Development of a pad interpolation algorithm using charge-sharing

Charge sharing between two pads

- When a photon hits the MCP between two pads, the avalanches shares the charge to two pads.
- We want to find a method to determine the photon position for this type of events using both TDC and ADC information from the two pads.

PMT scan configuration

- For PMT scan, the photon are sent by an optic fiber positioned with a precision of few microns. So, we know where the photons hits the pad with an high precision.
- In addition, for each trigger we measure TDC and ADC values. If a TDC value is within a certain window (650-900 counts), we call it an event (a photon hit).

Position of laser for single TDC hit (no ADC information used)

- I have plotted the position of the laser for events with a single TDC hit.
- On the border of each pad, there are fewer single events (probably multiple events).
- Region outside of 4-pad region (blue color) is due (a) photon scatters in the lens optics, or (b) avalanche charge sharing.

Position of laser for double TDC hit (no ADC information used)

- If two TDC fire at the same time on two pads, plot one event at the position of the laser beam.
- These types of events happen near the border between two pads.
- In the center of 4 pads, there is less of double events (there is probably triple and quadruple events).

Position of laser for triple TDC hit (no ADC information used)

- Triple TDC events happen near the center of the four pad.
- Triple events represent only 10.1% of all multiple events.

Position of laser for quadruple TDC hit (no ADC information used)

- Quadruple TDC events happen near the center of the four pad.
- Quadruple events
represents only
2.5\% of all multiple events.

Statistics on TDC events multiplicity (no ADC information used)

Multiplicity	Number of events	Proportion
1	26109560	75.17%
2	7541089	21.71%
3	872630	2.51%
4	212722	0.61%

- There is a considerable fraction of double events due to the charge sharing. Therefore, it would be useful to use them to improve the photon hit position.
- Concerning triple and quadruple hit, there are few. It's probably sufficient to consider that photon have hit middle of the 4 pads.

ADC pedestal fit

- I have used the scan 20, where a laser light is blocked, although the laser is on. It measures a pedestal distribution.
- I fit the pedestal distribution for each pad with a ROOT macro and store the results in a file.

Gain measurement

- I fit the ADC distribution of scan 27 with a sum of two gaussian function.
- The first gaussian has only one free parameter (amplitude), the other parameter are parameters found for pedestal run.
- All the second gaussian parameters are free, but their start values are choose in order to catch the ADC peak.

Position of laser for single ADC hit (no TDC information used)

- I have plotted the position of the laser for events with a single ADC hit above the cut.
- On the border of each pad, there are fewer single events (probably multiple events).
- Region outside of 4-pad region (blue color) is due (a) photon
scatters in the lens optics, or (b) avalanche charge sharing.

Position of laser for double ADC hit (no TDC information used)

- If two ADC above the cut fire at the same time on two pads, I plot one event at the position of the laser beam.
- These types of events happen near the border between two pads.
- In the center of 4 pads, there is less double events (there is probably triple and quadruple events).

ADC Cut $=3 \sigma$

Position of laser for triple ADC hit (no TDC information used)

- If three ADC above the cut fire at the same time on three pads, I plot one event at the position of the laser beam.

ADC Cut $=3 \sigma$

Position of laser for quadruple ADC hit (no TDC information used)

- If four ADC above the cut fire at the same time on four pads, I plot one event at the position of the laser beam.

Statistics on ADC events multiplicity (no TDC information used)

Multiplicity	Number of events	Proportion
1	28429210	68.88%
2	10310340	24.98%
3	1780130	4.31%
4	756115	1.83%

Study of corrected function ADC21/(ADC22+ADC21) $=f(x)$

- Each ADC value is corrected with a formula: $\mathrm{ADC}_{\text {cor }}=$ (ADC-Pedestal Peak Position)/Gain
- Events are cut if the ADC of the two pads are under 5σ ADC cut.

Zone used to

corrected function ADC21/(ADC21+ADC22) as a function of x

2 mm

Fit of corrected function ADC21/(ADC22+ADC21) $=f(x)$

- I have extract the profile function of the previous graph on a 2 mm range around the border in order to have only the ratio of ADC as a function of x or y (depends of the border choose).
- For different pads, p1 varies between 0.51 and 0.61 .ps varies between 0.35 and 0.44 .
- I have generated a file containing the results of fits of all borders (Fit_Profile.txt).
- Events are cut if the ADC of the two pads are under 5σ

Profile of ADC21/ADC22+ADC21 for at least one TDC event
 ADC cut.

Test of interpolation

predicted x as a function of x of the laser beam

- An event is interpolated if there is a TDC hit on pad 21 or 22 and ADC 21 and ADC 22 pass a 3σ ADC cut. There is a cut on the ADC Ratio (0.1<Ratio<0.9).

Zone used to fill the histogram

22
$x_{\text {predicted }}=39.57+\operatorname{erf}^{-1}(($ Ratio-0.5 $) / 0.5684) / 0.342$
$\downarrow 2 \mathrm{~mm}$

Estimation of error on x

- The cut are the same as in the previous slide.
- The error is more little than 1 mm . Consequently, the precision is significantly better than the size of a pad.
- The error distribution is not a gaussian. There is a large tail due to (a) photon scatters in the lens optics, or (b) avalanche charge sharing, or (c) a S / N ratio.

Effet of S / N on the tail

- When cut on pulse height (ADC) increases, a number of events decreases and a tail of the distribution becomes shorter.
- A compromise have to be done on pulse height (ADC) cut.

Normalized (maximum=1) distribution of errors

- A large tail corresponds to poor S/N ratio, which corresponds to small pulse heights.

Conclusion

- 90% of multiple hit are double hit.
- Double hit are essentially localized near the border of 2 pads.
- In order to improve the measurement of photon position, it's possible to use ADC information if the photon hit near a border.
- The error made with this method is typically 0.9 mm.

