SEmi-hadronic Tau Decays

- Hadronic substructure: low-energy meson dynamics
- EW physics: $h_{\nu_{\tau}}$ ГCP violation
- $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$
- $\tau^{-} \rightarrow(K \pi)^{-} \nu_{\tau}$
- $\tau^{-} \rightarrow(3 \pi)^{-} \nu_{\tau}$
- $\tau^{-} \rightarrow(K \pi \pi)^{-} \nu_{\tau}$
- $\tau^{-} \rightarrow \nu_{\tau} K K \Gamma K K \pi \Gamma K 3 \pi \Gamma K K \pi \pi$
- $\tau^{-} \rightarrow(4 \pi)^{-} \nu_{\tau}$
- $\tau^{-} \rightarrow \eta X^{-} \nu_{\tau}$
- $\tau^{-} \rightarrow \nu_{\tau}(5 \pi)^{-} \Gamma(6 \pi)^{-} \Gamma(7 \pi)^{-}$
- Inclusive hadron physics
- B factories vs τ-charm factories

Hadronic substructure

- All the tau decay branching fractions larger than 1% have been measured reasonably well; results are usually dominated by systematic errors
- Next step: hadronic substructure in tau decays as a clean probe of low energy meson dynamics

$\tau \rightarrow e \nu \nu$	$\approx 18 \%$	$\mathrm{Br} \Gamma$ Michel Parameters
$\tau \rightarrow \mu \nu \nu$	$\approx 17 \%$	$\mathrm{Br} \Gamma$ Michel Parameters
$\tau \rightarrow \pi \nu, K \nu$	$\approx 12 \%$	Br
$\tau \rightarrow \pi \pi \nu$	$\approx 25 \%$	$\mathrm{Br} \Gamma \rho$ Propagator
$\tau \rightarrow K \pi \nu$	$\approx 1.4 \%$	$\mathrm{Br} \Gamma K^{\star}$ Propagator
$\tau \rightarrow 3 \pi \nu$	$\approx 18 \%$	$\mathrm{Br} \Gamma a_{1}$ Propagator Γ substructure
$\tau \rightarrow K \pi \pi \nu$	$\approx 0.8 \%$	$\mathrm{Br} \Gamma K_{1}$ Propagator Γ substructure
$\tau \rightarrow 4 \pi \nu$	$\approx 5 \%$	$\mathrm{Br} \Gamma \rho^{\prime}$ Propagator Γ substructure
$\tau \rightarrow$ rare	$\approx 2 \%$	$5 \pi \Gamma 6 \pi \Gamma K K \Gamma K K \pi K 3 \pi \Gamma \eta \pi \pi \Gamma \eta 3 \pi$

Hadronic substructure

- Studying hadronic substructure is analogous「in tau physics Γ to measuring the leptonic Michel parameters (EW physics)
- Electroweak physics: sexy (to a drunken man); low energy meson dynamics: boring? mysterious!
- Hadronic dynamics as a tool for EW physics: spin analyzers for tau polarization; CP tests. Tag taus at hadron colliders via $\tau \rightarrow 3 \pi \nu$. Precision \Rightarrow good descrip of hadronic dynamics!
- All we have to understand hadronic dynamics are:
- Chiral perturbation theory
- QCD sum rules
- QCD on the lattice
- Lorentz invГisospinГSU $(3)_{f}$ Гquark modelГetc.
- models inspired by S-matrix theory
- the PDG catalog

$$
\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}
$$

- Dynamics - Kuhn model:

$$
F_{\pi}\left(q^{2}\right) \propto \frac{\left(B W_{\rho}\left(q^{2}\right)+\beta B W_{\rho^{\prime}}\left(q^{2}\right)+\gamma B W_{\rho^{\prime \prime}}+\cdots\right)}{(1+\beta+\gamma+\cdots)}
$$

- Use Breit WignersTnormalized to $B W\left(q^{2}=0\right)=1 \Gamma$ to extrapolate from chiral limit $\left(q^{2}=0\right)$ to $q^{2}=m_{\rho}^{2}$ and beyond Γ with constant coefficients $\beta \Gamma \gamma$;
ensure agreement with chiral limit with denomin.
- This seems terribly ad hoc and wrong to meГ but it works pretty well!
- Detailed analysis: complicated efficiencyTunfold to correct for mass resolution bin migration Гetc.

$$
\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}
$$

- Scalar currents: $0^{+-} \rightarrow \pi^{-} \pi^{0} \Gamma \mathrm{CVC}$ violation: study $\rho \rightarrow \pi \pi$ pseudo-helicity angle distribution (or reconstruct τ rest frame Γ true helicity angle). Note: poor efficiency for $\left|\cos \theta_{P}\right| \simeq 1$.
- BW and propagator form:
- Mass dependent width $\Gamma\left(q^{2}\right)$
- mass dependent mass $m\left(q^{2}\right)$ ГKramers-Kronig
- Blatt-Weisskopf barrier penetration factor「etc.
- induced scalar currents:

$$
\left(-g^{\mu \nu}+q^{\mu} q^{\nu} / q^{2}\right) \neq\left(-g^{\mu \nu}+q^{\mu} q^{\nu} / m_{r}^{2}\right)
$$

- Tests of CVC: total BRTdifferential $v_{1}\left(q^{2}\right)$

- Important ingredient in hadronic vacuum polarization contribution to $(g-2)_{\mu} \Gamma \alpha_{Q E D}\left(q^{2}\right)$

$$
\tau^{-} \rightarrow(K \pi)^{-} \nu_{\tau}
$$

- Dynamics: $K^{*}(892)+\beta K^{* \prime}(1410)+\gamma K^{* \prime \prime}+\cdots \Gamma$ Kuhn-Finkemeier-Mirkes model
- Measure $V_{u s} f_{K^{*}}$; test DMO strange sum rule
- Same issues wrt BW and propagator form
- Scalar currents: $K_{0}^{*}(1430) \rightarrow(K \pi)$ S-wave. Since $S U(3)_{f}$ is violated Γ contributions possible.
- Interference between vector and scalar「with relatively complex couplings Γ can give $C P$-violation:
CLEO/Jessop.

$$
\tau^{-} \rightarrow(K \pi)^{-} \nu_{\tau}
$$

- CLEO mainly uses $K_{S}^{0} \pi^{-}$; ALEPH uses $K^{-} \pi^{0}$ and $K_{L}^{0} \pi^{-}$as well.
Background from fake $K^{0} \Gamma K^{ \pm} \leftrightarrow \pi^{ \pm}$.
- ALEPH sees some $K^{* \prime}(1410)$;

CLEO does not Γ with much higher statistics (background!).

