECA_BADCHID - Corrupted CHID

ECA_BADTYPE - Invalid DBR_XXXX type

ECA_BADCOUNT - Requested count larger than native element count

ECA_STRTOBIG - Unusually large string supplied

ECA_NOWTACCESS - Write access denied

ECA_ALLOCMEM - Unable to allocate memory

ECA_DISCONN - Channel is disconnected

See Also

ca_flush_io()

ca_pend_event()

ca_sg_array_put()

ca_get()

#include <cadef.h>
int ca_get (chtype TYPE,
 chid CHID, void *PVALUE);
int ca_array_get (chtype TYPE, unsigned long COUNT,
 chid CHID, void *PVALUE);
typedef void (*pCallBack) (struct event_handler_args);
int ca_get_callback (chtype TYPE,
 chid CHID, pCallBack USERFUNC, void *USERARG);
int ca_array_get_callback (chtype TYPE, unsigned long COUNT,
 chid CHID,
 pCallBack USERFUNC, void *USERARG);

Description

Read a scalar or array value from a process variable.

When ca_get or ca_array_get are invoked the returned channel value cant be assumed to be stable in the
application supplied buffer until after ECA_NORMAL is returned from ca_pend_io. If a connection is lost
outstanding ca get requests are not automatically reissued following reconnect.

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#User

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 29 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

When ca_get_callback or ca_array_get_callback are invoked a value is read from the channel and then the
user's callback is invoked with a pointer to the retrieved value. Note that ca_pend_io will not block for the
delivery of values requested by ca_get_callback. If the channel disconnects before a ca get callback request
can be completed, then the clients call back function is called with failure status.

All of these functions return ECA_DISCONN if the channel is currently disconnected.

All get requests are accumulated (buffered) and not forwarded to the IOC until one of ca_flush_io,
ca_pend_io, ca_pend_event, or ca_sg_pend are called. This allows several requests to be efficiently sent
over the network in one message.

Description (IOC Database Specific)

A CA get or CA get callback request causes the record's field to be read immediately independent of
whether the record is currently being processed or not. There is currently no mechanism in place to cause a
record to be processed when a CA get request is initiated.

Example

See caExample.c in the example application created by makeBaseApp.pl.

Arguments

TYPE
The external type of the user variable to return the value into. Conversion will occur if this does not
match the native type. Specify one from the set of DBR_XXXX in db_access.h

COUNT
Element count to be read from the specified channel. Must match the array pointed to by PVALUE.

CHID
Channel identifier

PVALUE
Pointer to an application supplied buffer where the current value of the channel is to be written.

USERFUNC
Address of user supplied callback function to be run when the requested operation completes.

USERARG
Pointer sized variable retained and then passed back to user supplied call back function above.

Returns

ECA_NORMAL - Normal successful completion

ECA_BADTYPE - Invalid DBR_XXXX type

ECA_BADCHID - Corrupted CHID

ECA_BADCOUNT - Requested count larger than native element count

ECA_GETFAIL - A local database get failed

ECA_NORDACCESS - Read access denied

ECA_ALLOCMEM - Unable to allocate memory

ECA_DISCONN - Channel is disconnected

See Also

ca_pend_io()

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#User

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 30 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

ca_pend_event()

ca_sg_array_get()

ca_create_subscription()

#include <cadef.h>
typedef void (*pCallBack) (
 struct event_handler_args);
int ca_create_subscription (chtype TYPE,
 unsigned long COUNT, chid CHID,
 unsigned long MASK, pCallBack USERFUNC, void *USERARG,
 evid *PEVID);

Description

Register a state change subscription and specify a call back function to be invoked whenever the process
variable undergoes significant state changes. A significant change can be a change in the process variable's
value, alarm status, or alarm severity. In the process control function block database the deadband field
determines the magnitude of a significant change for for the process variable's value. Each call to this
function consumes resources in the client library and potentially a CA server until one of ca_clear_channel
or ca_clear_event is called.

Subscriptions may be installed or canceled against both connected and disconnected channels. The specified
USERFUNC is called once immediately after the subscription is installed with the process variable's current
state if the process variable is connected. Otherwise, the specified USERFUNC is called immediately after
establishing a connection (or reconnection) with the process variable. The specified USERFUNC is called
immediately with the process variable's current state from within ca_add_event() if the client and the process
variable share the same address space.

