SEMI-HADRONIC TAU DECAYS

- Hadronic substructure: low-energy meson dynamics
- EW physics: $h_{\nu_{\tau}}$, CP violation
- $\tau^- \to \pi^- \pi^0 \nu_\tau$
- $\tau^- \to (K\pi)^- \nu_\tau$
- $\tau^- \to (3\pi)^- \nu_\tau$
- $\tau^- \to (K\pi\pi)^- \nu_\tau$
- $\tau^- \rightarrow \nu_\tau \ KK, \ KK\pi, \ K3\pi, \ KK\pi\pi$
- $\tau^- \to (4\pi)^- \nu_\tau$
- $\tau^- \to \eta X^- \nu_\tau$
- $\tau^- \to \nu_\tau \ (5\pi)^-, \ (6\pi)^-, \ (7\pi)^-$
- Inclusive hadron physics
- B factories vs τ -charm factories

HADRONIC SUBSTRUCTURE

- All the tau decay branching fractions larger than 1% have been measured reasonably well; results are usually dominated by systematic errors
- Next step: hadronic substructure in tau decays as a clean probe of low energy meson dynamics

$\tau \to e \nu \nu$	$\thickapprox 18\%$	Br, Michel Parameters
$ au o \mu u u$	pprox 17%	Br, Michel Parameters
$\tau \to \pi \nu, K \nu$	$\approx 12\%$	Br
$ au o \pi \pi u$	$\thickapprox 25\%$	Br, ρ Propagator
$ au \to K \pi \nu$	$\approx 1.4\%$	Br, K^{\star} Propagator
$ au ightarrow 3\pi u$	$\thickapprox 18\%$	Br, a_1 Propagator, substructure
$ au o K \pi \pi u$	pprox 0.8%	Br, K_1 Propagator, substructure
$\tau \to 4\pi\nu$	pprox 5%	Br, ρ' Propagator, substructure
$\tau \rightarrow \text{rare}$	$\approx 2\%$	$5\pi, 6\pi, KK, KK\pi, K3\pi, \eta\pi\pi, \eta3\pi$

HADRONIC SUBSTRUCTURE

- Studying hadronic substructure is analogous, in tau physics, to measuring the leptonic Michel parameters (EW physics)
- Electroweak physics: *sexy* (to a drunken man); low energy meson dynamics: boring? *mysterious*!
- Hadronic dynamics as a tool for EW physics: spin analyzers for tau polarization; CP tests. Tag taus at hadron colliders via τ → 3πν. Precision ⇒ good descrip of hadronic dynamics!
- All we have to understand hadronic dynamics are:
 - Chiral perturbation theory
 - QCD sum rules
 - QCD on the lattice
 - Lorentz inv, isospin, $SU(3)_f$, quark model, etc.
 - models inspired by S-matrix theory
 - the PDG catalog

• Dynamics – Kuhn model:

$$F_{\pi}(q^2) \propto \frac{\left(BW_{\rho}(q^2) + \beta BW_{\rho'}(q^2) + \gamma BW_{\rho''} + \cdots\right)}{(1 + \beta + \gamma + \cdots)}$$

- Use Breit Wigners, normalized to BW(q² = 0) = 1, to extrapolate from chiral limit (q² = 0) to q² = m²_ρ and beyond, with constant coefficients β, γ; ensure agreement with chiral limit with denomin.
- This seems terribly ad hoc and wrong to me, but it works pretty well!
- Detailed analysis: complicated efficiency, unfold to correct for mass resolution bin migration, *etc.*

A.Weinstein

$\tau^- \to \pi^- \pi^0 \nu_\tau$

- Scalar currents: 0^{+−} → π[−]π⁰, CVC violation: study ρ → ππ pseudo-helicity angle distribution (or reconstruct τ rest frame, true helicity angle). Note: poor efficiency for | cos θ_P| ≃ 1.
- BW and propagator form:
 - Mass dependent width , (q^2)
 - mass dependent mass $m(q^2)$, Kramers-Kronig
 - Blatt-Weisskopf barrier penetration factor, etc.
 - induced scalar currents:
 - $(-g^{\mu\nu} + q^{\mu}q^{\nu}/q^2) \neq (-g^{\mu\nu} + q^{\mu}q^{\nu}/m_r^2)$
- Tests of CVC: total BR, differential $v_1(q^2)$

• Important ingredient in hadronic vacuum polarization contribution to $(g-2)_{\mu}$, $\alpha_{QED}(q^2)$

A.Weinstein

- Dynamics: $K^*(892) + \beta K^{*'}(1410) + \gamma K^{*''} + \cdots$, Kuhn-Finkemeier-Mirkes model
- Measure $V_{us}f_{K^*}$; test DMO strange sum rule
- Same issues wrt BW and propagator form
- Scalar currents: $K_0^*(1430) \to (K\pi)$ S-wave. Since $SU(3)_f$ is violated, contributions possible.
- Interference between vector and scalar, with relatively complex couplings, can give *CP*-violation: CLEO/Jessop.

