

IP-OPTOIO-8

8 Digital Inputs & 8 Digital Outputs

User Manual

©SBS Technologies, Inc.

Subject to change without notice.

Part Number: 89010290 Rev. 1.0

20030422

IP-OPTOIO-8

8 Digital Inputs & 8 Digital Outputs

SBS Technologies, Inc.

1284 Corporate Center Drive

St. Paul, MN 55121-1245

Tel: (651) 905-4700

FAX: (651) 905-4701

Email: support.commercial@sbs.com

http://www.sbs.com

©2003 SBS Technologies, Inc. IndustryPack is a registered trademark of SBS Technologies, Inc. QuickPack, SDpacK and Unilin are trademarks SBS Technologies, Inc. PC•MIP is a trademark of SBS Technologies, Inc. and MEN Mikro GmbH.

SBS Technologies, Inc acknowledges the trademarks of other organizations for their respective products mentioned in this document.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without the express consent of SBS Technologies, Inc. This document is meant solely for the purpose in which it was delivered.

SBS Technologies, Inc. reserves the right to make any changes in the devices or device specifications contained herein at any time and without notice. Customers are advised to verify all information contained in this document.

The electronic equipment described herein generates, uses and may radiate radio frequency energy, which can cause radio interference. SBS Technologies, Inc. assumes no liability for any damages caused by such interference.

SBS Technologies, Inc.'s products are **not** authorized for use as critical components in medical applications such as life support equipment, without the express consent of the president of SBS Technologies, Inc., Commercial Group.

This product has been designed to operate with IndustryPack, PC•MIP or PMC modules or carriers and compatible user-provided equipment. Connection of incompatible hardware is likely to cause serious damage. SBS Technologies, Inc. assumes no liability for any damages caused by such incompatibility.

Table of Contents

1	PRODUCT DESCRIPTION		
2	TECHNICAL SPECIFICATION		
3	ID PROM CONTENTS	7	
4	IP ADDRESSING		
-	4.1 Indirect Addressable Registers		
5	FUNCTIONAL DESCRIPTION		
	5.1 Digital Inputs		
	5.1.1 Optical Isolation		
	5.1.2 Digital Filtering		
	5.1.3 Input and Interrupt Logic		
	5.2 Digital Outputs		
	5.2.1 Optical Isolation		
	5.2.2 Output Polarity		
	5.2.4 Output Watchdog		
6	PROGRAMMING	13	
	6.1 Required Software Initialization	13	
	6.2 Initialization of the Watchdog Function		
7	INSTALLATION	16	
	7.1 Input Wiring	16	
	7.2 Output Wiring		
8	PIN ASSIGNMENT – I/O CONNECTOR	18	
	8.1 Input Connections	18	
	8.2 Output Connections		

Table of Figures

FIGURE 1-1:	BLOCK DIAGRAM	5
	TECHNICAL SPECIFICATION	
FIGURE 3-1 :	ID PROM CONTENTS	7
FIGURE 4-1 :	REGISTER SET	8
FIGURE 4-2 :	Z8536 CIO INDIRECT ADDRESSABLE REGISTERS	9
FIGURE 4-3:	CIO STATE MACHINE	10
FIGURE 7-1:	INPUT WIRING OPTIONS	16
FIGURE 7-2:	OUTPUT WIRING AS HIGH SIDE SWITCH	17
FIGURE 7-3:	OUTPUT WIRING AS LOW SIDE SWITCH	17
FIGURE 8-1 :	INPUT I/O CONNECTION	18
FIGURE 8-2:	OUTPUT I/O CONNECTION	19

1 Product Description

The IP-OPTOIO-8 is an IndustryPack® compatible module with 8 digital inputs galvanically isolated by optocouplers. The individual inputs are potential free in relation to each other. A high performance input circuit ensures a defined switching point and protection against polarity inversion.

All inputs have an electronic debounce circuit with a fixed debounce time. All inputs can generate an interrupt. The signal edge handling is programmable. Each input can be assigned its own interrupt vector.

The IP-OPTOIO-8 has 8 digital outputs with galvanic isolation via optocouplers. The outputs are isolated against each other in groups of two. All outputs resist short-circuits and are protected against thermal overload.

The output drivers are capable of driving 0.5A continuous per channel. Each output can be configured individually as high or low side switch.