If a subscription is installed on a channel in a disconnected state then the requested count will be set to the
native maximum element count of the channel if the requested count is larger.

All subscription requests such as the above are accumulated (buffered) and not forwarded to the IOC until
one of ca_flush_io, ca_pend_io, ca_pend_event, or ca_sg_pend are called. This allows several requests to be
efficiently sent over the network in one message.

If at any time after subscribing, read access to the specified process variable is lost, then the call back will
be invoked immediately indicating that read access was lost via the status argument. When read access is
restored normal event processing will resume starting always with at least one update indicating the current
state of the channel.

A better name for this function might have been ca_subscribe.

Example

See caMonitor.c in the example application created by makeBaseApp.pl.

Arguments

TYPE
The type of value presented to the call back funstion. Conversion will occur if it does not match
native type. Specify one from the set of DBR_XXXX in db_access.h

COUNT
The element count to be read from the specified channel. A count of zero specifies the native elemnt
count.

CHID
channel identifier

USRERFUNC
The address of user supplied callback function to be invoked with each subscription update.

USERARG
pointer sized variable retained and passed back to user callback function

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#User

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 31 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

RESERVED
Reserved for future use. Specify 0.0 to remain upwardly compatible.

PEVID
This is a pointer to user supplied event id which is overwritten if successful. This event id can later be
used to clear a specific event. This option may may be omitted by passing a nil pointer.

MASK
A mask with bits set for each of the event trigger types requested. The event trigger mask must be a
bitwise or of one or more of the following constants.

DBE_VALUE - Trigger events when the channel value exceeds the monitor dead band
DBE_ARCHIVE (or DBE_LOG) - Trigger events when the channel value exceeds the archival
dead band
DBE_ALARM - Trigger events when the channel alarm state changes
DBE_PROPERTY - Trigger events when a channel property changes.

For functions above that do not include a trigger specification, events will be triggered when there are
significant changes in the channel's value or when there are changes in the channel's alarm state. This
is the same as "DBE_VALUE | DBE_ALARM."

Returns

ECA_NORMAL - Normal successful completion

ECA_BADCHID - Corrupted CHID

ECA_BADTYPE - Invalid DBR_XXXX type

ECA_ALLOCMEM - Unable to allocate memory

ECA_ADDFAIL - A local database event add failed

See Also

ca_pend_event()

ca_flush_io()

ca_clear_subscription()

#include <cadef.h>
int ca_clear_subscription (evid EVID);

Description

Cancel a subscription.

All ca_clear_event() requests such as the above are accumulated (buffered) and not forwarded to the server
until one of ca_flush_io, ca_pend_io, ca_pend_event, or ca_sg_pend are called. This allows several requests
to be efficiently sent together in one message.

Arguments

EVID
event id returned by ca_add_event()

Returns

ECA_NORMAL - Normal successful completion

ECA_BADCHID - Corrupted CHID SEE ALSO ca_add_event()

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 32 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

ca_pend_io()

#include <cadef.h>
int ca_pend_io (double TIMEOUT);

Description

This function flushes the send buffer and then blocks until outstanding ca_get requests complete, and until
channels created specifying nill connection handler function pointers connect for the first time.

If ECA_NORMAL is returned then it can be safely assumed that all outstanding ca_get requests have
completed successfully and channels created specifying nill connection handler function pointers have
connected for the first time.
If ECA_TIMEOUT is returned then it must be assumed for all previous ca_get requests and properly
qualified first time channel connects have failed.

If ECA_TIMEOUT is returned then get requests may be reissued followed by a subsequent call to
ca_pend_io(). Specifically, the function will block only for outstanding ca_get requests issued, and also any
channels created specifying a nill connection handler function pointer, after the last call to ca_pend_io() or
ca client context creation whichever is later. Note that ca_create_channel requests generally should not be
reissued for the same process variable unless ca_clear_channel is called first.

If no ca_get or connection state change events are outstanding then ca_pend_io() will flush the send buffer
and return immediately without processing any outstanding channel access background activities.

The delay specified to ca_pend_io() should take into account worst case network delays such as Ethernet
collision exponential back off until retransmission delays which can be quite long on overloaded networks.

Unlike ca_pend_event, this routine will not process CA's background activities if none of the selected IO
requests are pending.

Arguments

TIMEOUT
Specifies the time out interval. A TIMEOUT interval of zero specifies forever.