- CLEO sees $m\left(K^{*}\right)$ approx 5 MeV higher than PDG value! And we can't make it go away!
- Still insufficient statistics for $m(K \pi)>1.1 \mathrm{GeV}$!

$$
\tau \rightarrow 3 \pi \nu-\text { Motivation }
$$

- Low energy hadron dynamics couplings of Scalars (S) ГPseudoscalars (P) Γ Vectors (V) Гand Axialvectors (A):
- Due to G-Parity conservation in $\tau \rightarrow 3 \pi \nu$: Study of the axial vector meson sector Γa_{1} and possible radial excitations
- Due to the possible participation of scalar mesons in the subsequent decay of the axial vector meson: Study of the poorly understood scalar mesons
- search for PCAC-violating $\tau \rightarrow \nu_{\tau} \pi^{\prime}$
- Lineshapes Γ form factors Γ thresholds Γ meson radii
- PV signed Tau neutrino helicity $h_{\nu_{\tau}}$ (Kühn and Wagner 1984)
- Tau neutrino mass measurements
- Identifying τ Leptons at hadron machines

Complications with $\tau \rightarrow 3 \pi \nu_{\tau}$, I

- Dominated by $a_{1} \rightarrow \rho \pi$ S-wave
- Phase space integral over $\rho \pi$ S-wave is non-trivial.
$\sqrt{q^{2}} \Gamma_{3 \pi}\left(q^{2}\right)$ parameterized by Bowler in 1988.
- There's lots more than just $\rho \pi$ S-wave!
$\rho^{\prime} \pi$ S-wave; $\rho \pi$ D-wave; $\rho^{\prime} \pi$ D-wave; $f_{2}(1275) \pi \mathrm{P}$-wave;
$f_{0}(1285) \pi \mathrm{P}$-wave; and $\sigma(890) \pi \mathrm{P}$-wave.
$\sqrt{q^{2}} \Gamma_{3 \pi}\left(q^{2}\right)$ must be obtained
from detailed study of Dalitz plot.
- The a_{1} also decays to $K^{*} K \rightarrow K K \pi \Gamma$ contributes to total $\Gamma_{a_{1}}\left(q^{2}\right)$ in BW.
- Isospin relates $a_{1} \rightarrow \pi^{-} \pi^{0} \pi^{0}$ to $\pi^{-} \pi^{+} \pi^{-}$. Non-trivial relation Γ because of isoscalars.
- Bose symmetrization of identical pions.
- radially-excited a_{1}^{\prime} meson?

Complications with $\tau \rightarrow 3 \pi \nu_{\tau}$, II

- There are two axial-vector $\left(J^{P}=1^{+}\right)$states: $a_{1}(1260)$ in the ${ }^{3} P_{1}$ octet $\Gamma J^{P G}=1^{+-} \Gamma$ couples to W as a "first-class" current; $b_{1}(1235)$ in the ${ }^{1} P_{1}$ octet $\Gamma J^{P G}=1^{++}$. doesn't couple to W ("second-class" current) except via isospin violation $\left(f_{b_{1}} \approx 0\right)$.
- More on this Γ in $\tau \rightarrow 4 \pi \nu_{\tau}$
- Might also be a scalar current $\Gamma \pi^{\prime-} \rightarrow(3 \pi)^{-}$; forbidden by CVC.
- Vector current to $(3 \pi)^{-}$forbidden by Bose symmetry

$\tau \rightarrow 3 \pi \nu$ (THEORY)

$q=p_{\pi_{1}}-p_{\pi_{2 / 3}} \quad Q=p_{\pi_{1}}+p_{\pi_{2 / 3}}-p_{\pi_{3 / 2}} \quad P=p_{\pi_{1}}+p_{\pi_{2}}+p_{\pi_{3}}$

$$
\begin{aligned}
|\mathcal{M}|^{2}= & \text { Lepton Tensor } \times \text { Hadron Tensor }= \\
& L_{\mu \nu} \times J^{\mu} J^{\star \nu}=\left(S_{\mu \nu}+i h_{\nu_{\tau}} A_{\mu \nu}\right) \times J^{\mu} J^{\star \nu}
\end{aligned}
$$

- momentum transfer small in τ decays \Longrightarrow Resonance dominance \Longrightarrow Models
- Conservation of G-Parity and Parity \Longrightarrow

Meson X in $\tau \rightarrow X \nu \rightarrow 3 \pi \nu$ has $J^{P}: 0^{-}$or 1^{+} ($P_{\mu} J_{0^{-}}^{\mu} \neq 0 \Longrightarrow 0^{-}$suppressed)

$$
\tau \rightarrow 3 \pi \nu \text { (THEORY) cont. }
$$

Lorentz structure of J_{μ} is well-defined:

$$
\begin{gathered}
\Longrightarrow J_{\mu}=\left(-g_{\mu \nu}+\frac{P_{\mu} P_{\nu}}{P^{2}}\right)\left[\left(p_{\pi_{1}}-p_{\pi_{2}}\right)^{\nu} F_{1}+\left(p_{\pi_{1}}-p_{\pi_{3}}\right)^{\nu} F_{2}\right. \\
\left.+\left(p_{\pi_{2}}-p_{\pi_{3}}\right)^{\nu} F_{3}\right]+P_{\mu} F_{4}
\end{gathered}
$$

Form Factors F_{i} :
$F_{i}=$ Breit Wigner functions \times Angular momentum factors (SIPID...-wave) \times (?)