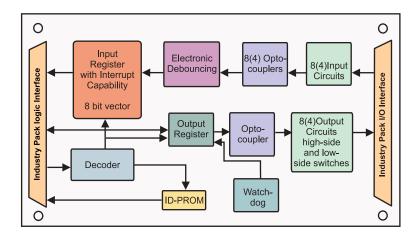


Figure 1-1: Block Diagram

2 Technical Specification

Logic Interface Single Size IndustryPack® Logic Interface compliant to			
ANO!/ VITA 4-1993	Single Size IndustryPack® Logic Interface compliant to ANSI/VITA 4-1995		
Interface Connector 50-conductor flat cable	50-conductor flat cable		
Number of Inputs IP-OPTOIO-8: 8			
Input Isolation All channels are completely independent from each other	•		
Input Voltage 24V DC			
Input Current 4.2mA typical @+24V input voltage			
Input Switching Level 12V typical (minimum 9V, maximum 13V)			
Wait States ID PROM: 0 wait states I/O (Z8536 CIO): minimum 3 wait states			
Number of Digital Outputs IP-OPTOIO-8: 8	IP-OPTOIO-8: 8		
Output Isolation All channels, each two channels shares the same power supply and ground			
External Supply Voltage for Outputs 24V DC typical 6V DC minimum 48V DC maximum	6V DC minimum		
Output Current 0.5A (0.4A for voltages over 32V)	0.5A (0.4A for voltages over 32V)		
Short Circuit Current 0.8A typical (2A maximum)			
Output Voltage Drop 1.1V typical @+0.5A			
Output Protection Overload, short circuit, GND and Vs open wire protection thermal shutdown	Overload, short circuit, GND and Vs open wire protection, thermal shutdown		
Power Requirements IP-OPTOIO-8: 280mA typical @+5V DC (all inputs and outputs active)			
Temperature Range Operating 0 °C to +70 °C Storage -45°C to +125°C			
MTBF 920276 h	920276 h		
92027611			

Figure 2-1: Technical Specification

3 ID Prom Contents

Address	Function	Contents
0x01	ASCII 'I'	0x49
0x03	ASCII 'P'	0x50
0x05	ASCII 'A'	0x41
0x07	ASCII 'C'	0x43
0x09	Manufacturer ID	0xB3
0x0B	Model Number	0x02
0x0D	Revision	0x10
0x0F	Reserved	0x00
0x11	Driver-ID low byte	0x00
0x13	Driver-ID high byte	0x00
0x15	Number of bytes used	0x0C
0x17	CRC	0x93

Figure 3-1: ID PROM Contents

4 IP Addressing

The IP-OPTOIO-8 is accessed in the I/O space through the following set of four direct accessible registers implemented in the Z8536 controller:

Address	Symbol	Description	Size (Bit)
0x01	PORTC	Port C Data Bits D00-D07	8
0x03	PORTB	Port B Data Bits D00-D07	8
0x05	PORTA	Port A Data Bits D00-D07	8
0x07	CIOCSR	CIO Command and Status Register	8

Figure 4-1: Register Set

4.1 Indirect Addressable Registers

In addition to the above mentioned direct access registers the Z8536 CIO has 48 indirect addressable registers. These indirect addressable registers are used for the mode specification and for the control of ports and counter/timers.

Not all of the indirect addressable registers are required for the operation of the IP-OPTOIO-8.

Address	Symbol	Description	Size (Bit)
0x00	MICR	Master Interrupt Control	8
0x01	MCCR	Master Configuration Control	8
0x02	PAIV	Port A Interrupt Vector	8
0x03	PBIV	Port B Interrupt Vector	8
0x04	CTIV	Counter / Timer Interrupt Vector	8
0x05	PCDP	Port C Data Path Polarity	8
0x06	PCDD	Port C Data Direction	8
0x07	PCSC	Port C Special I/O Control	8
0x08	PACS	Port A Control / Status	8
0x09	PBCS	Port B Control / Status	8
0x0A	C1CSR	Counter / Timer 1 Command / Status	8
0x0B	C2CSR	Counter / Timer 2 Command / Status	8
0x0C	C3CSR	Counter / Timer 3 Command / Status	8
0x0D	PADR	Port A Data Register	8
0x0E	PBDR	Port B Data Register	8
0x0F	PCDR	Port C Data Register	8
0x10	CT1CM	Counter / Timer 1 Current Count MSB	8
0x11	CT1CL	Counter / Timer 1 Current Count LSB	8
0x12	CT2CM	Counter / Timer 2 Current Count MSB	8
0x13	CT2CL	Counter / Timer 2 Current Count LSB	8
0x14	CT3CM	Counter / Timer 3 Current Count MSB	8
0x15	CT3CL	Counter / Timer 3 Current Count LSB	8

