
MCOR Device-Support Design (DRAFT-0.3)

Till Straumann

7/03/2012

1 Introduction
This document describes the design of the support software for a new MCOR-controller hardware
implementation. The new MCOR-controller (henceforth simply: “MCOR” or “controller”) is
implemented using a FPGA which communicates with an embedded computer (“COM-X” form-
factor) via a PCI-express link.

The software (“MCOR device support”) shall integrate the controller with the EPICS control system
which is achieved by running EPICS-IOC software on the embedded computer.

This document addresses the “glue” software which interfaces the controller to the low-levels of the
EPICS database. This interface is known as “device-support” in the EPICS jargon.

In addition, the software must provide a low-level API for direct access to the MCOR-setpoint DACs
to be used by fast-feedback which operates without going through the EPICS database layers.

Throughout this document we assume that the functionality of the controller is accurately described
by [JJOv03].

2 Scope
The scope of this design shall cover the “power-supply controller” aspects of the MCOR. It does not
include the embedded EVR (“event receiver”) nor the associated sections “Fiber Optic Transceiver
Data” and “EEPROM Serial ID Memory Contents” in [JJOv03].

There is a short paragraph titled “Beam Synchronous Acquisition (BSA)” but it is unclear what
functionality is actually provided and whether it falls inside our scope.

3 Requirements
The MCOR device support shall meet the following requirements:

Revision –
Page 1 of 12

• Make the registers listed under “BAR0 Memory Map” ([JJOv03], pp. 4) accessible to basic
EPICS records (ai, ao, longin, longout, bi, bo, mbbi, mbbo).

E.g., it shall be possible to modify a bit-field embedded in a 32-bit register using a mbbo record
and at the same time to monitor a different bit in the same register using a bi record.

It is up to the EPICS-database designer to pick appropriate record types from the supported
set listed above.

• Make the “ADC-memory buffer” accessible to waveform records.

• Make the “MCOR System Information” registers accessible to stringin records.

• For each available (i.e., supported by hardware) interrupt a IO-Interrupt scan-list shall be
allocated and a scan request shall be posted upon occurrence of each interrupt.

As an exception the waveform device-support implementation may handle waveform-digitizer
interrupts internally, without providing IO-Interrupt scanning.

• Provide direct access to the MCOR “Set Point Requested” register(s) via an API “inspired” by
the mgntsetDAC() function:

typedef int (*MgntSetDAC)(void *card_p, int dac_channel, epicsInt32 dac_value);

We propose to modify the respective function prototype in the “Magnet” software and use a
function pointer so that our version can be installed when appropriate.

For non-feedback operation, the system designer may choose to use this same routine from
proprietary (i.e., not included in this design but implemented elsewhere) device-support or
alternatively to use our device-support to access this register in the same generic way as any
other register (see section 6).

4 Assumptions
• Design and implementation of the EPICS database are outside of our scope.

• Only a single instance of MCOR-controller needs to be supported.

• Proper logic is implemented elsewhere (e.g., by the EPICS database) so that conflicting access
(concurrent access by EPICS records and feedback) to the setpoint DACs is avoided.

• Proper logic is implemented elsewhere (e.g., by the EPICS database) to ensure the MCOR is
operating in a mode suitable for feedback operation (e.g., no “ramping”) while being accessed
by feedback via the low-level API.

5 OS/Platform
The MCOR device support software shall run under the linux operating system. However, OSI
techniques shall be used as much as possible. The software shall not assume a particular CPU-

Revision –
Page 2 of 12

“endian-ness” or word size. Under linux, UIO techniques shall be used and in-kernel code shall be
avoided or at least minimized.

The MCOR device support shall be compatible with the 3.14.x release series of EPICS.

6 MCOR Device Support
We propose to use the “devBusMapped” package to implement MCOR device support. Using this
package makes it possible to minimize C-code and define most details directly in the EPICS database,
more specifically in the INP or OUT link definitions, respectively.

devBusMapped associates a name (in its own name-space) with a particular instance of device. The
EPICS database then refers to the device by this name which represents the “base-address” of the
memory-mapped device and to individual registers by numerical offsets.