For example Kühn Santamaria (KS) Model:

$$
\begin{gathered}
F_{i}=B W\left(a_{1}\right) \cdot B W\left(\rho+\beta \cdot \rho^{\prime}\right) \times 1(\text { S-wave }) \times 1 \\
\text { Other Models: }
\end{gathered}
$$

- IsgurCMorningstar and Reader (IMR) Model
- Feindt (F) Model

$$
\tau \rightarrow 3 \pi \nu \text { (THEORY) cont. }
$$

$$
\begin{aligned}
d \Gamma\left(\tau \rightarrow \nu_{\tau} 3 \pi\right)= & \frac{G_{F}^{2} V_{u d}^{2}}{2 m_{\tau}}\left[L^{\mu \nu} J_{\mu} J_{\nu}^{*}\right] d \text { Lips } \\
= & \frac{G_{F}^{2} V_{u d}^{2}}{32 \pi^{2} m_{\tau}}\left(1+2 \frac{s}{m_{\tau}^{2}}\right)\left(1-\frac{s}{m_{\tau}^{2}}\right) \times \\
& |B W(s)|^{2} \times \frac{\Gamma_{3 \pi}(s)}{s} d s
\end{aligned}
$$

- determine $\Gamma_{3 \pi}(s)=\int J_{\mu} J^{\star \mu} d s_{1} d s_{2}$ by measuring Dalitz plot distribution s_{1} and s_{2} (plus angular momentum observables of production)
- determine $B W(s)$ by measuring invariant mass distribution of three pions
and/or
- determine Structure funct. W_{X} (model independent) by expanding $|\mathcal{M}|^{2}$ in a sum of 16 independent terms $|\mathcal{M}|^{2}=L_{\mu \nu} \times J^{\mu} J^{\star \nu}=\sum_{X=1}^{16} L_{X} W_{X}$

$\tau \rightarrow 3 \pi \nu$ (THEORY) cont.

Tau Neutrino Helicity $h_{\nu_{\tau}}$

$$
|\mathcal{M}|^{2}=L_{\mu \nu} \times J^{\mu} J^{\star \nu}=\left(S_{\mu \nu}+i h_{\nu_{\tau}} A_{\mu \nu}\right) \times J^{\mu} J^{\star \nu}
$$

\Longrightarrow Asymmetric part of Hadron tensor $J^{\mu} J^{\star \nu}$ needed

- At least three pseudoscalars in final state needed
- Interference term needed

Two indentical Pions! ρ can be formed in two ways:

$$
\begin{aligned}
\tau^{-} \rightarrow a_{1}^{-} \nu_{\tau} & \tau^{-} & \rightarrow & a_{1}^{-} \nu_{\tau} \\
& & & \\
& & \rho_{1}^{0} \pi_{2}^{-} & \rho_{2}^{0} \pi_{1}^{-} \\
& \hookrightarrow \pi_{1}^{-} \pi^{+} & & \\
& & & \hookrightarrow \pi_{2}^{-} \pi^{+}
\end{aligned}
$$

$\Longrightarrow \Im\left(B W\left(\rho_{1}\right) \cdot B W\left(\rho_{2}\right)^{\star}\right)$ resolves the left- and right-handed part of the transverse polarization of the a_{1} :

right handed ν_{τ}

$$
\mathrm{CLEO} \tau \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}
$$

- $30800 \tau^{\mp} \rightarrow \pi^{\mp} \pi^{0} \pi^{0} \nu$ events (all tag)
$14600 \tau^{\mp} \rightarrow \pi^{\mp} \pi^{0} \pi^{0} \nu$ lepton tag events
- Substructure: determine hadronic current J^{μ} in context of a model Γ via Likelihood fit to Dalitz plot in full kinematic space Γ in bins of $m_{3 \pi}$.
- Variables $\mathrm{s} \Gamma s_{1}=m^{2}\left(\pi^{-} \pi_{1}^{0}\right) \Gamma s_{1}=m^{2}\left(\pi^{-} \pi_{2}^{0}\right)$; and angular observables $\psi \Gamma \beta$ from production:

- overall resonance shape:
determine $\Gamma_{3 \pi}(s)=\int J_{\mu} J^{\star \mu} d s_{1} d s_{2}$
determine $B W(s)$
χ^{2} fit to three pion mass spectrum

CLEO $\tau \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$

Amplitudes in fit to 3π substructure:

- $J_{1}^{\mu}:$ s-wave $1^{+} \rightarrow \rho \pi$
- $J_{2}^{\mu}:$ s-wave $1^{+} \rightarrow \rho^{\prime} \pi$
- $J_{3}^{\mu}:$ d-wave $1^{+} \rightarrow \rho \pi$
- J_{4}^{μ} : d-wave $1^{+} \rightarrow \rho^{\prime} \pi$
- $J_{5}^{\mu}:$ p-wave $1^{+} \rightarrow f_{2}(1275) \pi$
- $J_{6}^{\mu}:$ p-wave $1^{+} \rightarrow f_{0}(400-1200) \pi \Gamma$ denoted as $\sigma \pi$
- $J_{7}^{\mu}:$ p-wave amplitude of $1^{+} \rightarrow f_{0}(1370) \pi$
mass and width for $f_{0}(1370)$ and $f_{0}(400-1200)(\sigma)$ according to Törnqvist's UQM $m_{f_{0}(1370)}=1.186 \mathrm{GeV} / \mathrm{c}^{2} ; \quad \Gamma_{f_{0}(1370)}=0.350 \mathrm{GeV}$; $m_{\sigma}=0.860 \mathrm{GeV} / \mathrm{c}^{2} ; \quad \Gamma_{\sigma}=0.880 \mathrm{GeV}$

$$
A^{\mu}=\sum_{i=1}^{i=7} \beta_{i} \times J_{i}^{\mu} \times F_{i}
$$

$F_{i}=e^{-0.5 R^{2} p_{i}^{\star 2}} ;$ nominal fit with $R=0 \Longrightarrow F_{i}=1$