0x16	CT1PM	Counter / Timer 1 Preload MSB	8
0x17	CT1PL	Counter / Timer 1 Preload LSB	8
0x18	CT2PM	Counter / Timer 2 Preload MSB	8
0x19	CT2PL	Counter / Timer 2 Preload LSB	8
0x1A	СТЗРМ	Counter / Timer 3 Preload MSB	8
0x1B	CT3PL	Counter / Timer 3 Preload LSB	8
0x1C	CT1MO	Counter / Timer 1 Mode Specification	8
0x1D	CT2MO	Counter / Timer 2 Mode Specification	8
0x1E	СТЗМО	Counter / Timer 3 Mode Specification	8
0x1F	CTCV	Counter / Timer Current Vector	8
0x20	PAMO	Port A Mode Specification	8
0x21	PAHS	Port A Handshake Specification	8
0x22	PADP	Port A Data Path Polarity	8
0x23	PADD	Port A Data Direction	8
0x24	PASC	Port A Special I/O Control	8
0x25	PAPP	Port A Pattern Polarity	8
0x26	PAPT	Port A Pattern Transition	8
0x27	PAPM	Port A Pattern Mask	8
0x28	РВМО	Port B Mode Specification	8
0x29	PBHS	Port B Handshake Specification	8
0x2A	PBDP	Port B Data Path Polarity	8
0x2B	PBDD	Port B Data Direction	8
0x2C	PBSC	Port B Special I/O Control	8
0x2D	PBPP	Port B Pattern Polarity	8
0x2E	PBPT	Port B Pattern Transition	8
0x2F	PBPM	Port B Pattern Mask	8

Figure 4-2: Z8536 CIO Indirect Addressable Registers

The access to the indirect addressable register is controlled by a state machine and a hidden pointer register. The state machine takes 3 different states: RESET state, state "0" or state "1".

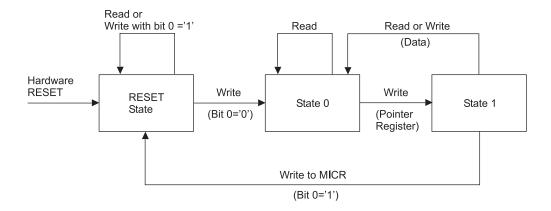


Figure 4-3: CIO State Machine

A hardware reset will put the state machine into RESET state. In RESET state it is only possible to read or write the RESET bit (bit 0) in the Master Interrupt Control Register (MICR). A write access with the RESET bit (bit 0) = 0 will put the state machine into state "0".

Writing in state "0" loads the internal pointer register with the internal register address to select the chosen register. This will put also the state machine into state "1".

A read or write access in state "1" will transfer data from or to the internal register which was selected by the pointer register. Any access to the internal registers puts the state machine back into state "0".

Any read in state "0" returns the contents of the last register pointed to. Therefore, a register can be read continuously without again writing to the pointer.

Outside the RESET state any read will put the state machine into state '0'. So a dummy read can be used to bring the state machine in this known state.

If the state machine is in state '1', some of the internal operation of the CIO is disabled. So the state machine should never be left in state '1' longer as necessary.

Direct accesses to the data register PORTA, PORTB, and PORTC have no consequence for the status of the state machine.

5 Functional Description

5.1 Digital Inputs

5.1.1 Optical Isolation

The IP-OPTOIO-8 has 8 digital inputs. The standard signal level for these inputs is 24V DC. The switching level of the inputs is between 8 and 13 volts. All input channels are isolated by AC optocouplers and are also isolated from each other. The use of AC optocouplers makes the operation of the inputs independent from signal polarity.

5.1.2 Digital Filtering

A digital filter circuit is provided for input switch debouncing. The debounce time is adjusted by a capacitor to approximately 12ms.

5.1.3 Input and Interrupt Logic

The input and interrupt logic is implemented in the Z8536 port controller circuit. The digitally filtered input signals are connected to port B of the Z8536.

Interrupt generation can be individually programmed for each channel and input transition.

A software initialization of the Z8536 is required before the input states can be read at port B.

5.2 Digital Outputs

5.2.1 Optical Isolation

The IP-OPTOIO-8 has 8 digital outputs. The standard signal level for these outputs is 24V DC. All output channels are isolated by optocouplers and are also isolated against each other in groups of two outputs.

5.2.2 Output Polarity

Each output can be individually configured as a high or a low side switch depending on the external wiring of the output signal lines.

