Prototype data analysis

Josef Uher

• • • Outline

o status of

- hodoscope
- lead glass
- scintillator (double rejection counter)

o system stability

Detector layout and modules tested with LED

System stability – the prototype

Time dep. of peak position

and 1 ADC role 7. Shice compared data on The

2.5 Time [days]

2 2612

G2611

2610

2609

2608

2607

2606

2805

Measurement from 2005/06/17

n

2.5 Time (davs)

Marker, Slot 2, pad 1, SLAC ADC

Marker

• • • System stability

Marker in the Russian MCP

 $\Delta \sim 2 \text{ counts}$

"Delta function"

(start and stop provided by the same, but delayed signal)

∆ ~ 0.6 count

Marker in the prototype

$\Delta \sim 5$ counts

Measurement from 2005/06/17

• • • Conclusion

- All beam electronics was tested and is functioning
 - hodoscope
 - quartzbar start counter
 - Russian MCP
 - scintillator (quantacon + 4 pad MCP)
 - lead glass
- The timing markers will be usefull for the time corrections, further study is needed.