E	${ }_{0}^{08}$	\oplus	\bigcirc	θ	0	\bigcirc	厄							
\＃	F	¢	$\underset{\sim}{\sim}$	\％	$\underset{\substack{0}}{ }$	$\stackrel{3}{3}$	\％	$⿳ 亠 丷 厂$						
$\underset{7}{7}$	$\stackrel{\text { ¹．}}{ }$	\cdots.	$\stackrel{7}{7}$	\cdots	$\stackrel{1}{7}$			$\stackrel{4}{4}$						
$\stackrel{-}{\square}$	－	$-$	$\stackrel{-}{-}$	－	$\stackrel{-}{-}$			\bigcirc						
1	।	1	1	1	1	1	1	1						
$\stackrel{+}{\circ}$	－	$\stackrel{-}{-}$	$\stackrel{\rightharpoonup}{c}$	$\stackrel{-}{-}$	$\stackrel{+}{-}$	$\stackrel{+}{5}$	$\stackrel{-}{\square}$							

$$
\mathrm{CLEO} \tau \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}
$$

		Significance	\mathcal{B} fraction $(\%)$
ρ	s-wave		69.4
$\rho(1370)$	s-wave	1.4σ	$0.30 \pm 0.64 \pm 0.17$
ρ	d-wave	5.0σ	$0.36 \pm 0.17 \pm 0.06$
$\rho(1370)$	d-wave	3.1σ	$0.43 \pm 0.28 \pm 0.06$
$f_{2}(1275)$	p-wave	4.2σ	$0.14 \pm 0.06 \pm 0.02$
σ	p-wave	8.2σ	$16.18 \pm 3.85 \pm 1.28$
$f_{0}(1186)$	p-wave	5.4σ	$4.29 \pm 2.29 \pm 0.73$

- $\rho \pi$ s-wave with $\mathcal{B} \approx 70 \%$ dominant as expected
- with the exception of $\rho^{\prime} \pi$ s-wave all amplitudes significant
- isoscalars contribute with $\mathcal{B} \approx 20 \%$ to 3π hadronic current; especially σ cannot be neglected
- couplings constant over $m_{3 \pi}$; (decoupling ρ^{\prime} s- and d-wave)
- ρ^{\prime} shows up more strongly in d-wave than s -wave

$$
\begin{gathered}
\mathcal{B}\left(\tau \rightarrow \pi^{\prime} \nu \rightarrow \rho \pi \nu \rightarrow 3 \pi \nu\right)<1.0 \times 10^{-4} \text { at } 90 \% \mathrm{CL} \\
\mathcal{B}\left(\tau \rightarrow \pi^{\prime} \nu \rightarrow \sigma \pi \nu \rightarrow 3 \pi \nu\right)<1.9 \times 10^{-4} \text { at } 90 \% \mathrm{CL} \\
h_{\nu_{\tau}}=-1.02 \pm 0.13 \pm 0.01 \pm 0.03\left(\text { SM } h_{\nu_{\tau}}=-1\right)
\end{gathered}
$$

CLEO $\tau \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$

$\approx 80000 \tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{ \pm} \nu$ events

due to isoscalars neutral differs from charged pion mode:
$|0,0\rangle=\frac{1}{\sqrt{3}}|1,+1\rangle|1,-1\rangle-\frac{1}{\sqrt{3}}|1,0\rangle|1,0\rangle+\frac{1}{\sqrt{3}}|1,-1\rangle|1,+1\rangle$
s_{1} / s_{2} distr.
solid line: isopsin predict. as measured in neutral mode
a) $m_{3 \pi}: 0.6-0.9$
b) $m_{3 \pi}: 0.9-1.0$
c) $m_{3 \pi}: 1.0-1.1$
d) $m_{3 \pi}: 1.1-1.2$
e) $m_{3 \pi}: 1.2-1.3$
f) $m_{3 \pi}: 1.3-1.4$
g) $m_{3 \pi}: 1.4-1.5$
h) $m_{3 \pi}: 1.5-1.8$

\Longrightarrow charged mode in good agreement with neutral mode

CLEO $\tau \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$

The Asymmetry function $\frac{a\left(x, m_{3 \pi}^{2}\right)}{\cos \psi}=h_{\nu_{\tau}} A\left(m_{3 \pi}^{2}\right)$ plotted versus the mass of the 3π systemГwhere

$$
h_{\nu_{\tau}}=-\frac{2 g_{V} g_{A}}{\left(g_{V}^{2}+g_{A}^{2}\right)}
$$

$$
a\left(x, m_{3 \pi}^{2}\right)=\left(\hat{\mathbf{p}}_{3 \pi}^{\mathrm{lab}} \cdot\left[\hat{\mathbf{p}}_{\pi_{1}^{-}}^{\mathrm{ad}} \times \hat{\mathbf{p}}_{\pi^{+}}^{\mathrm{ad}}\right]\right) \operatorname{sign}\left(s_{1}-s_{2}\right) .
$$

$$
\mathrm{CLEO} \tau \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}
$$

fits to substructure with varying meson radius R in form factor F
satisfactory goodness of fit for $0 \leq R \leq 2 \mathrm{GeV}^{-1}$

best fit with $R=1.4 \mathrm{GeV}^{-1}$
\Longrightarrow meson size of $\approx 0.7 \mathrm{fm}$

CLEO $\tau \rightarrow 3 \pi \nu_{\tau}$

Three pion mass spectrum:

$$
\begin{aligned}
B(s)=B_{a_{1}}(s)+\epsilon \cdot B_{a_{1}^{\prime}}(s) & =\frac{1}{s-m_{a_{1}}^{2}(s)+i m_{0 a_{1}} \Gamma_{t o t}^{a_{1}}(s)} \\
& +\frac{\epsilon}{s-m_{0 a_{1}^{\prime}}^{2}+i m_{0 a_{1}^{\prime}} \Gamma_{t o t}^{a_{1}^{\prime}}(s)}
\end{aligned}
$$

Running mass $m^{2}(s)$:

$$
m^{2}(s)=m_{0}^{2}+\frac{1}{\pi} \int_{s_{t h}}^{\infty} \frac{m_{0} \Gamma_{t o t}(s \prime)}{(s-s \prime)} d s \prime
$$

Total width $\Gamma_{t o t}(s)$:
$\Gamma_{t o t}(s)=\Gamma_{2 \pi^{0} \pi^{-}}(s)+\Gamma_{2 \pi^{-} \pi^{+}}(s)+\Gamma_{K^{\star} K}(s)+\Gamma_{f_{0}(980) \pi}(s)$

CLEO $\tau \rightarrow 3 \pi \nu_{\tau}$

constant/running mass $\Gamma K^{\star} K \Gamma f_{0}(980) \pi \Gamma$ meson radius R

