Review of Epics Libraries and Resource Usage

The LCLS slc-Iocs are being developed with a combination of independently programmed slc threads and Epics Operating System Independent libraries (libCom and libcom OSI). The independent slc threads may be stopped and started repeatedly while the IOC itself remains up. Concern was expressed in controlling and managing resources used by these threads, such as heap memory, message queues, semaphores, socket and file descriptors, and threads; including those allocated within the Epics libraries.

The libCom and libCom OSI libraries are documented in the IOC Application Developer's Guide. The documentation, in most cases, is a quick summary of the library utilities usage and the interface. Generally the documentation does not cover resource usage within the libraries.
This report is an overview of resource management within the Epics Libraries used (or may be used) by the slc-Ioc developers. The report ends with a set of suggestions for resource management within the slc-Ioc threads.
LIbCom Utility Libraries

The epics libraries have been written well in terms of resource management. Those utilities that allocate resources such as heap memory and mutexes usually have a ‘create’ or ‘init’ routine to perform the allocations, and a ‘destroy’, ‘free’ or ‘release’ routine that de-allocates. It would be good practice for the programmer to review the source of any epics library utilized, and ensure that the library routines are used properly and the de-allocation routines are called.
The epics libcom and LibCom OSI sources are in the directories

$EPICS_BASE/src/libCom, and

$EPICS_BASE/src/libCom/osi

The following sections give an overview of the utilities that may be useful for the slc-Ioc threads. They are listed by their directory under /libCom.

bucketLib

Hash facility for integers, pointers and strings. Used by Channel access. This library uses the freeList and epicsAssert utilities (see below) which protect the heap memory allocated by the bucketLib routines, and will ultimately suspend the calling thread if any memory allocation errors occur.
dbmf

memory manager for applications that allocate and free memory frequently. dbmf uses ellLib as list utility, and uses epicsMutex to protect it’s list and nodes during the function calls, and will suspend the calling thread if any memory allocation errors occur.
ellLib
A general purpose linked list library. This library uses epicsAssert (see OSI below). It DOES NOT use mutexes, or any method, to protect the list or nodes in a multi-threaded environment.
freeList

A general purpose freemem list library that uses epicsMutex to protect its list during function calls. The thread uses cantProceed, which will suspend the thread if a memory allocation error occurs.
gpHash

A general purpose hash utility. It uses ellLib for the list, and epicsMutex to protect the list during function calls. It uses cantProceed and epicsAssert which will suspend the calling thread for memory allocation and assert errors.

It should be noted that the mutex does not protect the memory linked into the list by the calling thread once the gpHash function has completed. This is true for any of the hash, list, or freelist libraries the slc threads may use.
As an example problem:

· A thread malloc()s memory for a structure and stores it in the hash table using gpAdd().

· One thread gets a pointer to the structure stored in the hash table using gpFind().

· Next, another thread gets the same pointer using gpFind().
· Both threads change values within the structure, possibly interrupted in the middle of this process by a thread switch from one to the other. Ultimately, the structure retains a weird combination of the updates from the two threads.

Some method of protecting the structure must be added, possibly similar to the message queue technique of copying the data, rather than just returning a pointer. See the Resource Management … section below for further suggestions.
misc

A set of miscellaneous include files, functions, and definitions. Documented in the IOC Application Developer’s Guide. Some that look useful for slc threads:

· epicsTypes.h – data type definitions that should be used for type consistency in all the slc threads.
· cantProceed – mallocMustSucceed, callocMustSucceed, and cantProceed functions that should be used in all cases where failure means the slc-Ioc cannot continue processing. These routines will, for the error case, issue an error message through errlogPrintf, then suspend the calling task.
osi

This directory includes the operating system independent libraries (libCom OSI) that ultimately have different implementations depending on the operating system being used. Mutexes, threads, timers etc. are implemented dependent on the capabilities of the underlying operating system. The subdirectories, by OS name, contain the OS dependent implementations.

