The initial look at the FDIRC Optical Design

J. Va’vra

Focusing DIRC Prototype optics:

- Keep at least initially a similar geometry as in the FDIRC prototype, which has a size chosen so that a pixel size of $6 \times 6 \mathrm{~mm}$ provides the same "pixel resolution" as the BaBar DIRC (FDIRC prototype has a pixel resolution of $\sigma=6 \mathrm{~mm} / \sqrt{ } 12 \sim 6 \mathrm{mrad}$).

The point of this study:

- Transform the FDIRC prototype geometry to Mathematica. Work out a geometry in 3D.
- Do not use Optica (it is too unclear to me).
- Assume at the moment that the space has a constant refraction index of quartz (no glue,or oil, etc.).
- Use the most general parameterization of the quadratic mirror surface.
- Study a flat detector surface \& spherical, cylindrical and parabolic mirror surfaces.
- Find the most general detector surface in 3D for the final FDIRC.

Photon $x-y$ distribution at the end of the bar $(z=0)$:

Photon starting point in the middle of a bar:
nrefr=1.47;
barw $=3.5$; barh $=1.7$; barl $=144 * 2.54$;
$\mathrm{x} 0=0 ; \mathrm{y} 0=(0+$ Random[]*barh-barh $/ 2) ; \mathrm{z} 0=-\operatorname{barl} / 2$;
zbarstart $=-$ barl; zbarend $=0$;
Theta $=90 /(180 / \mathrm{Pi}) ; \mathbf{P h i}=90 /(180 / \mathrm{Pi})$;
Thetac $=47.3 /(180 / \mathrm{Pi}) ;$ Phic $=(180+$ Random []$* 2 * 45-45) /(180 / \mathrm{Pi}) ;$

Assume a general quadratic shape for the mirror:

A general form of 3D quadratic shape is:
$a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z+2 a_{14} x+2 a_{24} y+2 a_{34} z+a_{44}=0$

Intersection of photons and mirror:

$\mathrm{xm0}=0 ; \mathrm{ym0}=23.0 ; \mathrm{zm0}=-86.6 ; \mathrm{r}=2 *(49.5) ;$

Note: Based on the Vellum program of the FDIRC prototype, expect for $\mathrm{x}_{\mathrm{m}} \sim-8$ to $8, \mathrm{y}_{\mathrm{m}} \sim 8-11$ in the bar coordinate system. The periodicity in this image can be observed if one moves the mirror a bit further along the z axis.

Intersection of photons and FDIRC detector plane:

a) Spherical mirror \& flat detector plane:
$\left(\mathbf{x}-\mathbf{x} \mathbf{m}_{0}\right)^{\mathbf{2}}+\left(\mathbf{y}-\mathbf{y m}_{\mathbf{0}}\right)^{\mathbf{2}}+\left(\mathbf{z}-\mathbf{z m} \mathbf{m}_{0}\right)^{\mathbf{2}}-\mathbf{r}^{\mathbf{2}}=\mathbf{0}$
$a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z+2 a_{14} x+2 a_{24} y+2 a_{34} z+a_{44}=0$
$\mathrm{xm} 0=0 ; \mathrm{ym} 0=23.0 ; \mathrm{zm} 0=-86.6 ; \mathrm{r}=2 *(49.5) ; \leftarrow$ CRID mirror parameters
$\mathrm{a} 11=1 ; \mathrm{a} 22=1 ; \mathrm{a} 33=1 ; \mathrm{a} 12=0 ; \mathrm{a} 13=0 ; \mathrm{a} 23=0.0 ; \mathrm{a} 14=-\mathrm{xm} 0 ; \mathrm{a} 24=-\mathrm{ym} 0 ; \mathrm{a} 34=-\mathrm{zm} 0 ; \mathrm{a} 44=\mathrm{xm} 0 * \mathrm{xm} 0+\mathrm{ym} 0 * \mathrm{ym} 0+\mathrm{zm} 0 * \mathrm{zm} 0-\mathrm{r} * \mathrm{r} ;$
For the FDIRC prototype geometry with a spherical mirror one gets a familiar image (in the bar coordinate system, and after a substraction of a constant of 35.55 from y_{f}):

Note: Based on the Vellum program of the FDIRC prototype, expect for $x_{f} \sim-20$ to 20, $y_{f} \sim 35$, $\mathrm{z}_{\mathrm{f}} \sim$-(3-6) in the bar coordinate system. The calculation is not that far from the expected numbers.