5.2.3 Overload Protection

The output drivers are implemented by smart drivers. The maximum continuous output current is 0.5A. The output circuits are protected against overload, short circuit and thermal overload. In case of such a failure the corresponding output will be disabled until the error condition is removed. Then the output returns automatically to normal operation.

5.2.4 Output Watchdog

Counter/Timer 3 and Port C of the Z8536 can be programmed to implement a watchdog for the outputs. Any software access to the Z8536 will retrigger Timer 3 in the Z8536. If the programmed time expires without a software access all outputs go into the 'off' state (the maximum programmable time is approx. 30ms). However they will return to their original state, when the IP-OPTOIO-8 is accessed again by the software.

The watchdog is disabled after power-up or reset.

6 **Programming**

After power-up or system reset the CIO Z8536 is in its initial state and the I/O ports A, B, C are disabled and configured to output direction. For normal operation of the IP-OPTOIO-8 a minimum software initialization is required.

6.1 Required Software Initialization

The input lines of the IP-OPTOIO-8 are connected to port B of the CIO Z8536. This port has to be configured as an input and because of the inverting function of the optocouplers the input polarity has to be set to inverting.

To perform this required software initialization sees the following procedure:

Write 0x00 to CIOSR

Write 0x01 to CIOSR

Write 0x00 to CIOSR

This sequence puts the CIO Z8536 into a known (reset) state

Write 0x2B to CIOCSR

This selects the Port B Data Direction Register (PBDD) for the next operation

Write 0xFF to CIOCSR

Writing 0xFF into PBDD will configure all bits of port B as input

Write 0x2A to CIOCSR

This selects the Port B Data Path Polarity Register (PBDP) for the next operation

Write 0xFF to CIOCSR

Writing 0xFF into PBDP will configure all bits of port B to be inverted

Write 0x01 to CIOCSR

This selects the Master Configuration Control Register (MCCR) for the next operation

Write 0x84 to CIOCSR

Writing 0x84 into MCCR will enable port A and B

After this sequence the directly accessible port registers Port A and Port B can be used for reading the actual status of the IP-OPTOIO-8 input and setting the IP-OPTOIO-8 outputs.

6.2 Initialization of the Watchdog Function

On the IP-OPTOIO-8 port C and counter timer 3 of the Z8536 are wired so, that a watchdog function can be programmed into the IP-OPTOIO-8. This watchdog is retriggered with every access to the IP-OPTOIO-8. If there is no access within a previously programmed time frame, the watchdog will automatically disable the output lines.

If the IP-OPTOIO-8 is accessed after the watchdog timer has expired, the output lines will return to its original state.

For initialization of the watchdog function proceed as follow:

Write 0x1E to CIOCSR

This selects the Counter/Timer 3 Mode Specification Register (CT3MO) for the next operation

Write 0x55 to CIOCSR

Writing 0x55 into CT3MO will configure counter/timer 3 to single cycle, retrigger enable, external output, one shot

Write 0x1A to CIOCSR

This selects the Counter/Timer3 Preload MSB Register (CT3PM) for the next operation

Write 0xF0 to CIOCSR

Writing 0xF0 into CT3PM will load the first half of the watchdog time out time of '0xF000' which is just an example for approx. 30ms

Write 0x1B to CIOCSR

This selects the Counter/Timer3 Preload LSB Register (CT3PL) for the next operation

Write 0x00 to CIOCSR

Writing 0x00 into CT3PL will load the second half of the watchdog time out time of '0xF000' which is just an example for approx. 30ms

Write 0x06 to CIOCSR

This selects the Port C Data Direction Register (PCDD) for the next operation

Write 0x04 to CIOCSR

Writing 0x04 into PCDD configures bit 2 as an input for retrigger

Write 0x01 to CIOCSR

This selects the Master Configuration Control Register (MCCR) for the next operation

Write 0x84 to CIOCSR

Writing 0x84 into MCCR will enable port A and B

Write 0x0F to CIOCSR

This selects the Port C Data Register (PCDR) for the next operation

Write 0x70 to CIOCSR

Writing 0x70 into PCDR configures bit 3 as a writable output

Write 0x0C to CIOCSR
 This selects the Counter/Timer 3 Command and Status Register (C3CSR) for the next operation

Write 0x06 to CIOCSR
 Writing 0x06 into C3CSR triggers and runs counter timer 3

Write 0x00 to PORTC
 Writing 0x00 to PORTC will enable the watchdog function

7 Installation

7.1 Input Wiring

Each input is optically isolated from the logic circuit. Each input is independent of the other inputs and can be wired different. Each input has two connections at the IP I/O connector, Input x + and Input x -. However the IP-OPTOIO-8 has AC optocoupler at the input side. Therefore, the polarity of the input signal may be either way.