Returns

ECA_NORMAL - Normal successful completion

ECA_TIMEOUT - Selected IO requests didnt complete before specified timeout

ECA_EVDISALLOW - Function inappropriate for use within an event handler

See Also

ca_get()

ca_create_channel()

ca_test_io()

ca_test_io()

#include <cadef.h>
int ca_test_io();

Description

This function tests to see if all ca_get requests are complete and channels created specifying a nill
connection callback function pointer are connected. It will report the status of outstanding ca_get requests
issued, and channels created specifying a nill connection callback function pointer, after the last call to
ca_pend_io() or CA context initialization whichever is later.

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_clear_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#L3249
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_create_channel
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_test_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 33 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Returns

ECA_IODONE - All IO operations completed

ECA_IOINPROGRESS - IO operations still in progress

See Also

ca_pend_io()

ca_pend_event()

#include <cadef.h>
int ca_pend_event (double TIMEOUT);
int ca_poll ();

Description

When ca_pend_event is invoked the send buffer is flushed and CA background activity is processed for
TIMEOUT seconds.

When ca_poll is invoked the send buffer is flushed and any outstanding CA background activity is
processed.

The ca_pend_event function will not return before the specified time-out expires and all unfinished channel
access labor has been processed, and unlike ca_pend_io returning from the function does not indicate
anything about the status of pending IO requests.

Both ca_pend_event and ca_poll return ECA_TIMEOUT when successful. This behavior probably isn't
intuitive, but it is preserved to insure backwards compatibility.

See also Thread Safety and Preemptive Callback to User Code.

Arguments

TIMEOUT
The duration to block in this routine in seconds. A timeout of zero seconds blocks forever.

Returns

ECA_TIMEOUT - The operation timed out

ECA_EVDISALLOW - Function inappropriate for use within a call back handler

ca_flush_io()

#include <cadef.h>
int ca_flush_io();

Description

Flush outstanding IO requests to the server. This routine might be useful to users who need to flush
requests prior to performing client side labor in parallel with labor performed in the server.

Outstanding requests are also sent whenever the buffer which holds them becomes full.

Returns

ECA_NORMAL - Normal successful completion

ca_signal()

#include <cadef.h>
int ca_signal (long CA_STATUS, const char * CONTEXT_STRING);

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#Thread

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 34 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

void SEVCHK(CA_STATUS, CONTEXT_STRING);

Description

Provide the error message character string associated with the supplied channel access error code and the
supplied error context to diagnostics. If the error code indicates an unsuccessful operation a stack dump is
printed, if this capability is available on the local operating system, and execution is terminated.

SEVCHK is a macro envelope around ca_signal which only calls ca_signal() if the supplied error code
indicates an unsuccessful operation. SEVCHK is the recommended error handler for simple applications
which do not wish to write code testing the status returned from each channel access call.

Examples

status = ca_context_create (...);
SEVCHK (status, "Unable to create a CA client context");

If the application only wishes to print the message associated with an error code or test the severity of an
error there are also functions provided for this purpose.

Arguments

CA_STATUS
The status (error code) returned from a channel access function.

CONTEXT_STRING
A null terminated character string to supply as error context to diagnostics.

Returns

ECA_NORMAL - Normal successful completion

ca_add_exception_event()

#include <cadef.h>
typedef void (*pCallback) (struct exception_handler_args HANDLERARGS);
int ca_add_exception_event (pCallback USERFUNC, void *USERARG);

Description

Replace the currently installed CA context global exception handler call back.

When an error occurs in the server asynchronous to the clients thread then information about this type of
error is passed from the server to the client in an exception message. When the client receives this
exception message an exception handler callback is called.The default exception handler prints a diagnostic
message on the client's standard out and terminates execution if the error condition is severe.

Note that certain fields in "struct exception_handler_args" are not applicable in the context of some error
messages. For instance, a failed get will supply the address in the client task where the returned value was
requested to be written. For other failed operations the value of the addr field should not be used.