b) Circular cylindrical mirror \& flat detector plane:

$\left(\mathbf{y}-\mathbf{y m}_{0} / \mathbf{a}\right)^{2}+\left(\mathbf{z}-\mathrm{zm}_{0} / \mathrm{b}\right)^{\mathbf{2}}-1=0$ (axis along the \mathbf{x}-axis)
$a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z+2 a_{14} x+2 a_{24} y+2 a_{34} z+a_{44}=0$
$\mathrm{xm} 0=0 ; \mathrm{ym} 0=23.0 ; \mathrm{zm} 0=-86.6 ; \mathrm{r}=2 *(49.5) ; \mathrm{a}=\mathrm{r} ; \mathrm{b}=\mathrm{r}$;
$\mathrm{a} 11=0 ; \mathrm{a} 22=1 /\left(\mathrm{a}^{*} \mathrm{a}\right) ; \mathrm{a} 33=1 /\left(\mathrm{b}^{*} \mathrm{~b}\right) ; \mathrm{a} 12=0 ; \mathrm{a} 13=0 ; \mathrm{a} 23=0.0 ; \mathrm{a} 14=0 ; \mathrm{a} 24=-\mathrm{ym} 0 /\left(\mathrm{a}^{*} \mathrm{a}\right) ; \mathrm{a} 34=-\mathrm{zm} 0 /\left(\mathrm{b}^{*} \mathrm{~b}\right) ; \mathrm{a} 44=\mathrm{ym} 0^{\wedge} 2 / \mathrm{a}^{\wedge} 2+\mathrm{zm} 0^{\wedge} 2 / \mathrm{b}^{\wedge} 2-1 ;$
If the FDIRC prototype would have a circular cylindrical mirror and similar dimensions, one would get this image (in a bar coordinate system):

The resolution loss seems to be smaller compared to the spherical mirror, perhaps by a factor of two.

c) Parabolic cylindrical mirror \& flat detector plane:

$\left(\mathbf{y}-\mathbf{y m}_{0}\right)^{\mathbf{2}}+\mathbf{b}\left(\mathbf{z}-\mathbf{z m} \mathbf{m}_{\mathbf{0}}\right)=\mathbf{0}$ (axis along the x -axis)
$a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z+2 a_{14} x+2 a_{24} y+2 a_{34} z+a_{44}=0$
$\mathrm{xm} 0=0 ; \mathrm{ym} 0=23.0 ; \mathrm{zm} 0=-86.6 ; \mathrm{r}=2 *(49.5)$;
$\mathrm{b}=\mathrm{r}$;
$\mathrm{a} 11=0 ; \mathrm{a} 22=1 ; \mathrm{a} 33=0 ; \mathrm{a} 12=0 ; \mathrm{a} 13=0 ; \mathrm{a} 23=0.0 ; \mathrm{a} 14=0 ; \mathrm{a} 24=-\mathrm{ym} 0 ; \mathrm{a} 34=\mathrm{b} / 2 ; \mathrm{a} 44=\mathrm{ym} 0^{\wedge} 2-\mathrm{b}^{*} \mathrm{zm} 0 ;$
For the FDIRC prototype geometry with a parabolic cylindrical mirror one gets this image (in a bar coordinate system):

Similar result to that of the circular cylindrical mirror.
d) Flat detector plane, no mirror:

3 points defining the detector plane:
Detector plane

Detector x-y image plane:

Move detector back by $\mathbf{5 0} \mathbf{~ c m}$:

Indeed, there is a periodic kaleidoscopic pattern even without a mirror. It is created by the square bar. To see it better, move the detector plane back by 50 cm . Since the wiggles originate from the bar, i.e., the mirror has nothing to do with it, it cannot be easily fixed.