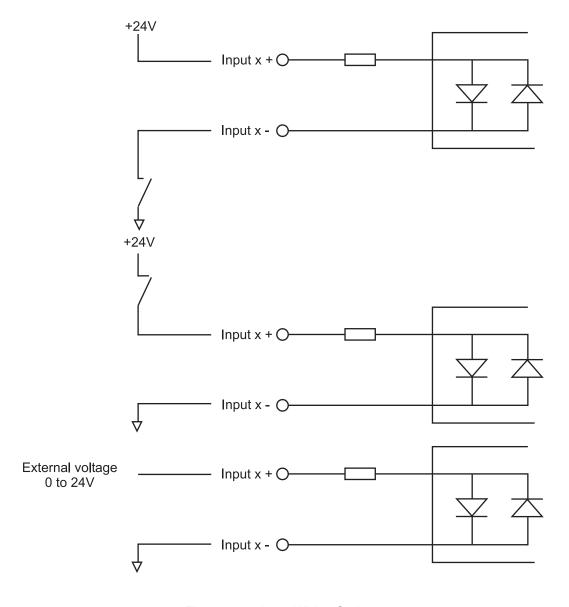


Figure 7-1: Input Wiring Options

7.2 Output Wiring

The outputs are optically isolated from the logic circuit in groups of two. Output channels 1 and 2, 3 and 4, 5 and 6, 7 and 8 share the same output potential but are completely isolated against the other output pairs.

Each output can be individually configured as a high side or a low side switch by corresponding wiring.

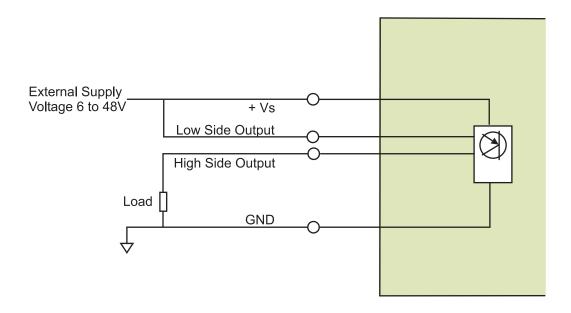


Figure 7-2: Output Wiring as High Side Switch

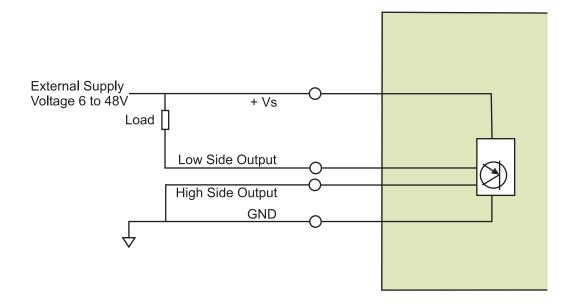


Figure 7-3: Output Wiring as Low Side Switch

8 Pin Assignment – I/O Connector

8.1 Input Connections

Pin	Signal
01	Input 1+
02	Input 1-
03	Input 2+
04	Input 2-
05	Input 3+
06	Input 3-
07	Input 4+
08	Input 4-
09	Input 5+
10	Input 5-
11	Input 6+
12	Input 6-
13	Input 7+
14	Input 7-
15	Input 8+
16	Input 8-

Figure 8-1: Input I/O connection

8.2 Output Connections

Pin	Signal	Comment
26	GND 1-2	External GND for Output 1-2
27	GND 3-4	External GND for Output 3-4
28	GND 5-6	External GND for Output 5-6
29	GND 7-8	External GND for Output 7-8
30	Low Side Output 1	
31	High Side Output 1	
32	Low Side Output 2	
33	High Side Output 2	
34	Low Side Output 3	
35	High Side Output 3	
36	Low Side Output 4	
37	High Side Output 4	
38	Low Side Output 5	
39	High Side Output 5	
40	Low Side Output 6	
41	High Side Output 6	
42	Low Side Output 7	
43	High Side Output 7	
44	Low Side Output 8	
45	High Side Output 8	
46	+Vs 1-2	External Supply Voltage for Output 1-2
47	+Vs 3-4	External Supply Voltage for Output 3-4
48	+Vs 5-6	External Supply Voltage for Output 5-6
49	+Vs 7-8	External Supply Voltage for Output 7-8
50	NC	

Figure 8-2: Output I/O connection