Arguments

USERFUNC
Address of user callback function to be executed when an exceptions occur. Passing a nil value causes
the default exception handler to be reinstalled. The following structure is passed by value to the user's
callback function. Currently, the op field can be one of CA_OP_GET, CA_OP_PUT,
CA_OP_CREATE_CHANNEL, CA_OP_ADD_EVENT, CA_OP_CLEAR_EVENT, or CA_OP_OTHER.

struct exception_handler_args {
 void *usr; /* user argument supplied when installed */
 chanId chid; /* channel id (may be nill) */
 long type; /* type requested */
 long count; /* count requested */
 void *addr; /* user's address to write results of CA_OP_GET */

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 35 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

 long stat; /* channel access ECA_XXXX status code */
 long op; /* CA_OP_GET, CA_OP_PUT, ..., CA_OP_OTHER */
 const char *ctx; /* a character string containing context info */
 sonst char *pFile; /* source file name (may be NULL) */
 unsigned lineNo; /* source file line number (may be zero) */
};

USERARG
pointer sized variable retained and passed back to user function above

Example

void ca_exception_handler (
 struct exception_handler_args args)
{
 char buf[512];
 char *pName;

 if (args.chid) {
 pName = ca_name (args.chid);
 }
 else{
 pName = "?";
 }
 sprintf (buf,
 "%s - with request chan=%s op=%d data type=%s count=%d",
 args.ctx, pName, args.op, dbr_type_to_text (args.type), args.count);
 ca_signal (args.stat, buf);

}
ca_add_exception_event (ca_exception_handler , 0);

Returns

ECA_NORMAL - Normal successful completion

ca_add_fd_registration()

#include <cadef.h>int ca_add_fd_registration (void (USERFUNC *) (void *USERARG, int FD, int OPENED), void * USERARG)

Description

For use with the services provided by a file descriptor manager (IO multiplexor) such as ""fdmgr.c". A file
descriptor manager is often needed when two file descriptor IO intensive libraries such as the EPICS
channel access client library and the X window system client library must coexist in the same UNIX
process. This function allows an application code to be notified whenever the CA client library places a new
file descriptor into service and whenever the CA client library removes a file descriptor from service.
Specifying USERFUNC=NULL disables file descriptor registration (this is the default).

Arguments

USERFUNC

Pointer to a user supplied C function returning null with the above arguments.

USERARG

User supplied pointer sized variable passed to the above function.

FD

A file descriptor.

OPENED

Boolean argument is true if the file descriptor was opened and false if the file descriptor was closed.

Example

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 36 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

int s;

static struct myStruct aStruct;

void fdReg (struct myStruct *pStruct, int fd, int opened)

{

 if (opened) printf ("fd %d was opened\n", fd);

 else printf ("fd %d was closed\n", fd);

}

s = ca_add_fd_registration (fdReg, & aStruct);

SEVCHK (s, NULL);

Comments

When using this function it is advisable to call it only once prior to calling any other CA function, or once
just after creating the CA context (if you create the context explicitly). Use of this interface can improve
latency slightly in applications that use non preemptive callback mode at the expense of some additional
runtime overhead when compared to the alternative which is just polling ca_pend_event periodically. It
would probably not be appropriate to use this function with preemptive callback mode. Starting with R3.14
this function is implemented in a special backward compatibility mode. if ca_add_fd_registration is
called, a single pseudo UDP fd is created which CA pokes whenever something significant happens. Xt and
others can watch this fd so that backwards compatibility is preserved, and so that they will not need to use
preemptive callback mode but they will nevertheless get the lowest latency response to the arrival of CA
messages.

Returns

"ECA_NORMAL - Normal successful completion

ca_replace_printf_handler ()

#include <cadef.h>
typedef int caPrintfFunc (const char *pFromat, va_list args);
int ca_replace_printf_handler (caPrintfFunc *PFUNC);

Description

Replace the default handler for formatted diagnostic message output. The default handler uses fprintf to send
messages to 'stderr'.

Arguments

PFUNC
The address of a user supplied call back handler to be invoked when CA prints diagnostic messages.
Installing a nil pointer will cause the default call back handler to be reinstalled.

Examples

int my_printf (char *pformat, va_list args) {
 int status;
 status = vfprintf(stderr, pformat, args);
 return status;
}
status = ca_replace_printf_handler (my_printf);
SEVCHK (status, "failed to install my printf handler");

Returns

ECA_NORMAL - Normal successful completion

ca_replace_access_rights_event()

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 37 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

#include <cadef.h>
typedef void (*pCallBack)(struct access_rights_handler_args);
int ca_replace_access_rights_event (chid CHAN, pCallBack PFUNC);

Description

Install or replace the access rights state change callback handler for the specified channel.