 The following libraries are included:
· epicsAssert – assert function that will call errlogPrintf and suspend calling thread upon error.
· epicsEvent – event semaphore for synchronization.
· epicsInterrupt – interrupt locking –see App. Dev. Guide
· epicsMessageQueue – message queue implemented with mutex protection, and memcpy’s data into / out of the message queue. Calling threads do not need to worry about multi-thread protection. Used now by slc threads.
· epicsMutex – a mutual exclusion semaphore. Used by many epics libraries.
· epicsSignal – functions to ignore or pay attention to shutdown(), close() or SIGPIPE signals with sockets? Maybe some systems don’t behave well?
· epicsThread – thread library. A thread is terminated on ‘return’. The programmer must insure the thread releases all its resources before returning. The slc threads are implemented with the epicsThread library.
· epicsTIme – epics time struct and various time conversion routines
· osiPoolStatus – Status of free memory. For VxWorks mainly; the default implementation simply returns true.
· osiProcess – spawn a process
· osiSock – socket library. OsiSock is used by the slc threads.
Ring
See documentation in the IOC Application Developer’s Guide. epicsRingBytes and epicsRingPointer do not employ any method to protect the ring buffer in a multi-threaded environment. Calling threads should implement with read and write locking Mutexes, unless there is a single reader and / or a single writer.
test

Contains test programs for several of the libCom utilities.
timer

a Timer facility. This is very well documented in the IOC Application Developer’s Guide.
Resource management, thread safety, and the C programming language
On most operating systems, in a multi-threaded environment, global variables are available to all threads within a process, unless defined ‘static’. A static variable is global to all functions below the definition point within the file it is defined. Heap memory is shared by all threads within a process. Other resources, such as sockets, file descriptors, mutexes, and message queues are accessible by all threads if their references are assigned to a global structure. The following are some suggestions when programming for thread safety and resource management.
Globals
· Be sure they are initialized by the first (main) thread to execute, right at the beginning. At least initialize them to 0 or NULL or some default value.
· Consider protecting them with mutexes, especially if the value is changed frequently by multiple threads. So far the slc globals are only written to at startup and shutdown, and usually only by one thread (though read by many).
Threads

· Threads must manage all resources they allocate. Before any return point in the thread, all of its resources must be released. The prototype slc threads all have a ‘cleanup’ routine where resources are released. It is called at every return point.
· Any global references to resources a thread controls must be set to a known INVALID value (0, -1, NULL?) if the resource is released. For example: before a thread stops, it should destroy its message queue and set the global message queue ID =NULL. Other threads can check the ID for validity before sending a message.
Shared resources

· These can include socket descriptors, file descriptors, events, timers, mutexes, message queues, etc.

· Consider assigning “ownership” of a shared resource to a single thread, so that one thread is responsible for ‘creating’ and ‘destroying’ the resource. All others just use it.
· When a resource is destroyed, be sure the global reference to it is set to NULL or some INVALID value. (See Threads above).
· Always check that the reference to a resource is non-NULL or valid before trying to use the resource (socket id, message queue id etc). Trying to access an invalid reference will cause a segment violation.
Heap memory allocations

· These include linked lists, hash tables, ring buffers, etc.
· Be sure that there is a free() for every malloc() or calloc() coded in the thread. The programmer uses malloc to allocate memory for structures to be stored in shared lists or hash tables. When destroying these structures, the ‘Release’ routines for these utilities may only release the memory allocated within the utility’s function calls (such as the head and node structures - not the stored data). The programmer should review the implementation of the utilities used, and must be sure that his own memory allocations are de-allocated.
· Multiple threads can write and read the data stored in shared storage structures like these; the programmer must protect the data. There are several ways to protect it, such as:
· The thread can copy (memcpy) the data out to a temp variable and act on it, then copy it back. This way the “last thread to access” keeps its changes. See the default message queue implementation as an example.
· The thread can remove it (unlink it) from the list to change it, then replace. Here a second thread might not ‘find’ the data it was expecting in the list. This may or may not be ok.
· Or the thread can protect it with a mutex while acting on the data. A scheme with multiple mutexes may be required to avoid locking out an entire list of data during one thread’s operation on one element.
Other recommendation should be added here as the program evolves.