$\tau^- \to (K\pi)^- \nu_\tau$

- CLEO mainly uses $K_S^0 \pi^-$; ALEPH uses $K^- \pi^0$ and $K_L^0 \pi^-$ as well. Background from fake K^0 , $K^{\pm} \leftrightarrow \pi^{\pm}$.
- ALEPH sees some K^{*}(1410);
 CLEO does not, with much higher statistics (background!).

- CLEO sees m(K*) approx 5 MeV higher than PDG value! And we can't make it go away!
- Still insufficient statistics for $m(K\pi) > 1.1 \text{ GeV}!$

$\tau \rightarrow 3\pi\nu - MOTIVATION$

- Low energy hadron dynamics couplings of Scalars (S), Pseudoscalars (P), Vectors (V), and Axialvectors (A):
 - Due to G-Parity conservation in $\tau \to 3\pi\nu$: Study of the axial vector meson sector, a_1 and possible radial excitations
 - Due to the possible participation of scalar mesons in the subsequent decay of the axial vector meson: Study of the poorly understood scalar mesons
 - search for PCAC-violating $\tau \to \nu_{\tau} \pi'$
 - Lineshapes, form factors, thresholds, meson radii
- PV signed Tau neutrino helicity $h_{\nu_{\tau}}$ (Kühn and Wagner 1984)
- Tau <u>neutrino mass</u> measurements
- Identifying τ Leptons at hadron machines

Complications with $\tau \to 3\pi\nu_{\tau}$, I

- Dominated by $a_1 \to \rho \pi$ S-wave
- Phase space integral over $\rho\pi$ S-wave is non-trivial. $\sqrt{q^2}$, $_{3\pi}(q^2)$ parameterized by Bowler in 1988.
- There's lots more than just ρπ S-wave!
 ρ'π S-wave; ρπ D-wave; ρ'π D-wave; f₂(1275)π P-wave;
 f₀(1285)π P-wave; and σ(890)π P-wave.
 √q², 3π(q²) must be obtained
 from detailed study of Dalitz plot.
- The a_1 also decays to $K^*K \to KK\pi$, contributes to total, $a_1(q^2)$ in BW.
- Isospin relates $a_1 \to \pi^- \pi^0 \pi^0$ to $\pi^- \pi^+ \pi^-$. Non-trivial relation, because of isoscalars.
- Bose symmetrization of identical pions.
- radially-excited a'_1 meson?

Complications with $\tau \to 3\pi\nu_{\tau}$, II

- There are two axial-vector $(J^P = 1^+)$ states: $a_1(1260)$ in the 3P_1 octet, $J^{PG} = 1^{+-}$, couples to W as a "first-class" current; $b_1(1235)$ in the 1P_1 octet, $J^{PG} = 1^{++}$. doesn't couple to W ("second-class" current) except via isospin violation $(f_{b_1} \approx 0)$.
- More on this, in $\tau \to 4\pi\nu_{\tau}$
- Might also be a scalar current, $\pi'^- \to (3\pi)^-$; forbidden by CVC.
- Vector current to $(3\pi)^-$ forbidden by Bose symmetry

$\tau \to 3\pi\nu$ (Theory)

 $q = p_{\pi_1} - p_{\pi_{2/3}}$ $Q = p_{\pi_1} + p_{\pi_{2/3}} - p_{\pi_{3/2}}$ $P = p_{\pi_1} + p_{\pi_2} + p_{\pi_3}$

$$\mathcal{M}|^2 = \text{Lepton Tensor} \times \text{Hadron Tensor} = L_{\mu\nu} \times J^{\mu} J^{\star\nu} = (S_{\mu\nu} + ih_{\nu\tau} A_{\mu\nu}) \times J^{\mu} J^{\star\nu}$$

- momentum transfer small in τ decays \Longrightarrow Resonance dominance \Longrightarrow Models
- Conservation of G-Parity and Parity \Longrightarrow Meson X in $\tau \to X\nu \to 3\pi\nu$ has $J^P: 0^-$ or 1^+ ($P_{\mu}J^{\mu}_{0^-} \neq 0 \Longrightarrow 0^-$ suppressed)

$\tau \to 3\pi\nu$ (THEORY) cont.

Lorentz structure of J_{μ} is well-defined:

$$\implies J_{\mu} = \left(-g_{\mu\nu} + \frac{P_{\mu}P_{\nu}}{P^2}\right) \left[(p_{\pi_1} - p_{\pi_2})^{\nu}F_1 + (p_{\pi_1} - p_{\pi_3})^{\nu}F_2 + (p_{\pi_2} - p_{\pi_3})^{\nu}F_3\right] + P_{\mu}F_4$$

Form Factors F_i :

$$F_i$$
 = Breit Wigner functions
× Angular momentum factors (S,P,D...-wave)
× (?)

For example Kühn Santamaria (KS) Model:

$$F_i = BW(a_1) \cdot BW(\rho + \beta \cdot \rho') \times 1(\text{S-wave}) \times 1$$

Other Models:

- Isgur, Morningstar and Reader (IMR) Model
- Feindt (F) Model

A.Weinstein

. . .