The callback handler is called in the following situations.

whenever CA connects the channel immediately before the channel's connection handler is called
whenever CA disconnects the channel immediately after the channel's disconnect call back is called
once immediately after installation if the channel is connected.
whenever the access rights state of a connected channel changes

When a channel is created no access rights handler is installed.

Arguments

CHAN
The channel identifier.

PFUNC
Address of user supplied call back function. A nil pointer uninstalls the current handler. The
following arguments are passed by value to the supplied callback handler.

typedef struct ca_access_rights {
 unsigned read_access:1;
 unsigned write_access:1;
} caar;

/* arguments passed to user access rights handlers */
struct access_rights_handler_args {
 chanId chid; /* channel id */
 caar ar; /* new access rights state */
};

Returns

ECA_NORMAL - Normal successful completion

See Also

ca_modify_user_name()

ca_modify_host_name()

ca_field_type()

#include <cadef.h>
chtype ca_field_type (CHID);

Description

Return the native type in the server of the process variable.

Arguments

CHID
channel identifier

Returns

TYPE
The data type code will be a member of the set of DBF_XXXX in db_access.h. The constant

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 38 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

TYPENOTCONN is returned if the channel is disconnected.

ca_element_count()

#include <cadef.h>
unsigned ca_element_count (CHID);

Description

Return the maximum array element count in the server for the specified IO channel.

Arguments

CHID
channel identifier

Returns

COUNT
The maximum array element count in the server. An element count of zero is returned if the channel
is disconnected.

ca_name()

#include <cadef.h>
char * ca_name (CHID);

Description

Return the name provided when the supplied channel id was created.

Arguments

CHID
channel identifier

Returns

PNAME
The channel name. The string returned is valid as long as the channel specified exists.

ca_set_puser()

#include <cadef.h>
void ca_set_puser (chid CHID, void *PUSER);

Description

Set a user private void pointer variable retained with each channel for use at the users discretion.

Arguments

CHID
channel identifier

PUSER
user private void pointer

ca_puser()

#include <cadef.h>
void * ca_puser (CHID);

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 39 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Description

Return a user private void pointer variable retained with each channel for use at the users discretion.

Arguments

CHID
channel identifier

Returns

PUSER
user private pointer

ca_state()

#include <cadef.h>
enum channel_state {
 cs_never_conn, /* valid chid, server not found or unavailable */
 cs_prev_conn, /* valid chid, previously connected to server */
 cs_conn, /* valid chid, connected to server */
 cs_closed }; /* channel deleted by user */
enum channel_state ca_state (CHID);

Description

Returns an enumerated type indicating the current state of the specified IO channel.

Arguments

CHID
channel identifier

Returns

STATE
the connection state

ca_message()

#include <cadef.h>
const char * ca_message (STATUS);

Description

return a message character string corresponding to a user specified CA status code.

Arguments

STATUS
a CA status code

Returns

STRING
the corresponding error message string

ca_host_name()

#include <cadef.h>
char * ca_host_name (CHID);

Description

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 40 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Return a character string which contains the name of the host to which a channel is currently connected.

Arguments

CHID
the channel identifier

Returns

STRING
The process variable server's host name. If the channel is disconnected the string "<disconnected>" is
returned.

ca_read_access()

#include <cadef.h>
int ca_read_access (CHID);

Description

Returns boolean true if the client currently has read access to the specified channel and boolean
false otherwise.

Arguments

CHID
the channel identifier

Returns

STRING
boolean true if the client currently has read access to the specified channel and boolean
false otherwise

ca_write_access()

#include <cadef.h>
int ca_write_access (CHID);

Description

Returns boolean true if the client currently has write access to the specified channel and boolean
false otherwise.

Arguments

CHID
the channel identifier

Returns

STRING
boolean true if the client currently has write access to the specified channel and boolean
false otherwise

dbr_size[]

#include <db_access.h>
extern unsigned dbr_size[/*TYPE*/];

Description

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 41 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

An array that returns the size in bytes for a DBR_XXXX type.

Arguments

TYPE
The data type code. A member of the set of DBF_XXXX in db_access.h.

Returns

SIZE
the size in bytes of the specified type

dbr_size_n()

#include <db_access.h>
unsigned dbr_size_n (TYPE, COUNT);

Description

Returns the size in bytes for a DBR_XXXX type with COUNT elements. If the DBR type is a structure then
the value field is the last field in the structure. If COUNT is greater than one then COUNT-1 elements are
appended to the end of the structure so that they can be addressed as an array through a pointer to the value
field.