- good fits: constant/running mass Γ with and without $f_{0}(980) \pi \Gamma 0 \leq R \leq 2 \mathrm{GeV}^{-1}$
- $K^{\star} K$ threshold needed for good fit
- best value for $R: 1.2 \leq R \leq 1.4 \mathrm{GeV}^{-1}$

nominal fit: constant mass $\Gamma K^{\star} K$ threshold included Γ no

$$
\begin{gathered}
f_{0}(980) \pi \text { threshold } \Gamma R=0 \\
m_{a_{1}}=1.331 \pm 0.010 \pm 0.003 \Gamma_{a_{1}}=0.814 \pm 0.036 \pm 0.013 \\
\mathcal{B}\left(a_{1} \rightarrow K^{\star} K\right)=(3.3 \pm 0.5 \pm 0.1) \%
\end{gathered}
$$

small excess of data at high $m_{3 \pi}$ values $\Longrightarrow a_{1}^{\prime}$?
A. Weinstein
τ-charm Factory Workshop $\mathrm{CL} \mathrm{SCC} 3 / 99$

CLEO $\tau \rightarrow 3 \pi \nu_{\tau}-$ Summary

- high statistics in the 3π channel is permitting:
- detailed studies of the hadronic substructure
- precision measurements of PV signed ν_{τ} helicity
- significant contrib. other than $a_{1} \rightarrow \rho \pi$
- model-independent structure function analyses provide:
- measurements of $h_{\nu_{\tau}}$
- limits on non axial vector
- clean tests of models
- model-dependent fits to full kinematic distrib. gives:
- significant signals for isoscalars $f_{0} \Gamma f_{2} \Gamma$ and σ
- evidence for $a_{1}^{\prime}(?)$
- evidence for $K^{\star} K$ threshold
- limits on PCAC-violating π^{\prime}
- good model (charged/neutral) especially at $m_{3 \pi} \lesssim m_{\tau}$:
- useful for $\tau \rightarrow 3 \pi \nu$ detection at hadron colliders
- essential for extraction of $m_{\nu_{\tau}}$
- but sill many open questions:
$-a_{1}$ lineshape: running/constant mass Γ thresholds??
$-a_{1}^{\prime}$: How much?? How does it decay??
- substructure: couplings?? mass dependence??

$$
\tau^{-} \rightarrow(K \pi \pi)^{-} \nu_{\tau}
$$

- final states $K_{S}^{0} \pi^{-} \pi^{0} \nu_{\tau} \Gamma K^{-} \pi^{+} \pi^{-} \nu_{\tau}$ Гor $K^{-} \pi^{0} \pi^{0} \nu_{\tau}$
- There are two axial-vector $\left(J^{P}=1^{+}\right)$states:
K_{a} in the ${ }^{3} P_{1}$ octet Γ strange partner of the $a_{1}(1260)$; K_{b} in the ${ }^{1} P_{1}$ octet Γ strange partner of the $b_{1}(1235)$. K_{b} couples to W as $\mathrm{SU}(3)$-violating "second-class" current.
- Both both decay to $K \pi \pi$ via $K^{*} \pi$ and $K \rho$ (other final states (e.g. $\Gamma K \omega$) have been observed); mix into the physical mesons $K_{1}(1270) \Gamma K_{1}(1400)$
- So Twe have $\mathrm{SU}(3)$-violation Γ and mixing.
- Can get $K \pi \pi$ from vector current via Wess-Zumino:
$K^{* \prime} \rightarrow\left(K^{*} \pi, K \rho\right) \rightarrow K \pi \pi ;$
expected to be numerically small. Ignored for now.

$$
\tau^{-} \rightarrow(K \pi \pi)^{-} \nu_{\tau}
$$

$1^{\text {st }}$ class current
$2^{\text {nd }}$ CCCallowed by $\mathrm{SU}(3)_{f}$ violation

Parameterizations of K_{1} DYNAMICS

- parameterize the couplings of the K_{1} mesons to the W following Suzuki:

$$
|W\rangle \rightarrow f_{K_{1}}\left(\left|K_{a}\right\rangle-\delta\left|K_{b}\right\rangle\right)
$$

where δ is the $\mathrm{SU}(3) / \mathrm{PCAC}$ violation parameter Γ to be determined phenomenologically.

- The K_{a} and K_{b} then decay via the strong interaction to a vector and a pseudoscalar.
By C invariance and $\mathrm{SU}(3) \Gamma$ the couplings of the K_{a} and K_{b} to the 1^{-}octet and the 0^{-}octet are:

$$
\begin{aligned}
H_{i n t}^{(a)} & =\frac{f_{a}}{2}\left(K \rho-K^{*} \pi+K \phi_{8}-K^{*} \eta_{8}\right) K_{a} \\
H_{i n t}^{(b)} & =\frac{f_{b}}{2 \sqrt{5}}\left(3\left(K \rho+K^{*} \pi\right)-\left(K \phi_{8}-K^{*} \eta_{8}\right)\right) K_{b}
\end{aligned}
$$

where f_{a} and f_{b} are couplings to be determined phenomenologically.

- The K_{a} and K_{b} mix into physical $K_{1 a}$ and $K_{1 b}$:

$$
\begin{aligned}
\left|K_{1 a}\right\rangle & =\cos \theta\left|K_{a}\right\rangle-\sin \theta\left|K_{b}\right\rangle \\
\left|K_{1 b}\right\rangle & =\cos \theta\left|K_{b}\right\rangle+\sin \theta\left|K_{a}\right\rangle
\end{aligned}
$$

where θ is the mixing angle Γ a parameter to be determined phenomenologically.

- We identify the $K_{1 b}$ with the $K_{1}(1270)$ and the $K_{1 a}$ with the $K_{1}(1400)$.
- Notational shorthand:

$$
g_{a} \equiv \frac{f_{a}}{2} ; \quad g_{b} \equiv \frac{3 f_{b}}{2 \sqrt{5}} ; \quad c \equiv \cos \theta ; \quad s \equiv \sin \theta
$$

- For the $K \pi \pi$ final state Γ the relevant couplings are:

$$
\begin{aligned}
\left|K_{a}\right\rangle \rightarrow g_{a}\left(|K \rho\rangle-\left|K^{*} \pi\right\rangle\right) ; & & \left|K_{b}\right\rangle \rightarrow g_{b}\left(|K \rho\rangle+\left|K^{*} \pi\right\rangle\right) \\
\left\langle K \rho \mid K_{a}\right\rangle & =g_{a} ; & \left\langle K \rho \mid K_{b}\right\rangle=g_{b} \\
\left\langle K^{*} \pi \mid K_{a}\right\rangle & =-g_{a} ; & \left\langle K^{*} \pi \mid K_{b}\right\rangle=g_{b}
\end{aligned}
$$