$\tau \to 3\pi\nu$ (Theory) cont.

$$d, (\tau \to \nu_{\tau} 3\pi) = \frac{G_F^2 V_{ud}^2}{2m_{\tau}} [L^{\mu\nu} J_{\mu} J_{\nu}^*] dLips$$

$$= \frac{G_F^2 V_{ud}^2}{32\pi^2 m_{\tau}} (1 + 2\frac{s}{m_{\tau}^2})(1 - \frac{s}{m_{\tau}^2}) \times |BW(s)|^2 \times \frac{3\pi(s)}{s} ds$$

- determine, $_{3\pi}(s) = \int J_{\mu} J^{\star \mu} ds_1 ds_2$ by measuring Dalitz plot distribution s_1 and s_2 (plus angular momentum observables of production)
- determine BW(s) by measuring invariant mass distribution of three pions

and/or

• determine Structure funct. W_X (model independent) by expanding $|\mathcal{M}|^2$ in a sum of 16 independent terms $|\mathcal{M}|^2 = L_{\mu\nu} \times J^{\mu} J^{\star\nu} = \sum_{X=1}^{16} L_X W_X$

A.Weinstein

 $\tau \to 3\pi\nu$ (Theorem v) cont.

Tau Neutrino Helicity $h_{\nu_{\tau}}$

$$|\mathcal{M}|^{2} = L_{\mu\nu} \times J^{\mu} J^{\star\nu} = (S_{\mu\nu} + ih_{\nu\tau} A_{\mu\nu}) \times J^{\mu} J^{\star\nu}$$

 \implies Asymmetric part of Hadron tensor $J^{\mu}J^{\star\nu}$ needed

- At least three pseudoscalars in final state needed
- Interference term needed

Two indentical Pions! ρ can be formed in two ways:

 $\implies \Im(BW(\rho_1) \cdot BW(\rho_2)^*)$ resolves the left- and right-handed part of the transverse polarization of the a_1 :

CLEO $\tau \to \pi^- \pi^0 \pi^0 \nu_{\tau}$

- 30800 $\tau^{\mp} \to \pi^{\mp} \pi^0 \pi^0 \nu$ events (all tag) 14600 $\tau^{\mp} \to \pi^{\mp} \pi^0 \pi^0 \nu$ lepton tag events
- Substructure: determine hadronic current J^{μ} in context of a model, via Likelihood fit to Dalitz plot in full kinematic space, in bins of $m_{3\pi}$.
- Variables s, $s_1 = m^2(\pi^-\pi_1^0)$, $s_1 = m^2(\pi^-\pi_2^0)$; and angular observables ψ , β from production:

• overall resonance shape: determine , $_{3\pi}(s) = \int J_{\mu} J^{\star \mu} ds_1 ds_2$ determine BW(s) χ^2 fit to three pion mass spectrum

CLEO $\tau \to \pi^- \pi^0 \pi^0 \nu_\tau$

Amplitudes in fit to 3π substructure:

- J_1^{μ} : s-wave $1^+ \to \rho \pi$
- J_2^{μ} : s-wave $1^+ \to \rho' \pi$
- J_3^{μ} : d-wave $1^+ \to \rho \pi$
- J_4^{μ} : d-wave $1^+ \to \rho' \pi$
- J_5^{μ} : p-wave $1^+ \to f_2(1275)\pi$
- J_6^{μ} : p-wave $1^+ \to f_0(400 1200)\pi$, denoted as $\sigma\pi$
- J_7^{μ} : p-wave amplitude of $1^+ \to f_0(1370)\pi$

mass and width for $f_0(1370)$ and $f_0(400 - 1200)$ (σ) according to Törnqvist's UQM

 $m_{f_0(1370)} = 1.186 \text{ GeV/c}^2; \quad , f_0(1370) = 0.350 \text{ GeV};$ $m_{\sigma} = 0.860 \text{ GeV/c}^2; \quad , \sigma = 0.880 \text{ GeV}$

$$A^{\mu} = \sum_{i=1}^{i=7} \beta_i \times J_i^{\mu} \times F_i$$

$$F_i = e^{-0.5R^2 p_i^{\star 2}}$$
; nominal fit with $R = 0 \Longrightarrow F_i = 1$

A.Weinstein

 τ -charm Factory Workshop, SLAC, 3/99

CLEO

P

A

 $\pi^0\pi^0\nu_{\tau}$

sood fits (< 3σ) in all $m_{3\pi}$ bins!