However, devBusMapped does only support basic, scalar record types (as well as stringin and
stringout) and we therefore propose to implement dedicated device-support for waveform records to
read the ADC buffer memory.

Optionally, interrupts may be supported using so-called EPICS “IO-Interrupt scan-lists” (if imple-
mented by the firmware).

6.1 Driver
A small driver shall scan the PCI configuration space for a MCOR-controller and register the
name “mcor0.0” with devBusMapped. The driver also takes care of other initializations such as the
IO-Interrupt scan-lists. These scan-lists are also referred-to by names from the EPICS database (see
section 6.2.2). However, since the current version of [JJOv03] does not provide details about the
interrupt hardware implementation yet, it is not possible at this point to define further details on
our side.

If no valid controller can be found then no name(s) shall be registered.

Optionally, the driver may also implement the necessary “glue-code” to enable devBusMapped to
support IO-Interrupt scanning (see section 6.2.7).

6.2 DevBusMapped
devBusMapped is documented in a README file in the package’s src/ subdirectory. Please consult
this README for further details which are not given here. However, we provide an introduction to
devBusMapped along with examples which are taylored to the MCOR case.

Revision –
Page 3 of 12

6.2.1 Dependencies

devBusMapped requires the LCLS-EPICS module “miscUtils” and the “devLib2” package. The
MCOR device support module also requires the “drvUioPciGen” module which essentially is a
“OSI” abstraction for PCI access via devBusMapped. The MCOR device support module itself is
called “drvPciMcor” and must be added to to the final IOC application.

6.2.2 Link Field Syntax

To access a particular register (or a subset of bits in it) from a supported EPICS record type, the
DTYP field of the record must be set to BusAddress.

The INP or OUT link field encodes the register access and uses the following syntax (“VME IO
style”):

#C<inst>S<shft>@<device>+<reg_offset>,<access_method>[,<iointr_scanlist>]

A register is addressed using a computed offset from the device “base-address”. The base-address
is represented by the symbolic name “mcor0.0” which is registered by the driver. The computed
offset equals

(inst << sh f t) + reg o f f set

The numerical <inst> and <shft> parameters are useful to instantiate identical register blocks from
templates (see below).

The <access method> lets the database designer define how the register contents are read and
written, respectively. It is defined using the syntax

<name> [’(’ <numerical_arg> { ’,’ <numerical_arg> } ’)’]

A set of predefined access methods exists (but it is possible to extend devBusMapped by adding
user-defined access methods). The predefined methods implement 8-, 16- and 32-bit wide access
to memory-mapped registers. There are different methods for “big-endian” (e.g., VMEbus) and
“little-endian” (e.g., PCI) registers.

Since we are dealing with a PCIe device, the “little-endian” methods are appropriate here. They are
called be8 (there is only a “big-endian” method for 8-bit access since endian-ness is not an issue for
single-byte access), le16 and le32. In addition, there are be8s and le16swhich indicate that the
accessed entity is signed. This information may be necessary, e.g., when reading a (signed) 16-bit
register into a longin or ai record so that the number is sign-extended correctly1.

The (optional) <numerical arg> parameters are interpreted by device support modules for individ-
ual records and/or the access methods. The only device-support currently using any arguments are
stringin and stringout device-support. These require a single argument indicating the number of
characters to be transferred.

The optional <iointr scanlist> parameter is explained in section 6.2.7.

1E.g., reading a 8-bit register holding the value 0xff into a longin with the be8method yields a reading of 255whereas
employing be8swould yield -1.

Revision –
Page 4 of 12

Let us now discuss an example: we would like to read the “Bulk Supply Voltage” into an ai record.
The Bulk-Supply register block is at offset 0x400 and the desired register at offset 0x08 from there, i.e.,
at 0x408 from the board base-address. Since the register is 32-bit wide, we use le32 access:

record(ai, "$(prefix):BLK_VOLT") {

field(DTYP, "BusAddress")

field(INP, "#C0S0@mcor0.0+0x408,le32")

field(SCAN, "1 second")

...