Arguments

TYPE
The data type

COUNT
The element count

Returns

SIZE
the size in bytes of the specified type with the specified number of elements

dbr_value_size[]

#include <db_access.h>
extern unsigned dbr_value_size[/* TYPE */];

Description

The array dbr_value_size[TYPE] returns the size in bytes for the value stored in a DBR_XXXX type. If the
type is a structure the size of the value field is returned otherwise the size of the type is returned.

Arguments

TYPE
The data type code. A member of the set of DBF_XXXX in db_access.h.

Returns

SIZE
the size in bytes of the value field if the type is a structure and otherwise the size in bytes of the type

dbr_type_to_text()

#include <db_access.h>
const char * dbr_type_text (chtype TYPE);

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 42 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Description

Returns a constant null terminated string corresponding to the specified dbr type.

Arguments

TYPE
The data type code. A member of the set of DBR_XXXX in db_access.h.

Returns

STRING
The const string corresponding to the DBR_XXX type.

ca_test_event()

#include <cadef.h>

Description

void ca_test_event (struct event_handler_args);

A built-in subscription update call back handler for debugging purposes that prints diagnostics to standard
out.

Examples

void ca_test_event ();
status = ca_add_event (type, chid, ca_test_event, NULL, NULL);
SEVCHK (status,);

See Also

ca_add_event()

ca_sg_create()

#include <cadef.h>
int ca_sg_create (CA_SYNC_GID *PGID);

Description

Create a synchronous group and return an identifier for it.

A synchronous group can be used to guarantee that a set of channel access requests have completed. Once a
synchronous group has been created then channel access get and put requests may be issued within it using
ca_sg_get() and ca_sg_put() respectively. The routines ca_sg_block() and ca_sg_test() can be used to block
for and test for completion respectively. The routine ca_sg_reset() is used to discard knowledge of old
requests which have timed out and in all likelihood will never be satisfied.

Any number of asynchronous groups can have application requested operations outstanding within them at
any given time.

Arguments

PGID
Pointer to a user supplied CA_SYNC_GID.

Examples

CA_SYNC_GID gid;
status = ca_sg_create (&gid);
SEVCHK (status, Sync group create failed);

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_add_event

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 43 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Returns

ECA_NORMAL - Normal successful completion

ECA_ALLOCMEM - Failed, unable to allocate memory

See Also

ca_sg_delete()

ca_sg_block()

ca_sg_test()

ca_sg_reset()

ca_sg_put()

ca_sg_get()

ca_sg_delete()

#include <cadef.h>
int ca_sg_delete (CA_SYNC_GID GID);

Description

Deletes a synchronous group.

Arguments

GID
Identifier of the synchronous group to be deleted.

Examples

CA_SYNC_GID gid;
status = ca_sg_delete (gid);
SEVCHK (status, Sync group delete failed);

Returns

ECA_NORMAL - Normal successful completion

ECA_BADSYNCGRP - Invalid synchronous group

See Also

ca_sg_create()

ca_sg_block()

#include <cadef.h>
int ca_sg_block (CA_SYNC_GID GID, double timeout);

Description

Flushes the send buffer and then waits until outstanding requests complete or the specified time out expires.
At this time outstanding requests include calls to ca_sg_array_get() and calls to ca_sg_array_put(). If
ECA_TIMEOUT is returned then failure must be assumed for all outstanding queries. Operations can be
reissued followed by another ca_sg_block(). This routine will only block on outstanding queries issued after
the last call to ca_sg_block(), ca_sg_reset(), or ca_sg_create() whichever occurs later in time. If no queries
are outstanding then ca_sg_block() will return immediately without processing any pending channel access

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_sg_create

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 44 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

activities.

Values written into your program's variables by a channel access synchronous group request should not be
referenced by your program until ECA_NORMAL has been received from ca_sg_block(). This routine
will process pending channel access background activity while it is waiting.

Arguments

GID
Identifier of the synchronous group.

Examples

CA_SYNC_GID gid;
status = ca_sg_block(gid);
SEVCHK(status, Sync group block failed);

Returns

ECA_NORMAL - Normal successful completion

ECA_TIMEOUT - The operation timed out

ECA_EVDISALLOW - Function inappropriate for use within an event handler

ECA_BADSYNCGRP - Invalid synchronous group

See Also

ca_sg_test()

ca_sg_reset()

ca_sg_test()

#include <cadef.h>
int ca_sg_test (CA_SYNC_GID GID)

Description

Test to see if all requests made within a synchronous group have completed.