CLEO $\tau \to \pi^- \pi^0 \pi^0 \nu_\tau$

		Significance	${\mathcal B} { m fraction}(\%)$
ρ	s-wave		69.4
ho(1370)	s-wave	1.4σ	$0.30 \pm 0.64 \pm 0.17$
ρ	d-wave	5.0σ	$0.36 \pm 0.17 \pm 0.06$
ho(1370)	d-wave	3.1σ	$0.43 \pm 0.28 \pm 0.06$
$f_2(1275)$	p-wave	4.2σ	$0.14 \pm 0.06 \pm 0.02$
σ	p-wave	8.2σ	$16.18 \pm 3.85 \pm 1.28$
$f_0(1186)$	p-wave	5.4σ	$4.29 \pm 2.29 \pm 0.73$

- $\rho\pi$ s-wave with $\mathcal{B} \approx 70\%$ dominant as expected
- with the exception of $\rho'\pi$ s-wave all amplitudes significant
- isoscalars contribute with $\mathcal{B} \approx 20\%$ to 3π hadronic current; especially σ cannot be neglected
- couplings constant over $m_{3\pi}$; (decoupling ρ' s- and d-wave)
- ρ' shows up more strongly in d-wave than s-wave

$$\begin{aligned} &\mathcal{B}(\tau \to \pi' \nu \to \rho \pi \nu \to 3 \pi \nu) < 1.0 \times 10^{-4} \text{ at } 90\% \text{ CL} \\ &\mathcal{B}(\tau \to \pi' \nu \to \sigma \pi \nu \to 3 \pi \nu) < 1.9 \times 10^{-4} \text{ at } 90\% \text{ CL} \\ &h_{\nu_{\tau}} = -1.02 \pm 0.13 \pm 0.01 \pm 0.03 \text{ (SM } h_{\nu_{\tau}} = -1) \end{aligned}$$

CLEO $\tau \to \pi^- \pi^+ \pi^- \nu_\tau$

 $\approx 80000 \ \tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu \text{ events}$ due to isoscalars neutral differs from charged pion mode: $|0,0\rangle = \frac{1}{\sqrt{3}}|1,+1\rangle|1,-1\rangle - \frac{1}{\sqrt{3}}|1,0\rangle|1,0\rangle + \frac{1}{\sqrt{3}}|1,-1\rangle|1,+1\rangle$

 s_1/s_2 distr. solid line: isopsin predict. as measured in neutral mode a) $m_{3\pi}$: 0.6 - 0.9 b) $m_{3\pi}$: 0.9 - 1.0 c) $m_{3\pi}$: 1.0 - 1.1 d) $m_{3\pi}$: 1.1 - 1.2 e) $m_{3\pi}$: 1.2 - 1.3 f) $m_{3\pi}$: 1.3 - 1.4 g) $m_{3\pi}$: 1.4 - 1.5 h) $m_{3\pi}$: 1.5 - 1.8

\implies charged mode in good agreement with neutral mode

CLEO $\tau \to \pi^- \pi^+ \pi^- \nu_\tau$

The Asymmetry function $\frac{a(x,m_{3\pi}^2)}{\cos\psi} = h_{\nu_{\tau}}A(m_{3\pi}^2)$ plotted versus the mass of the 3π system, where

$$h_{\nu_{\tau}} = -\frac{2g_V g_A}{(g_V^2 + g_A^2)}$$

$$a(x, m_{3\pi}^2) = \left(\mathbf{\hat{p}}_{3\pi}^{\text{lab}} \cdot \left[\mathbf{\hat{p}}_{\pi_1^-}^{\text{a1}} \times \mathbf{\hat{p}}_{\pi^+}^{\text{a1}}\right]\right) sign(s_1 - s_2).$$

CLEO $\tau \to \pi^- \pi^0 \pi^0 \nu_{\tau}$

fits to substructure with varying meson radius R in form factor F

satisfactory goodness of fit for $0 \le R \le 2 \text{ GeV}^{-1}$

best fit with $R = 1.4 \text{ GeV}^{-1}$ $\implies \text{meson size of} \approx 0.7 \text{ fm}$

CLEO $\tau \to 3\pi\nu_{\tau}$

Three pion mass spectrum:

$$B(s) = B_{a_1}(s) + \epsilon \cdot B_{a'_1}(s) = \frac{1}{s - m^2_{a_1}(s) + im_{0 a_1}, \frac{a_1}{tot}(s)} + \frac{\epsilon}{s - m^2_{0 a'_1} + im_{0 a'_1}, \frac{a'_1}{tot}(s)}$$

Running mass $m^2(s)$:

$$m^{2}(s) = m_{0}^{2} + \frac{1}{\pi} \int_{s_{th}}^{\infty} \frac{m_{0, tot}(s\prime)}{(s - s\prime)} ds\prime$$

Total width , $_{tot}(s)$:

$$, tot(s) = , 2\pi^{0}\pi^{-}(s) + , 2\pi^{-}\pi^{+}(s) + , K^{\star}K(s) + , f_{0}(980)\pi(s)$$

CLEO $\tau \to 3\pi\nu_{\tau}$

constant/running mass, $K^{\star}K$, $f_0(980)\pi$, meson radius R

- good fits: constant/running mass, with and without $f_0(980)\pi, \ 0 \le R \le 2 \ {\rm GeV}^{-1}$
- $K^{\star}K$ threshold needed for good fit
- best value for $R: 1.2 \le R \le 1.4 \text{ GeV}^{-1}$

nominal fit: constant mass, K^*K threshold included, no $f_0(980)\pi$ threshold, R = 0 $m_{a_1} = 1.331 \pm 0.010 \pm 0.003$, $_{a_1} = 0.814 \pm 0.036 \pm 0.013$ $\mathcal{B}(a_1 \to K^*K) = (3.3 \pm 0.5 \pm 0.1)\%$

small excess of data at high $m_{3\pi}$ values $\implies a'_1$?