}

We could also have used the <inst> and <shft> parameters to generate the 0x400, e.g., setting
<inst>=1 and <shft>=10 since 1 << 10 = 0x400:

field(INP, "#C1S10@mcor0.0+0x8,le32")

The reg offset has to be only 0x8 in this case.

The usefulness of the instance and shift parameters can be seen when we address the multiple
MCOR Channel Register blocks from a template. E.g., the “Samples per Average” register (unsigned
16-bit register at offset 0x28 in the channel register block) can be addressed as

record(longout, "$(prefix):$(channel):SPAVG_RAW") {

field(DTYP, "BusAddress")

field(OUT, "#C$(channel)S6@mcor0.0+0x28,le16")

field(DRVL, "0")

field(DRVH, "31")

...

}

Since the channel register blocks are spaced by 0x40 = 1 << 6 we set <shft> to 6 and can then
expand the template for channels 0..15. The DRVL and DRVH fields limit the range of numbers to
what the hardware supports. Note that the semantics of this particular register define the actual
“Samples per Average” to be one more than the register contents. To make this transparent to the
user, it may be desirable to add a calc record upstream of this longout which subtracts one from the
user input.

6.2.3 Accessing Individual Bits with bi, bo, mbbi, mbbo

When reading/writing individual bits with bi/bo records then the MASK field identifies the bit (or bits)
to be read or written. The algorithms used are:

bi devBusMapped sets the RVAL field from the register contents using the MASK field:

RVAL = register contents & MASK.

However, if MASK is zero then RVAL = register contents.

VAL is computed from RVAL using the bi record’s conversion algorithm: VAL = RVAL ? 1 : 0.

Revision –
Page 5 of 12

bo If MASK is nonzero then it is used to merge bits into the current register contents:

register contents = (register contents & ˜ MASK) | (VAL ? MASK : 0)

If MASK is not set (i.e., zero) then VAL is copied into the register:

register contents = VAL

Hence, MASKmay be used to selectively modify a single bit in a register leaving the other ones
alone.

Multiple (adjacent) bits in a single register may be accessed with mbbi/mbbo records under control of
the NOBT and SHFT fields which are used to define the (immutable2) MASK field:

MASK = NOBT == 0 ? 0x f f f f f f f f : ((1 << NOBT) − 1) << SHFT

The algorithms to set VAL are as follows:

mbbi devBusMapped sets the RVAL field from the register contents using

RVAL = register contents & MASK

and then converts this to VAL using the mbbi record’s standard conversion algorithm: look
(RVAL >> SHFT) up in the state values table if state values have been set (ZRVL etc.):

VAL = table[RVAL >> SHFT]

otherwise set VAL = RVAL >> SHFT.

mbbo Use the record’s conversion algorithm to compute RVAL from VAL: If state values have been
set (ZRVL etc.) then look VAL up and set RVAL = table[VAL] << SHFT. If state values are not
set then RVAL = VAL << SHFT.

devBusMapped merges RVAL under control of MASK into the register contents. The old register
contents are read into RBV:

RBV = register contents
register contents = (register contents & ˜ MASK) | (RVAL & MASK)

6.2.4 Reading Character Strings with stringin

devBusMapped now supports reading character strings into stringin records (writing into stringout is
also supported). Since strings stored in device memory are not always “NULL-terminated” the
number of characters to be transferred may be specified by adding an optional “length” parameter
to the access method. If no such length is given then the transfer is limited by the size of the stringin
record’s buffer. In any case, the transfer is stopped when a “NULL” character is read. A terminating
“NULL” is written into the record.

2The MASK field has the SPC NOMOD property (see e.g., mbbiRecord.dbd), i.e., it can not be modified directly by the user.

