Diamond Timing System Modules

EPICS Meeting
October 2005

Jukka Pietarinen, MRF
jukka.pietarinen@mrf.fi
Timing Event System Overview

RF input
50/60 Hz TTL input

Hardware triggers / Clocks

Event Generator

Fan-Out FOUT-7/FOUT-24

RF clock

Event Receiver

Four-Channel Timer

triggers

E-Gun Transmitter

E-Gun Receiver
Event Generator EVG-200

- Event clock rate 50 MHz to 125 MHz
- Transmitted bit rate 1.0 Gbps to 2.5 Gbps
- RF to Event clock dividers /4, /5, /6, /8, /10 and /12
- TTL front panel input for synchronisation e.g. to 50/60 Hz AC line voltage
- 256 Event codes
- 2 Event sequencers
- 8 Distributed bus bits
- 8 Multiplexed counters

Event Generator Transition Board EVG-TB-200

- 8 Trigger event inputs
- 8 Distributed bus inputs
- External reset input
Event System Frame Structure

Event Generator

Fiber Optic Transmitter

8B10B encoding

Event Code

Event Receiver

Fiber Optic Receiver

8B10B decoding

Event Code

Distributed Bus Bits

Distributed Bus Bits
VME Event Receiver VME-EVR-200 and VME-EVR-RF-200

- 32 Hardware outputs through P2:
 - 4 PDP outputs: 32 bit counters for pulse width and delay, 16 bit prescaler
 - 7 TEV Trigger event outputs
 - 14 OTP/8 DBUS outputs: 32 bit counter for pulse delay, 16 bit counter for pulse width
 - 7 OTL Level outputs
 - RF clock recovery (VME-EVR-RF-200)
 - 20 bit pattern repeated with event clock rate

- 7 programmable front panel outputs: 5 TTL, 2 differential LVPECL
- Timestamping with 32 bit seconds counter and 32 bit fast counter (up to event clock rate)
- Event FIFO for storing events with timestamp
- Front panel external event trigger input
PMC Event Receiver PMC-EVR-200

- 32 Hardware outputs through Pn4:
 - 4 PDP outputs: 32 bit counters for pulse width and delay, 16 bit prescaler
 - 7 TEV Trigger event outputs
 - 14 OTP/8 DBUS outputs: 32 bit counter for pulse delay, 16 bit counter for pulse width
 - 7 Level outputs

- 3 programmable TTL front panel outputs
- Timestamping with 32 bit seconds counter and 32 bit fast counter (up to event clock rate)
- Event FIFO for storing events with timestamp
- Front panel external event trigger input
Event Receiver Transition Boards

Optical Transition Board EVR-OTB
- 14 Agilent HFBR-1528 Versatile Link Transmitters
- All OTP outputs

High Speed Optical Transition Board EVR-HTB
- 4 Agilent HFBR-1528 Versatile Link Transmitters
- 10 Agilent HFBR-1414 Transmitters
- All OTP outputs

TTL/NIM Transition Board EVR-NTB
- 16 Stacked Lemo connectors
- 13 NIM-level outputs (2 PDP, 7 OTP, 4 OTL)
- 19 TTL-level outputs (2 PDP, 7 TEV, 7 OTP 3, OTL)

TTL Transition Board EVR-TTB
- 16 Single Lemo connectors
- 16 TTL-level outputs (14 OTP, 2 OTL)
7-Way Fan-Out FOUT-7

- Distribute optical event stream, optionally RF signal
- 19” rack mount box
- 7 SFP transceivers
- 2 differential LVPECL outputs (stacked Lemo)
- Configurable for 7-way or 6+1-way operation
- 10BaseT network interface for monitoring temperatures, fan speeds, etc.

24-Way Fan-Out FOUT-24

- Distribute optical event stream
- 19” rack mount box
- 24 SFP transceivers
- 10BaseT network interface for monitoring temperatures, fan speeds, etc.
E-Gun Driver Set GUN-TX-200 and GUN-RC-201

E-Gun Transmitter
- Transfers two trigger pulses to E-Gun at high voltage
- Utilises multimode fibre and standard transceivers
- Differential or single-ended RF input (500 Mhz)
- Two differential LVPECL trigger inputs
- Trigger delay adjustable in RF clock steps ($0 – 2^{32}-1$)
- Delay fine-tuning in ~10 ps steps
- Pulse width adjustable in RF clock steps ($4 – 2^{32}-1$)
- Feedback signal from GUN-RC available at GUN-TX front panel

E-Gun Receiver
- 10 HP, 3 U HF enclosure
- 24 VDC supply voltage
- 2 BNC outputs $0 – 5$ V pulses
Four-Channel Timer 4CHTIM and 4CHTIM-TB

Four Channel Timer

- Four independent delay channels
- Delay programmable in RF clock steps \((0 – 2^{32} \text{-} 1)\)
- Delay fine-tuning in \(\sim 10\) ps steps
- Width programmable in RF clock steps \((0 – 2^{32} \text{-} 1)\)
- Gated pulses by combining CH1 & CH2 or CH3 & CH4
- Front panel differential LVPECL connections

Four Channel Timer Transition Board

- TTL level signals
- 4 trigger inputs, 1 common trigger input and output
- Enable signals for each channel
- TTL outputs for each channel and gated channels
PMC Prototype Module with Four SFPs

- Xilinx Virtex-II-Pro XC2VP30-6FF896C
- 64 Mbytes SDRAM memory
- Four SFP transceivers
- Programmable clock reference for RocketIO™
- PLX Technologies PCI9030 I/O accelerator
- XCF16P configuration memory
Event System Future Development

Data Transmission

- Programmable size (up to 2 kbytes) buffer transmitted from EVG to EVRs
- Shares distributed bus bandwidth
- May be enabled on demand
- 16 bit hardware checksum
- Software controlled

EVG Cycle Sequencer

- Up to 16384 cycles of 2048 events
- Events stored with 32 bit timestamp

Changes to EVG Hardware

- Direct event clock input option
Future Research / Point of Interest

Running Linux or RTEMS and EPICS on PowerPC with EVR FPGA
 • Stand-alone version with network interface?

Allowing transitions in RF frequency
 • Frequency range currently limited to 100 ppm

Next Generation FPGA Virtex-IV
 • Can the Virtex-IV RocketIO™ be used for timing?
 • Event clock rates up to 500 MHz
 • Bit rate up to 11 Gbps

Two Way Signaling
 • Provide event/data transfer patch from EVRs to EVG