Fit with constant mass and $K^{\star}K$ threshold

 $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} \nu$ mode

participates or not participates in $\tau \rightarrow 3\pi\nu$ more statistics needed to conclusively state if a'_1

Improvement of fit yields significance of 2.9σ for a'_1 $\mathcal{B}(\tau \to a_1' \nu) = (1.6 \pm 1.1 \pm 0.3 \pm 0.7) \times 10^{-4}$

CLEO $\tau \rightarrow 3\pi \nu_{\tau} - \text{Summary}$

- high statistics in the 3π channel is permitting:
 - detailed studies of the hadronic substructure
 - precision measurements of PV signed ν_{τ} helicity
 - significant contrib. other than $a_1 \rightarrow \rho \pi$
- model-independent structure function analyses provide:
 - measurements of $h_{\nu_{\tau}}$
 - limits on non axial vector
 - clean tests of models
- model-dependent fits to full kinematic distrib. gives:
 - significant signals for isoscalars f_0 , f_2 , and σ
 - evidence for $a'_1(?)$
 - evidence for K^*K threshold
 - limits on PCAC-violating π'
- good model (charged/neutral) especially at $m_{3\pi} \leq m_{\tau}$:
 - useful for $\tau \to 3\pi\nu$ detection at hadron colliders
 - essential for extraction of $m_{\nu_{\tau}}$
- but sill many open questions:
 - $-a_1$ lineshape: running/constant mass, thresholds??
 - $-a'_1$: How much?? How does it decay??
 - substructure: couplings?? mass dependence??

$\tau^- \to (K\pi\pi)^- \nu_\tau$

- final states $K_S^0 \pi^- \pi^0 \nu_{\tau}$, $K^- \pi^+ \pi^- \nu_{\tau}$, or $K^- \pi^0 \pi^0 \nu_{\tau}$
- There are two axial-vector $(J^P = 1^+)$ states: K_a in the ${}^{3}P_1$ octet, strange partner of the $a_1(1260)$; K_b in the ${}^{1}P_1$ octet, strange partner of the $b_1(1235)$. K_b couples to W as SU(3)-violating "second-class" current.
- Both both decay to Kππ via K*π and Kρ (other final states (e.g., Kω) have been observed); mix into the physical mesons K₁(1270), K₁(1400)
- So, we have SU(3)-violation, and mixing.
- Can get Kππ from vector current via Wess-Zumino:
 K^{*}' → (K^{*}π, Kρ) → Kππ ;
 expected to be numerically small. Ignored for now.

$\tau^- \to (K\pi\pi)^- \nu_\tau$

PARAMETERIZATIONS OF K_1 DYNAMICS

• parameterize the couplings of the K_1 mesons to the W following Suzuki:

$$|W\rangle \rightarrow f_{K_1}(|K_a\rangle - \delta |K_b\rangle)$$

where δ is the SU(3)/PCAC violation parameter, to be determined phenomenologically.

The K_a and K_b then decay via the strong interaction to a vector and a pseudoscalar.
By C invariance and SU(3), the couplings of the K_a and K_b to the 1⁻ octet and the 0⁻ octet are:

$$H_{int}^{(a)} = \frac{f_a}{2} (K\rho - K^*\pi + K\phi_8 - K^*\eta_8)K_a$$
$$H_{int}^{(b)} = \frac{f_b}{2\sqrt{5}} (3(K\rho + K^*\pi) - (K\phi_8 - K^*\eta_8))K_b$$

where f_a and f_b are couplings to be determined phenomenologically.

A.Weinstein

• The K_a and K_b mix into physical K_{1a} and K_{1b} :

$$|K_{1a}\rangle = \cos\theta |K_a\rangle - \sin\theta |K_b\rangle$$
$$|K_{1b}\rangle = \cos\theta |K_b\rangle + \sin\theta |K_a\rangle$$

where θ is the mixing angle, a parameter to be determined phenomenologically.

- We identify the K_{1b} with the $K_1(1270)$ and the K_{1a} with the $K_1(1400)$.
- Notational shorthand:

$$g_a \equiv \frac{f_a}{2};$$
 $g_b \equiv \frac{3f_b}{2\sqrt{5}};$ $c \equiv \cos \theta;$ $s \equiv \sin \theta$

• For the $K\pi\pi$ final state, the relevant couplings are:

 $|K_a\rangle \to g_a(|K\rho\rangle - |K^*\pi\rangle); \qquad |K_b\rangle \to g_b(|K\rho\rangle + |K^*\pi\rangle)$

$$\langle K\rho | K_a \rangle = g_a; \qquad \langle K\rho | K_b \rangle = g_b; \langle K^*\pi | K_a \rangle = -g_a; \qquad \langle K^*\pi | K_b \rangle = g_b;$$