Revision –
Page 6 of 12

If the string is a normal character string in device memory then the ordinary “be8” method offers
itself. Note that you would use e.g., a 32-bit access if individual characters are aligned on 32-bit
boundaries in device memory (characters spaced by 4 bytes). In more exotic cases you may have
to provide your own access method (which is repeatedly called by device-support to satisfy the
requested string length or until NULL is read).

E.g., to read a four character string from device memory into a stringin a database snipped could
look like this:

record(stringin, "$(prefix):VERSION") {

field(DTYP, "BusAddress")

field(INP, "#C0S0@mcor0.0+0x5c8,be8(4)")

field(PINI, "YES")

...

}

In the previous example we had set the PINI field to YES so that the record is only processed once
(at initialization) during its lifetime because we assume that we read static string data from the
device.

6.2.5 Thread Safety

devBusMapped allocates one mutex per registered base address and uses it to serialize access to the
device’s registers. However, the mutex is only taken around “read-modify-write” (as implemented
by the bo and mbbo algorithms) and “write” (ao, longout) as well as “string” (as implemented by the
stringin and stringout algorithms) operations. devBusMapped assumes that a single (8-, 16- or 32-bit
wide) register access is atomic and does not require locking the mutex. Hence, simple “read” access
does not take the mutex3.

The mutex guarantees that e.g., multiple bo records may safely manipulate different bits in the same
register.

Even though the granularity of most of devBusMapped’s operations are individual registers (and
thus each register could be protected by a different mutex) a single mutex is shared for all registers
of a device4.

However, if individual mutexes e.g., for the individual channel register blocks were desired then
this could easily be achieved, simply by registering different names for the individual blocks (the
driver would have to do this and the database link fields would need to refer to these names where
appropriate).

3Since we assume that reading and writing a register is atomic, a “read” by one record while another record modifies the
same register yields – depending on timing – either the old or the new contents. The result would not be different if “read”
would lock the mutex.

4Of course, devBusMapped has no knowledge of what registers belong to a single “device” since all this information is
encoded in the database’s link fields. All resources (including the mutex) which are associated with a “device” are actually
associated with the symbolic name representing the registered “base-address” – in our case “mcor0.0”. Hence, all records
which refer to the same symbolic name from their INP or OUT link field are accessing the same “device” and thus use the
same mutex.

Revision –
Page 7 of 12

6.2.6 Initialization

During initialization of the EPICS database devBusMapped implements the following semantics for
output-style records (ao, longout, bo and mbbo):

• If PINI is set (YES) then it is assumed that the database designer wants to enforce writing an
initial value out to the device. Nothing special is done by devBusMapped which relies on the
initial record processing to write the initial value.

• If PINI is not set then devBusMapped reads the current register settings from the hardware
back and propagates them into the record. The record’s UDF field as well as any alarms are
reset. This lets the record reflect the hardware state at the time of initialization. However, note
that the EPICS record support code does e.g., not check for alarm conditions during record
initialization so that while the correct value makes it into the database any violation of alarm
limits by this value may go unnoticed.

No special action is taken in the case of input-style records (ai, longin, bi and mbbi).

6.2.7 Interrupt Support

devBusMapped supports the “IO-Interrupt” scanning method. However, some device-specific C-code
must be written in order to make this support work. The necessary code is part of the “driver” (see
section 6.1).

• An IOSCANPVT object just be allocated and initialized.

• The IOSCANPVT object must be registered with the devBusMapped framework under a name.
The specific scan-list may then be referenced by the database designer by providing the same
name for the <iointr scanlist> parameter in the database INP or OUT field(s).

Since [JJOv03] does not provide details about the implementation of interrupts we do not
define the number of scan-lists or their names yet.

• An interrupt handler must be implemented and installed during initialization. The interrupt
handler must issue a scanIoRequest()which triggers scanning of the list associated with the
handled interrupt.

In order for IO-Interrupt scanning to be enabled for a particular record the following conditions
must be met:

• The INP or OUT link field must contain the <iointr scanlist> parameter and supply the
name of the correct scan-list (as defined by the driver, see section 6.1).