Arguments

GID
Identifier of the synchronous group.

Description

Test to see if all requests made within a synchronous group have completed.

Examples

CA_SYNC_GID gid;
status = ca_sg_test (gid);

Returns

ECA_IODONE - IO operations completed

ECA_IOINPROGRESS - Some IO operations still in progress

ca_sg_reset()

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 45 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

#include <cadef.h>
int ca_sg_reset (CA_SYNC_GID GID)

Description

Reset the number of outstanding requests within the specified synchronous group to zero so that ca_sg_test()
will return ECA_IODONE and ca_sg_block() will not block unless additional subsequent requests are made.

Arguments

GID
Identifier of the synchronous group.

Examples

CA_SYNC_GID gid;
status = ca_sg_reset(gid);

Returns

ECA_NORMAL - Normal successful completion

ECA_BADSYNCGRP - Invalid synchronous group

ca_sg_put()

#include <cadef.h>
int ca_sg_array_put (CA_SYNC_GID GID, chtype TYPE,
 unsigned long COUNT, chid CHID, void *PVALUE);

Write a value, or array of values, to a channel and increment the outstanding request count of a synchronous
group. The ca_sg_array_put functionality is implemented using ca_array_put_callback.

All remote operation requests such as the above are accumulated (buffered) and not forwarded to the server
until one of ca_flush_io(), ca_pend_io(), ca_pend_event(), or ca_sg_pend() are called. This allows several
requests to be efficiently sent in one message.

If a connection is lost and then resumed outstanding puts are not reissued.

Arguments

GID
synchronous group identifier

TYPE
The type of supplied value. Conversion will occur if it does not match the native type. Specify one
from the set of DBR_XXXX in db_access.h.

COUNT
element count to be written to the specified channel - must match the array pointed to by PVALUE

CHID
channel identifier

PVALUE
A pointer to an application supplied buffer containing the value or array of values returned

Returns

ECA_NORMAL - Normal successful completion

ECA_BADSYNCGRP - Invalid synchronous group

ECA_BADCHID - Corrupted CHID

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 46 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

ECA_BADTYPE - Invalid DBR_XXXX type

ECA_BADCOUNT - Requested count larger than native element count

ECA_STRTOBIG - Unusually large string supplied

ECA_PUTFAIL - A local database put failed

See Also

ca_flush_io()

ca_sg_get()

#include <cadef.h>
int ca_sg_array_get (CA_SYNC_GID GID,
 chtype TYPE, unsigned long COUNT,
 chid CHID, void *PVALUE);

Description

Read a value from a channel and increment the outstanding request count of a synchronous group. The
ca_sg_array_get functionality is implemented using ca_array_get_callback.

The values written into your program's variables by ca_sg_get should not be referenced by your program
until ECA_NORMAL has been received from ca_sg_block , or until ca_sg_test returns ECA_IODONE.

All remote operation requests such as the above are accumulated (buffered) and not forwarded to the server
until one of ca_flush_io, ca_pend_io, ca_pend_event, or ca_sg_pend are called. This allows several requests
to be efficiently sent in one message.

If a connection is lost and then resumed outstanding gets are not reissued.

Arguments

GID
Identifier of the synchronous group.

TYPE
External type of returned value. Conversion will occur if this does not match native type. Specify one
from the set of DBR_XXXX in db_access.h

COUNT
Element count to be read from the specified channel. It must match the array pointed to by PVALUE.

CHID
channel identifier

PVALUE
Pointer to application supplied buffer that is to contain the value or array of values to be returned

Returns

ECA_NORMAL - Normal successful completion

ECA_BADSYNCGRP - Invalid synchronous group

ECA_BADCHID - Corrupted CHID

ECA_BADCOUNT - Requested count larger than native element count

ECA_BADTYPE - Invalid DBR_XXXX type

ECA_GETFAIL - A local database get failed

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_flush_io

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 47 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

See Also

ca_pend_io()

ca_flush_io()

ca_get_callback()

ca_client_status()

int ca_client_status (unsigned level);
int ca_context_status (struct ca_client_context *,
 unsigned level);

Description

Prints information about the client context including, at higher interest levels, status for each channel.
Lacking a CA context pointer, ca_client_status() prints information about the calling threads CA context.