• The mass eigenstates K_{1a} and K_{1b} propagate with $BW(K_{1a}), BW(K_{1b})$

PARAMETERIZATIONS OF K_1 DYNAMICS, II

• The couplings:

$$\left\langle K^* \pi |H| K_{1a} \right\rangle \left\langle K_{1a} |H| 0 \right\rangle = f_{K_1} (c + \delta s) (-cg_a - sg_b) BW(K_{1a}) \\ \left\langle K\rho |H| K_{1a} \right\rangle \left\langle K_{1a} |H| 0 \right\rangle = f_{K_1} (c + \delta s) (cg_a - sg_b) BW(K_{1a}) \\ \left\langle K^* \pi |H| K_{1b} \right\rangle \left\langle K_{1b} |H| 0 \right\rangle = f_{K_1} (s - \delta c) (cg_b - sg_a) BW(K_{1b}) \\ \left\langle K\rho |H| K_{1b} \right\rangle \left\langle K_{1b} |H| 0 \right\rangle = f_{K_1} (s - \delta c) (cg_b + sg_a) BW(K_{1b})$$

Fitting for those four amplitudes (assumed relatively real) is equivalent to fitting for the parameters:
δ (SU(3)-breaking weak current),
f_{K1}g_a (overall coupling),
g_b/g_a (relative coupling of ¹P₁, ³P₁ to 1⁻, 0⁻ octets),
the K₁ mixing angle c = cos θ, s = sin θ

THE MIXING PARAMETERS

• Masses, and decay rates from PDG96, for: , $(K_{1a} \rightarrow K^*\pi)$, , $(K_{1a} \rightarrow K\rho)$, , $(K_{1b} \rightarrow K^*\pi)$, , $(K_{1b} \rightarrow K\rho)$

• We then get (all in GeV):

$, \ (K_{1a} \ \longrightarrow \ K^* \pi)$	=	(0.1636 ± 0.0161)	=	$0.00864 \times (-cg_a - sg_b)^2$
, $(K_{1a} \rightarrow K\rho)$	=	(0.0052 ± 0.0052)	=	$0.00631 \times (cg_a - sg_b)^2$
$, \ (K_{1b} \ \rightarrow \ K^* \pi)$	=	(0.0144 ± 0.0055)	=	$0.00764 \times (-sg_a + cg_b)^2$
$,\; (K_{1b}\; \rightarrow \; K\rho)$	=	(0.0378 ± 0.0100)	=	$0.00161 \times (sg_a + sg_b)^2$

- Note that $K_{1b} \to K\rho$ is close to threshold; important to get $BW(\rho)$ right (to be done).
- Fit for f_a , x, and θ . 4-fold ambiguity in the minimum:

Soln	$f_a \ ({\rm GeV})$	x	θ (degrees)	$P(\chi^2)$
1	$4.7 \pm 0.x$	1.25 ± 0.00	42 ± 2	59%
2	$7.9 \pm 0.x$	0.44 ± 0.00	48 ± 2	59%
3	$6.1 \pm 0.x$	0.83 ± 0.00	31 ± 2	59%
4	$6.9 \pm 0.x$	0.66 ± 0.00	59 ± 2	59%

• Find K by $K_S^0 \to \pi^+ \pi^-$. More efficient than doing dE/dx and TOF π^-/K^- separation at CLEOII.

CLEO $K^-\pi^+\pi^-$

- Statistical extraction of $(K^-\pi^+\pi^-)/(\pi^-\pi^+\pi^-)$
- Fit for interfering $K_1(1270) + \beta K_1(1430)$
- Fit for $K^*\pi$ and $K\rho$ in projection

ALEPH $K^-\pi^+\pi^-$

- Signals in $K_S^0 \pi^- \pi^0$, $K^- \pi^+ \pi^-$
- Simple model fits, no interpretation yet

• CLEO spectrum consistent with $\rho \to KK$; ALEPH spectrum is harder.

CLEO $\tau^- \to K^0_S K^0_S \pi \nu_{\tau}$

- CLEO sees ~200 events; $\mathcal{B}(\tau^- \to K_S^0 K_S^0 \pi^- \nu_{\tau}) = (3.5 \pm 0.4) \times 10^{-4}$
- Interpretation in terms of $K^0 \bar{K}^0 \pi^- \nu_{\tau}$ is problematical! (Depends on intermediate quantum states)
- Good candidate for m_{ντ} limit, especially since m(KKπ) resolution is good. BUT: no very high mass candidates seen yet.

$\tau^- \to K3\pi, \ KK, \ KK\pi, \ KK\pi\pi, \ KK\pi\pi, \ \cdots$

ALEPH gave a kaon blitzkrieg at TAU98: signals (and fits to models!) in many modes: K⁰π⁻π⁰, K⁻π⁺π⁻, K⁻π⁺π⁻π⁰, K⁻K⁰, K⁻K⁺π⁻, K⁻K⁺π⁻π⁰, K⁻K⁰π⁰, K⁰K⁰π⁻.