• The SCAN field must be set to “I/O Intr”.

Let us conclude this section with an example. We assume that the MCOR hardware raises an
interrupt when a fault is detected. The driver handles such an interrupt and requests IO-Interrupt
scanning of a scan-list which is identified by the name “fltintr”5.

5Note that fltintr is not an “official” name; it was just introduced for this example

Revision –
Page 8 of 12

We want a longin record to be scanned as a result of the interrupt and read the latched fault status
register (unsigned 16-bit register at offset 0x442). The relevant database snipped could look like
this:

record(longin, "$(prefix):LFAULTS") {

field(DTYP, "BusAddress")

field(INP, "#C0S0@mcor0.0+0x442,le16,fltintr")

field(SCAN, "I/O Intr")

...

}

We could also define multiple bi records along with meaningful names for the fault stati and have
them all on the same scan-list. However, [JJOv03] does not specify the meaning of individual bits at
the time of this writing.

6.3 System Information Block
The registers of the system information block contain valuable, static information about the hard-
and firmware which is coded as (short) ASCII strings. The EPICS record of choice for reading these
strings would be the stringin record.

6.4 ADC Waveforms
In this section we layout the design of the digitizer waveform support. Because devBusMapped does
not support waveform records (or any other non-scalar record), a dedicated device-support module,
henceforth “MWDS” for “MCOR waveform Device-Support”, has to be implemented.

Before we discuss the proposed design we shall recapture the currently implemented hardware
features since [JJOv03] only provides scarce and outdated information.

6.4.1 Summary of Hardware Features

According to [JJOeml1], the waveform digitizer can be operated in different modes which affect the
sample rate and the conditions which constitute a valid trigger event etc.

However, the fundamental data acquisition functionality is invariant and can be summarized as
follows:

• There is a single bit available in a control register which “arms” the data acquisition.

• Data acquisition starts with the first valid trigger event after the digitizer is “armed” (in
“soft-trigger” AKA “immediate” mode setting the “arm” bit is the trigger event.

• The “arm” bit self-clears when waveform capture is complete. An interrupt is raised at the
same time.

Revision –
Page 9 of 12

• All triggers occurring after the one which initiated capture are ignored until the digitizer is
“re-armed”, i.e., the “arm” bit has undergone a new zero-to-one transition.

• There is no DMA hardware.

6.4.2 Proposed Device-Support Implementation

The trigger- and other mode settings can be controlled with devBusMapped just like other aspects of
the MCOR. The MWDS only implements the “arming” of the digitizer, synchronization with the
end of data capture and data transfer.

Consequently, the “arm” bit shall not be controlled by any other record via devBusMapped but shall
be “owned” by MWDS. The database designer must not add any record to the database which is
able to modify the “arm” bit. It is OK, however, to just read/monitor this bit.

Note that if the “arm” bit is located in a register which holds other bits which are controlled by
devBusMapped then the MWDS must lock devBusMapped’s mutex while modifying the “arm” bit
([JJOeml1] does not elaborate on the exact register layout).

We propose to use the waveform record’s RARM field to control (and reflect) the state of the “arm”
bit.

Due to the indefinite time which elapses between “arming” the digitizer and termination of data
capture the classical “asynchronous record-processing” method offers itself here.

1. User sets RARM field. As a result of this, the waveform record is processed.

2. “Phase-1 processing” sets the “arm” bit and returns.

3. The interrupt handler which is dispatched when data capture is complete requests “Phase-2
processing” of the record.

If interrupts are unavailable then a dedicated task must poll the “arm” bit for completion of
the data capture. “Phase-2 processing” could happen from the same task context.

4. During “Phase-2 processing” the RARM field is reset and data are transferred from digitizer
memory to the waveform record’s buffer in main memory.

Data transfer must take care of byte-swapping when necessary and may optionally convert the
samples to the format indicated by the waveform’s FTVL field.

If format-conversion is not implemented then the MWDS must check FTVL and issue a fatal
error if FTVL does not match the supported number format.