- The mass eigenstates $K_{1 a}$ and $K_{1 b}$ propagate with $B W\left(K_{1 a}\right) \Gamma B W\left(K_{1 b}\right)$

Parameterizations of K_{1} DYNAMICS, II

- The couplings:

$$
\begin{aligned}
\left\langle K^{*} \pi\right| H\left|K_{1 a}\right\rangle\left\langle K_{1 a}\right| H|0\rangle & =f_{K_{1}}(c+\delta s)\left(-c g_{a}-s g_{b}\right) B W\left(K_{1 a}\right) \\
\langle K \rho| H\left|K_{1 a}\right\rangle\left\langle K_{1 a}\right| H|0\rangle & =f_{K_{1}}(c+\delta s)\left(c g_{a}-s g_{b}\right) B W\left(K_{1 a}\right) \\
\left\langle K^{*} \pi\right| H\left|K_{1 b}\right\rangle\left\langle K_{1 b}\right| H|0\rangle & =f_{K_{1}}(s-\delta c)\left(c g_{b}-s g_{a}\right) B W\left(K_{1 b}\right) \\
\langle K \rho| H\left|K_{1 b}\right\rangle\left\langle K_{1 b}\right| H|0\rangle & =f_{K_{1}}(s-\delta c)\left(c g_{b}+s g_{a}\right) B W\left(K_{1 b}\right)
\end{aligned}
$$

- Fitting for those four amplitudes (assumed relatively real) is equivalent to fitting for the parameters: $\delta(\mathrm{SU}(3)$-breaking weak current) Γ $f_{K_{1}} g_{a}$ (overall coupling) Γ g_{b} / g_{a} (relative coupling of ${ }^{1} P_{1} \Gamma^{3} P_{1}$ to $1^{-} \Gamma 0^{-}$octets) Γ the K_{1} mixing angle $c=\cos \theta \Gamma s=\sin \theta$

The mixing Parameters

- MassesГand decay rates from PDG96「for:
$\Gamma\left(K_{1 a} \rightarrow K^{*} \pi\right) \Gamma \Gamma\left(K_{1 a} \rightarrow K \rho\right) \Gamma$
$\Gamma\left(K_{1 b} \rightarrow K^{*} \pi\right) \Gamma \Gamma\left(K_{1 b} \rightarrow K \rho\right)$
- We then get (all in GeV):

$$
\begin{array}{lll}
\Gamma\left(K_{1 a} \rightarrow K^{*} \pi\right) & =(0.1636 \pm 0.0161) & =0.00864 \times\left(-c g_{a}-s g_{b}\right)^{2} \\
\Gamma\left(K_{1 a} \rightarrow K \rho\right) & =(0.0052 \pm 0.0052) & =0.00631 \times\left(c g_{a}-s g_{b}\right)^{2} \\
\Gamma\left(K_{1 b} \rightarrow K^{*} \pi\right) & =(0.0144 \pm 0.0055) & =0.00764 \times\left(-s g_{a}+c g_{b}\right)^{2} \\
\Gamma\left(K_{1 b} \rightarrow K \rho\right) & =(0.0378 \pm 0.0100) & =0.00161 \times\left(s g_{a}+s g_{b}\right)^{2}
\end{array}
$$

- Note that $K_{1 b} \rightarrow K \rho$ is close to threshold; important to get $B W(\rho)$ right (to be done).
- Fit for $f_{a} \Gamma x \Gamma$ and θ. 4-fold ambiguity in the minimum:

Soln	$f_{a}(\mathrm{GeV})$	x	θ (degrees)	$P\left(\chi^{2}\right)$
1	$4.7 \pm 0 . x$	1.25 ± 0.00	42 ± 2	59%
2	$7.9 \pm 0 . x$	0.44 ± 0.00	48 ± 2	59%
3	$6.1 \pm 0 . x$	0.83 ± 0.00	31 ± 2	59%
4	$6.9 \pm 0 . x$	0.66 ± 0.00	59 ± 2	59%

- Find K by $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$. More efficient than doing $d E / d x$ and TOF π^{-} / K^{-}separation at CLEOII.

CLEO $K^{-} \pi^{+} \pi^{-}$

- Statistical extraction of $\left(K^{-} \pi^{+} \pi^{-}\right) /\left(\pi^{-} \pi^{+} \pi^{-}\right)$
- Fit for interfering $K_{1}(1270)+\beta K_{1}(1430)$
- Fit for $K^{*} \pi$ and $K \rho$ in projection

ALEPH $K^{-} \pi^{+} \pi^{-}$

- Signals in $K_{S}^{0} \pi^{-} \pi^{0} \Gamma K^{-} \pi^{+} \pi^{-}$
- Simple model fitsTno interpretation yet

$$
\tau^{-} \rightarrow K^{-} K^{0} \nu_{\tau}
$$

- ALEPH uses K_{S}^{0} and K_{L}^{0}

- CLEO spectrum consistent with $\rho \rightarrow K K$;

ALEPH spectrum is harder.

$\mathrm{CLEO} \tau^{-} \rightarrow K_{S}^{0} K_{S}^{0} \pi \nu_{\tau}$

- CLEO sees ~200 events;
$\mathcal{B}\left(\tau^{-} \rightarrow K_{S}^{0} K_{S}^{0} \pi^{-} \nu_{\tau}\right)=(3.5 \pm 0.4) \times 10^{-4}$
- Interpretation in terms of $K^{0} \bar{K}^{0} \pi^{-} \nu_{\tau}$ is problematical! (Depends on intermediate quantum states)
- Good candidate for $m_{\nu_{\tau}} \operatorname{limit} \Gamma$ especially since $m(K K \pi)$ resolution is good. BUT: no very high mass candidates seen yet.