$\tau^- \to 4\pi\nu_\tau$

- Must know spectral function for m_{ντ} measurements (CLEO 1999: m_{ντ} < 28 MeV/c², 95% CL;
 4 MeV model-dependence syst error dominates!)
- CVC tests, comparing $e^+e^- \rightarrow 2\pi^+ 2\pi^-$, $\pi^+\pi^- 2\pi^0$ to $\tau^- \rightarrow \nu_\tau 2\pi^- \pi^+ \pi^0$, $\pi^- 3\pi^0$
- Dominated by $\rho' \to \rho \pi \pi, \pi \omega$
- ρ', ρ'' parameters of interest
- Even the simplest models are already complicated!
- $\rho' \to a_1 \pi$ seen in e^+e^- ; CLEO sees no significant evidence for it!
- Search for second-class currents: $\tau \to \nu_{\tau} b_1$

SECOND-CLASS CURRENTS

• There are two axial-vector $(J^P = 1^+)$ states: $a_1(1260)$ in the 3P_1 octet, $J^{PG} = 1^{+-}$, couples to W as a "first-class" current; $b_1(1235)$ in the 1P_1 octet, $J^{PG} = 1^{++}$. doesn't couple to W ("second-class" current) except via isospin (G-parity) violation $(f_{b_1} \approx 0)$.

•
$$a_1 \rightarrow \rho \pi$$
 (S-wave) $\rightarrow 3\pi$ dominant;
 $\rho' \rightarrow \omega \pi$ (P-wave) $\rightarrow 4\pi$ dominant;
 $b_1 \rightarrow \omega \pi$ (S-wave) $\rightarrow 4\pi$ dominant.

• The difference in G-parity for these states is is reflected in the different expected polarization of the vector meson, and thus the angular distribution $\cos \chi = \hat{n}_{\perp}^{\omega} \cdot \hat{p}_{\pi_4}$

SECOND-CLASS CURRENTS

J^P	\mathbf{L}	$F(\cos\chi)$
1-	1	$1 - \cos^2 \chi$
1^+	0	1
1^+	2	$1 + 3\cos^2\chi$
0^{-}	1	$\cos^2 \chi$

• CLEO sees no evidence of $b_1 \to \omega \pi$:

$\tau^- \to \nu_\tau \eta(n\pi)^-$

- $\tau^- \rightarrow \nu_\tau \eta \pi^-$ is forbidden by G-parity; $\mathcal{B}(\nu_\tau \eta \pi^-) < 1.4 \times 10^{-4}$ at 95% CL
- G-parity (isospin) is violated; this decay will be seen at some level
- $SU(3)_f$ -violating $\tau^- \to \nu_\tau \eta K^-$ is seen: $\mathcal{B}(\nu_\tau \eta K^-) = (2.6 \pm 0.5) \times 10^{-4}.$
- $\tau^- \to \nu_\tau \eta \pi^- \pi^0$ proceeds via the W-Z chiral anomaly; $\mathcal{B}(\nu_\tau \eta \pi^- \pi^0) = (1.7 \pm 0.3) \times 10^{-3}.$
- W-Z Lorentz structure has not been definitively established.
- CLEO sees $\tau^- \to \nu_\tau \eta (3\pi)^-$: $\mathcal{B}(\nu_\tau \eta \pi^- \pi^+ \pi^-) = (3.4 \pm 0.8) \times 10^{-4}.$ $\mathcal{B}(\nu_\tau \eta \pi^- \pi^0 \pi^0) = (1.4 \pm 0.6) \times 10^{-4}.$
- Rich substructure! Only beginning to be explored. Eg, $f_1\pi$, $f_1 \rightarrow a_0\pi$, $a_0 \rightarrow \eta\pi$

$5\pi, 6\pi, 7\pi$

• Small BRs:

$$\begin{aligned} \mathcal{B}(\nu_{\tau} 2\pi^{-} \pi^{+} 2\pi^{0}) &= (5.3 \pm 0.4) \times 10^{-3} \\ \mathcal{B}(\nu_{\tau} 3\pi^{-} 2\pi^{+}) &= (7.5 \pm 0.7) \times 10^{-4} \\ \mathcal{B}(\nu_{\tau} 2\pi^{-} \pi^{+} 3\pi^{0}) &= (2.9 \pm 0.7) \times 10^{-4} \\ \mathcal{B}(\nu_{\tau} 3\pi^{-} 2\pi^{+} \pi^{0}) &= (2.2 \pm 0.5) \times 10^{-4} \\ \mathcal{B}(\nu_{\tau} 3\pi^{-} 2\pi^{+} 2\pi^{0}) &< 1.1 \times 10^{-4} \\ \mathcal{B}(\nu_{\tau} 7\pi^{\pm}) &< 2.4 \times 10^{-6}. \end{aligned}$$

- Very complex sub-structure
- First step: enumerate isospin content; eg, $(3\pi^- 2\pi^+ \pi^0)/(6\pi)$ vs $(2\pi^- \pi^+ 3\pi^0)/(6\pi)$:

INCLUSIVE HADRONIC PHYSICS

• V, A spectral functions $\Rightarrow \alpha_S$, chiral condensates

• V^s , A^s spectral functions $\Rightarrow m_s$

$$\delta_{mass}^s \simeq -8 \frac{\bar{m}_s^2}{m_\tau^2} \left[1 + \frac{16}{3} \frac{\alpha_S}{\pi} + \mathcal{O}\left(\frac{\alpha_S}{\pi}\right)^2 \right],$$

- tests of CVC in inclusive rate
- improvements on hadronic vacuum polarization contribution to $(g-2)_{\mu}$, $\alpha_{QED}(q^2)$

A.Weinstein

INCLUSIVE SUM RULES

• First Weinberg sum rule:

$$\frac{1}{4\pi^2} \int_{0}^{\infty} ds \left(v_1(s) - a_1(s) \right) = f_{\pi}^2$$

• Second Weinberg sum rule:

$$\frac{1}{4\pi^2} \int_{0}^{\infty} ds \cdot s \left(v_1(s) - a_1(s) \right) = 0$$

• Das-Mathur-Okubo sum rule:

$$\frac{1}{4\pi^2} \int_{0}^{\infty} \frac{ds}{s} \left(v_1(s) - a_1(s) \right) = f_{\pi}^2 \frac{\langle r_{\pi}^2 \rangle}{3} - F_A$$

• Isospin-violating sum rule:

$$\frac{1}{4\pi^2} \int_0^\infty ds \qquad s \ln \frac{s}{\Lambda^2} \left(v_1(s) - a_1(s) \right) = -\frac{16\pi^2 f_\pi^2}{3\alpha} \left(m_{\pi^{\pm}}^2 - m_{\pi^0}^2 \right).$$

• Note inevitable lack of statistical precision near $s_0 = m_{\tau}^2$; just where you need it most!

CONCLUSIONS ON HADRONIC STRUCTURE IN TAU DECAYS

- There's LOTS OF IT
- there are many unresolved questions, even in low multiplicity final states
- All the open questions require:
 - lots more statistics;
 - excellent π/K separation;
 - tight control of backgrounds.
- if the *mystery* of low energy meson dynamics appeals to you, there is lots to do!

Issues re E_{cm} for tau physics

- Efficiency at 10.6 GeV B-factory:
 - The boost of the hadronic system means that soft pions will not get absorbed by the beam-pipe.
 - Soft π^0 's will not get lost in the calorimeter under the background from secondary hadronic showers.
 - The tracks all go in approx the same direction, so acceptance (eg, n particles into $|\cos \theta| < 0.9$) is 0.9^1 rather than $(0.9)^n$.
- Cutting into dynamics:
 - At B-F, acceptance cuts (on min p_t and max $|\cos \theta|$) maximum polar angle) \Rightarrow big loss of efficiency, BUT, don't cut into phase space of the decay (*e.g.*, acceptance is reasonably uniform accross 3pi Dalitz plot).
 - At the low energies of a τcF , the acceptance cuts into the dynamics (corners of DP).

This may severely limit the attainable systematic errors.

Issues re E_{cm} for tau physics, II

• multiple-scattering:

Higher momentum tracks will not be severely multiple-scattered. Measurement errors are worse since σ_p/p goes like p, but multiple scattering gets better since p is larger, and that will dominate at both energies. So mass resolution is better at high energy.

• Particle ID: $K\pi$ separation:

A τ cF definitely needs good K/π separation in order to compete with this generation of semileptonic decay analyses. It should not be too difficult, with, eg, precision TOF. The main problem is that low-momentum kaons range out and are thus lost, cutting into the dynamics.

- K_S^0 , K_L^0 efficiency, background:
 - Higher momentum K_S^0 's are easier to separate from background using seperated-vertex cuts; reconstruction efficiency *might* be worse.
 - Higher momentum K_L^0 's can be tagged more efficiently in instrumented flux returns (like BaBar's).

Issues re E_{cm} for tau physics, III

• Lepton ID:

At low momentum, electrons and muons are harder to distinguish from pions using conventional techniques (E/p and muon walls) so precision TOF and/or Cerenkov, and finely-segmented muon rangeout system, is of course required.

• Displaced τ vertices:

The boost means that the tau decay vertex is displaced, which can help in a variety of analyses, especially those which hope to use that info to estimate the tau direction (which won't work very well, even at B-Factories). I don't have much faith in the utility of using the separated vertices to distinguish tau pairs from hadronic background. There are better and easier ways.

- $q\bar{q}$ backgrounds:
 - At τcF, events in which both taus decay semi-hadronically have a severe combinatoric background from hadronic events; to do precision physics, you need to tag using leptons (requiring good lepton id) or monochomatic pion. There's no such problem at B-Factories.
 - Background from qqbar events at B-Factories means that only leptonic-tagged events are useful for high-multiplicity semi-leptonic decays; but that problem is also at tcF (I'm not sure whether it is better or worse!).

• Polarization:

At threshold, the taus are polarized along the beam. That *might* prove useful for, polarization-dependent measurements like Michel params or analysis of 3pinu. Might.

• For the study of semi-hadronic tau decays, I see no particular difference between threshold and 3.67 GeV...