Note that no DMA is available - data transfer has to use PIO.

Note that this MWDS design leaves the record passive. It is never directly scanned but processes
(asynchronously) as a result of writing a nonzero value to RARM.

Revision –
Page 10 of 12

7 Error Handling
7.1 Errors During Database Initialization
Failure to initialize a database record due to missing hardware or syntax errors in a INP or OUT link
field result in a error message printed to the console and PACT being set in order to prevent any
record processing from happening.

7.2 Errors Reported by devBusMapped
devBusMapped sets the STAT/SEVR fields of a record to READ ALARM/INVALID ALARM or WRITE ALARM-
/INVALID ALARM if a read or write error, respectively, is reported by the underlying bus-access
method.

The predefined standard access methods (be8, be8s, le16, le16s, le32) always succeed. Therefore,
the STAT/SEVR fields are never set when these methods are used.

7.3 Errors Reported by waveform Device-Support
No run-time errors can occur. MWDS does not modify STAT/SEVR.

8 Timing System Interface
MCOR device support implements an API which allows the user (not the “physicist/end-user”
but the system engineer who uses the MCOR device support module from an IOC-application)
to install a callback which provides the caller (MCOR device support) with a time-stamp. If the
TSE field of the processing record is set to −2 then MCOR device support will execute this callback
and propagate the supplied time-stamp into the record. devBusMapped may need to be enhanced in
order to provide such a feature.

The function prototype of such a callback is

int (*DevBusMappedTSGet)(epicsTimeStamp *p_ts);

The return value of the callback shall be ignored. By default, epicsTimeGetCurrent is used.

A different callback may be installed by calling

DevBusMappedTSGet devBusMappedTSGetInstall(DevBusMappedTSGet newGetCallback);

e.g., from initialization code.

Revision –
Page 11 of 12

9 Feedback Interface
For sake of convenience we restate the function pointer prototype of the proposed “set-DAC”
low-level API here:

typedef int (*MgntSetDAC)(void *card_p, int dac_channel, epicsInt32 dac_value);

The card p is an opaque pointer which identifies a particular instance of DAC controller. In the
case of MCOR, all DACs are part of the MCOR hardware. Since only a single instance of MCOR
is supported by the software (see section 4) the DAC controller may be identified implicitly. The
card p argument is therefore unused. The caller must provide a NULL pointer (to ensure backwards
compatibility if the semantics of this argument are ever changed).

The dac channel parameter identifies one of the 16 channels controlled by a given MCOR. The
valid range for this parameter shall span 0..15.

The dac value parameter is written without further transformations to the “Set Point Requested”
register.

The function shall return zero upon success and a nonzero status when an error occurs (e.g., invalid
argument).

It shall be safe to call the function at any time but it may return an error when executed prior to
driver initialization.

The function does not take the devBusMapped mutex for mcor0.0. It relies on exclusive access (and
in any case a 32-bit write operation being atomic).

References
[JJOv03] J. Olsen, MCOR, Version 0.4, 6/25/1012.

[JJOeml1] J. Olsen, private email, 4/10/1012.

Revision –
Page 12 of 12

	1 Introduction
	2 Scope
	3 Requirements
	4 Assumptions
	5 OS/Platform
	6 MCOR Device Support
	6.1 Driver
	6.2 DevBusMapped
	6.2.1 Dependencies
	6.2.2 Link Field Syntax
	6.2.3 Accessing Individual Bits with bi, bo, mbbi, mbbo
	6.2.4 Reading Character Strings with stringin
	6.2.5 Thread Safety
	6.2.6 Initialization
	6.2.7 Interrupt Support

	6.3 System Information Block
	6.4 ADC Waveforms
	6.4.1 Summary of Hardware Features
	6.4.2 Proposed Device-Support Implementation

	7 Error Handling
	7.1 Errors During Database Initialization
	7.2 Errors Reported by devBusMapped
	7.3 Errors Reported by waveform Device-Support

	8 Timing System Interface
	9 Feedback Interface