$$
\tau^{-} \rightarrow K 3 \pi, K K, K K \pi, K K \pi \pi, \cdots
$$

- ALEPH gave a kaon blitzkrieg at TAU98: signals (and fits to models!) in many modes:
$K^{0} \pi^{-} \pi^{0} \Gamma K^{-} \pi^{+} \pi^{-} \Gamma K^{-} \pi^{+} \pi^{-} \pi^{0} \Gamma$

$$
K^{-} K^{0} \Gamma K^{-} K^{+} \pi^{-} \Gamma K^{-} K^{+} \pi^{-} \pi^{0} \Gamma K^{-} K^{0} \pi^{0} \Gamma K^{0} K^{0} \pi^{-} .
$$

$$
\tau^{-} \rightarrow 4 \pi \nu_{\tau}
$$

- Must know spectral function for $m_{\nu_{\tau}}$ measurements (CLEO 1999: $m_{\nu_{\tau}}<28 \mathrm{MeV} / \mathrm{c}^{2} \Gamma 95 \% \mathrm{CL}$; 4 MeV model-dependence syst error dominates!)
- CVC tests Γ comparing $e^{+} e^{-} \rightarrow 2 \pi^{+} 2 \pi^{-} \Gamma \pi^{+} \pi^{-} 2 \pi^{0}$ to $\tau^{-} \rightarrow \nu_{\tau} 2 \pi^{-} \pi^{+} \pi^{0} \Gamma \pi^{-} 3 \pi^{0}$
- Dominated by $\rho^{\prime} \rightarrow \rho \pi \pi \Gamma \pi \omega$
- $\rho^{\prime} \Gamma \rho^{\prime \prime}$ parameters of interest
- Even the simplest models are already complicated!
- $\rho^{\prime} \rightarrow a_{1} \pi$ seen in $e^{+} e^{-}$;

CLEO sees no significant evidence for it!

- Search for second-class currents: $\tau \rightarrow \nu_{\tau} b_{1}$

CLEO $\tau^{-} \rightarrow 4 \pi \nu_{\tau}$

SECOND-CLASS CURRENTS

- There are two axial-vector $\left(J^{P}=1^{+}\right)$states:
$a_{1}(1260)$ in the ${ }^{3} P_{1}$ octet $\Gamma J^{P G}=1^{+-} \Gamma$
couples to W as a "first-class" current;
$b_{1}(1235)$ in the ${ }^{1} P_{1}$ octet $\Gamma J^{P G}=1^{++}$.
doesn't couple to W ("second-class" current) except via isospin (G-parity) violation ($f_{b_{1}} \approx 0$).
- $a_{1} \rightarrow \rho \pi$ (S-wave) $\rightarrow 3 \pi$ dominant;
$\rho^{\prime} \rightarrow \omega \pi$ (P-wave) $\rightarrow 4 \pi$ dominant;
$b_{1} \rightarrow \omega \pi$ (S-wave) $\rightarrow 4 \pi$ dominant.
- The difference in G-parity for these states is is reflected in the different expected polarization of the vector meson Γ and thus the angular distribution $\cos \chi=\hat{n}_{\perp}^{\omega} \cdot \hat{p}_{\pi_{4}}$

SECOND-CLASS CURRENTS

J^{P}	L	$F(\cos \chi)$
1^{-}	1	$1-\cos ^{2} \chi$
1^{+}	0	1
1^{+}	2	$1+3 \cos ^{2} \chi$
0^{-}	1	$\cos ^{2} \chi$

- CLEO sees no evidence of $b_{1} \rightarrow \omega \pi$:

$$
\tau^{-} \rightarrow \nu_{\tau} \eta(n \pi)^{-}
$$

- $\tau^{-} \rightarrow \nu_{\tau} \eta \pi^{-}$is forbidden by G-parity;
$\mathcal{B}\left(\nu_{\tau} \eta \pi^{-}\right)<1.4 \times 10^{-4}$ at $95 \% \mathrm{CL}$
- G-parity (isospin) is violated; this decay will be seen at some level
- $S U(3)_{f}$-violating $\tau^{-} \rightarrow \nu_{\tau} \eta K^{-}$is seen:
$\mathcal{B}\left(\nu_{\tau} \eta K^{-}\right)=(2.6 \pm 0.5) \times 10^{-4}$.
- $\tau^{-} \rightarrow \nu_{\tau} \eta \pi^{-} \pi^{0}$ proceeds via the W-Z chiral anomaly; $\mathcal{B}\left(\nu_{\tau} \eta \pi^{-} \pi^{0}\right)=(1.7 \pm 0.3) \times 10^{-3}$.
- W-Z Lorentz structure has not been definitively established.
- CLEO sees $\tau^{-} \rightarrow \nu_{\tau} \eta(3 \pi)^{-}$:
$\mathcal{B}\left(\nu_{\tau} \eta \pi^{-} \pi^{+} \pi^{-}\right)=(3.4 \pm 0.8) \times 10^{-4}$.
$\mathcal{B}\left(\nu_{\tau} \eta \pi^{-} \pi^{0} \pi^{0}\right)=(1.4 \pm 0.6) \times 10^{-4}$.
- Rich substructure! Only beginning to be explored. $\operatorname{Eg} \Gamma f_{1} \pi \Gamma f_{1} \rightarrow a_{0} \pi \Gamma a_{0} \rightarrow \eta \pi$

$5 \pi, 6 \pi, 7 \pi$

- Small Rs:

$$
\begin{aligned}
\mathcal{B}\left(\nu_{\tau} 2 \pi^{-} \pi^{+} 2 \pi^{0}\right) & =(5.3 \pm 0.4) \times 10^{-3} \\
\mathcal{B}\left(\nu_{\tau} 3 \pi^{-} 2 \pi^{+}\right) & =(7.5 \pm 0.7) \times 10^{-4} \\
\mathcal{B}\left(\nu_{\tau} 2 \pi^{-} \pi^{+} 3 \pi^{0}\right) & =(2.9 \pm 0.7) \times 10^{-4} \\
\mathcal{B}\left(\nu_{\tau} 3 \pi^{-} 2 \pi^{+} \pi^{0}\right) & =(2.2 \pm 0.5) \times 10^{-4} \\
\mathcal{B}\left(\nu_{\tau} 3 \pi^{-} 2 \pi^{+} 2 \pi^{0}\right) & <1.1 \times 10^{-4} \\
\mathcal{B}\left(\nu_{\tau} 7 \pi^{ \pm}\right) & <2.4 \times 10^{-6} .
\end{aligned}
$$

- Very complex sub-structure
- First step: enumerate isospin content;

$$
\operatorname{eg} \Gamma\left(3 \pi^{-} 2 \pi^{+} \pi^{0}\right) /(6 \pi) \text { vs }\left(2 \pi^{-} \pi^{+} 3 \pi^{0}\right) /(6 \pi):
$$