Arguments

CONTEXT
A pointer to the CA context to join with.

LEVEL
The interest level. Increasing level produces increasing detail.

ca_current_context()

struct ca_client_context * ca_current_context ();

Description

Returns a pointer to the current thread's CA context. If none then nil is returned.

See Also

ca_attach_context()

ca_detach_context()

ca_context_create()

ca_context_destroy()

ca_attach_context()

int ca_attach_context (struct ca_client_context *CONTEXT);

Description

The calling thread becomes a member of the specified CA context. If ca_disable_preemptive_callback
is specified when ca_context_create() is called (or if ca_task_initialize() is called) then additional threads are
not allowed to join the CA context because allowing other threads to join implies that CA callbacks will be
called preemptively from more than one thread.

Arguments

CONTEXT
A pointer to the CA context to join with.

Returns

ECA_ISATTACHED - already attached to a CA context

http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_pend_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_flush_io
http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html#ca_get

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 48 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

ECA_NOTTHREADED - the specified context is non-preemptive and therefore does not allow other
threads to join

ECA_ISATTACHED - the current thread is already attached to a CA context

See Also

ca_current_context()

ca_detach_context()

ca_context_create()

ca_context_destroy()

ca_detach_context()

void ca_detach_context();

Description

Detach from any CA context currently attached to the calling thread. This does not cleanup or shutdown
any currently attached CA context (for that use ca_context_destroy).

See Also

ca_current_context()

ca_attach_context()

ca_context_create()

ca_context_destroy()

ca_dump_dbr()

void ca_dump_dbr (chtype TYPE, unsigned COUNT, const void * PDBR);

Description

Dumps the specified dbr data type to standard out.

Arguments

TYPE
The data type (from the DBR_XXX set described in db_access.h).

COUNT
The array element count

PDBR
A pointer to data of the specified count and number.

Return Codes
ECA_NORMAL

Normal successful completion
ECA_ALLOCMEM

Unable to allocate additional dynamic memory
ECA_TOLARGE

The requested data transfer is greater than available memory or EPICS_CA_MAX_ARRAY_BYTES
ECA_BADTYPE

The data type specified is invalid
ECA_BADSTR

7/23/10 10:02 AMEPICS R3.14 Channel Access Reference Manual

Page 49 of 49http://www.aps.anl.gov/epics/base/R3-14/11-docs/CAref.html

Invalid string
ECA_BADCHID

Invalid channel identifier
ECA_BADCOUNT

Invalid element count requested
ECA_PUTFAIL

Channel write request failed
ECA_GETFAIL

Channel read request failed
ECA_ADDFAIL

unable to install subscription request
ECA_TIMEOUT

User specified timeout on IO operation expired
ECA_EVDISALLOW

function called was inappropriate for use within a callback function
ECA_IODONE

IO operations have completed
ECA_IOINPROGRESS

IO operations are in progress
ECA_BADSYNCGRP

Invalid synchronous group identifier
ECA_NORDACCESS

Read access denied
ECA_NOWTACCESS

Write access denied
ECA_DISCONN

Virtual circuit disconnect"
ECA_DBLCHNL

Identical process variable name on multiple servers
ECA_EVDISALLOW

Request inappropriate within subscription (monitor) update callback
ECA_BADMONID

Bad event subscription (monitor) identifier
ECA_BADMASK

Invalid event selection mask
ECA_PUTCBINPROG

Put callback timed out
ECA_PUTCBINPROG

Put callback timed out
ECA_ANACHRONISM

Requested feature is no longer supported
ECA_NOSEARCHADDR

Empty PV search address list
ECA_NOCONVERT

No reasonable data conversion between client and server types
ECA_BADFUNCPTR

Invalid function pointer
ECA_ISATTACHED

Thread is already attached to a client context
ECA_UNAVAILINSERV

Not supported by attached service
ECA_CHANDESTROY

User destroyed channel
ECA_BADPRIORITY

Invalid channel priority
ECA_NOTTHREADED

Preemptive callback not enabled - additional threads may not join context
ECA_16KARRAYCLIENT

Client's protocol revision does not support transfers exceeding 16k bytes

$Id: CAref.html,v 1.58.2.51 2009/07/30 23:09:54 jhill Exp $.