INCLUSIVE HADRONIC PHYSICS

- $V \Gamma A$ spectral functions $\Rightarrow \alpha_{S} \Gamma$ chiral condensates

$$
\begin{aligned}
R_{k l}^{v / a} & =\int_{0}^{m_{\tau}^{2}} d s\left(1-\frac{s}{m_{\tau}^{2}}\right)^{k}\left(\frac{s}{m_{\tau}^{2}}\right)^{l} \frac{1}{N_{v / a}} \frac{d N_{v / a}}{d s}, \\
R_{k l}^{v / a} & =\frac{3}{2} V_{u d}^{2} S_{E W}\left(1+\delta_{p e r t}+\delta_{\text {mass }}^{v / a}+\delta_{N P}^{v / a}\right),
\end{aligned}
$$

- $V^{s} \Gamma A^{s}$ spectral functions $\Rightarrow m_{s}$

$$
\delta_{\text {mass }}^{s} \simeq-8 \frac{\bar{m}_{s}^{2}}{m_{\tau}^{2}}\left[1+\frac{16}{3} \frac{\alpha_{S}}{\pi}+\mathcal{O}\left(\frac{\alpha_{S}}{\pi}\right)^{2}\right]
$$

- tests of CVC in inclusive rate
- improvements on hadronic vacuum polarization contribution to $(g-2)_{\mu} \Gamma \alpha_{Q E D}\left(q^{2}\right)$

INCLUSIVE SUM RULES

- First Weinberg sum rule:

$$
\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d s\left(v_{1}(s)-a_{1}(s)\right)=f_{\pi}^{2}
$$

- Second Weinberg sum rule:

$$
\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d s \cdot s\left(v_{1}(s)-a_{1}(s)\right)=0
$$

- Das-Mathur-Okubo sum rule:

$$
\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d s}{s}\left(v_{1}(s)-a_{1}(s)\right)=f_{\pi}^{2} \frac{\left\langle r_{\pi}^{2}\right\rangle}{3}-F_{A}
$$

- Isospin-violating sum rule:

$$
\begin{aligned}
\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d s \quad & s \ln \frac{s}{\Lambda^{2}}\left(v_{1}(s)-a_{1}(s)\right)= \\
& -\frac{16 \pi^{2} f_{\pi}^{2}}{3 \alpha}\left(m_{\pi^{ \pm}}^{2}-m_{\pi^{0}}^{2}\right)
\end{aligned}
$$

- Note inevitable lack of statistical precision near
$s_{0}=m_{\tau}^{2} ;$
just where you need it most!

Conclusions on hadronic STRUCTURE IN TAU DECAYS

- There's LOTS OF IT
- there are many unresolved questions Γ even in low multiplicity final states
- All the open questions require:
- lots more statistics;
- excellent π / K separation;
- tight control of backgrounds.
- if the mystery of low energy meson dynamics appeals to youएthere is lots to do!

IsSUES RE $E_{c m}$ FOR TAU PHYSICS

- Efficiency at 10.6 GeV B-factory:
- The boost of the hadronic system means that soft pions will not get absorbed by the beam-pipe.
- Soft π^{0}, s will not get lost in the calorimeter under the background from secondary hadronic showers.
- The tracks all go in approx the same directionएso acceptance (eg $\Gamma \mathrm{n}$ particles into $|\cos \theta|<0.9$) is 0.9^{1} rather than (0.9) ${ }^{n}$.
- Cutting into dynamics:
- At B-F「acceptance cuts (on min p_{t} and max $|\cos \theta|)$ maximum polar angle) \Rightarrow big loss of efficiencyГВUTГdon't cut into phase space of the decay (e.g. Гacceptance is reasonably uniform accross 3pi Dalitz plot).
- At the low energies of a $\tau c \mathrm{~F}$ Гthe acceptance cuts into the dynamics (corners of DP).

This may severely limit the attainable systematic errors.

ISSUES RE $E_{c m}$ FOR TAU PHYSICS, II

- multiple-scattering:

Higher momentum tracks will not be severely
multiple-scattered. Measurement errors are worse since σ_{p} / p goes like p Гbut multiple scattering gets better since p is larger Γ and that will dominate at both energies. So mass resolution is better at high energy.

- Particle ID: $K \pi$ separation:

A $\tau c \mathrm{~F}$ definitely needs good K / π separation in order to compete with this generation of semileptonic decay analyses. It should not be too difficult Γ with Γ eg Γ precision TOF. The main problem is that low-momentum kaons range out and are thus lost Γ cutting into the dynamics.

- $K_{S}^{0} \Gamma K_{L}^{0}$ efficiency Γ background:
- Higher momentum K_{S}^{0} 's are easier to separate from background using seperated-vertex cuts; reconstruction efficiency might be worse.
- Higher momentum K_{L}^{0} 's can be tagged more efficiently in instrumented flux returns (like BaBar's).

ISSUES RE $E_{c m}$ FOR TAU PHYSICS, III

- Lepton ID:

At low momentum「electrons and muons are harder to distinguish from pions using conventional techniques (E/p and muon walls) so precision TOF and/or CerenkovГand finely-segmented muon rangeout system Γ is of course required.

- Displaced τ vertices:

The boost means that the tau decay vertex is displaced Γ which can help in a variety of analyses Γ especially those which hope to use that info to estimate the tau direction (which won't work very wellएeven at B-Factories). I don't have much faith in the utility of using the separated vertices to distinguish tau pairs from hadronic background. There are better and easier ways.

ISSUES RE $E_{c m}$ FOR TAU PHYSICS, IV

- $q \bar{q}$ backgrounds:
- At $\tau \mathrm{cF}$ Гevents in which both taus decay semi-hadronically have a severe combinatoric background from hadronic events; to do precision physics「you need to tag using leptons (requiring good lepton id) or monochomatic pion. There's no such problem at B-Factories.
- Background from qqbar events at B-Factories means that only leptonic-tagged events are useful for high-multiplicity semi-leptonic decays; but that problem is also at tcF (I'm not sure whether it is better or worse!).
- Polarization:

At thresholdГthe taus are polarized along the beam. That might prove useful for Γ polarization-dependent measurements like Michel params or analysis of 3pinu. Might.

- For the study of semi-hadronic tau decays Γ see no particular difference between threshold and 3.67 GeV ...