Find a detector focal surface in 3D

a) Spherical mirror:

zbarstart $=-$ barl; zbarend $=0$;
Theta $=(60+$ Random []$* 2 * 34-40) /(180 / \mathrm{Pi}) ;$ Phi $=90 /(180 / \mathrm{Pi})$;
Thetac $=47.3 /(180 / \mathrm{Pi}) ;$ Phic $=180 /(180 / \mathrm{Pi}) ;$ Vary Phic
$\mathrm{xm} 0=0 ; \mathrm{ym} 0=23.0 ; \mathrm{zm} 0=-86.6 ; \mathrm{r}=2 *(48.6)$; Choose r as one has in the FDIRC prototype Vellum study
$\mathrm{a} 11=1 ; \mathrm{a} 22=1 ; \mathrm{a} 33=1 ; \mathrm{a} 12=0 ; \mathrm{a} 13=0 ; \mathrm{a} 23=0.0 ; \mathrm{a} 14=-\mathrm{xm} 0 ; \mathrm{a} 24=-\mathrm{ym} 0 ; \mathrm{a} 34=-\mathrm{zm} 0 ; \mathrm{a} 44=\mathrm{xm} 0 * \mathrm{xm} 0+\mathrm{ym} 0 * \mathrm{ym} 0+\mathrm{zm} 0 * \mathrm{zm} 0-\mathrm{r} * \mathrm{r} ;$

Photon population:

In the region, where the FDIRC prototype works ($\mathrm{z} \sim-6 \mathrm{~cm}$), the calculated focal plane is close to a straight line. So our solution with a flat window was OK. Our results would be perfect for $\mathrm{k}_{\mathrm{x}}=0$ of the detector plane would have zig-zag shape.

Phic $=135 /(180 /$ Pi $) ;$ or Phic $=225 /(180 / \mathrm{Pi})$;

Phic $=110 /(180 / \mathrm{Pi}) ;$ or Phic $=250 /(180 / \mathrm{Pi})$;

The detector surface shape is changing as a function of k_{x}, mainly as k_{y} is approaching 0 , which corresponds to photons going parallel to z axis.

b) Circular cylindrical mirror:

zbarstart $=-$ barl; zbarend $=0$;
Theta $=(60+$ Random []$* 2 * 30-40) /(180 / \mathrm{Pi}) ;$ Phi $=90 /(180 / \mathrm{Pi})$;
Thetac $=47.3 /(180 /$ Pi $) ;$ Phic $=180 /(180 /$ Pi $) ;$ Vary Phic
$\mathrm{xm} 0=0 ; \mathrm{ym} 0=23.0 ; \mathrm{zm} 0=-86.6 ; \mathrm{r}=2 *(48.6)$; Choose r as one has in the FDIRC prototype Vellum study
$\mathrm{a} 11=1 ; \mathrm{a} 22=1 ; \mathrm{a} 33=1 ; \mathrm{a} 12=0 ; \mathrm{a} 13=0 ; \mathrm{a} 23=0.0 ; \mathrm{a} 14=-\mathrm{xm} 0 ; \mathrm{a} 24=-\mathrm{ym} 0 ; \mathrm{a} 34=-\mathrm{zm} 0 ; \mathrm{a} 44=\mathrm{xm} 0 * \mathrm{xm} 0+\mathrm{ym} 0 * \mathrm{ym} 0+\mathrm{zm} 0 * \mathrm{zm} 0-\mathrm{r} * \mathrm{r} ;$

Photon population:

Detector focal surface ($k_{x}=0$):

In the region, where the FDIRC prototype works ($\mathrm{z} \sim-6 \mathrm{~cm}$), the calculated focal plane is close to a straight line. So our solution with a flat window was OK.

Phic $=135 /(180 /$ Pi $) ;$ or Phic $=225 /(180 / \mathrm{Pi}) ;$

The cylindrical mirror is not much of a help !!

Effect of the wedge

4.2.2008
barw $=3.5$; barh $=1.7 ;$ barl $=144 * 2.54$;
$\mathrm{wx}=3.325 ; \mathrm{wy}=7.8 ;$ zwedge $=9.1$;
The wedge can alter the direction cosines k_{x} (a sign) and k_{y} (both a value and a sign).

Assume: Very similar dimensions as in the FDIRC prototype; the same mirror radius.

Ring image at $\mathrm{z}=$ zwedge:
4.11.2008

- Add 10 cm of arbitrary y-offset to each separate case:

Image at bar and wedge exit:
$x-y$ image at bar exit $(z=0)$:

Direction cosines at the bar exit:
k_{y} vs. k_{x} :

Direction cosines at the wedge exit:
k_{y} vs. k_{x} :

$x-y$ image at bar exit $\left(z=z_{\text {wedge }}\right)$:

k_{z} vs. k_{x} :

Wedge \& Circular cylindrical mirror \& flat detector plane: $\left(\mathrm{y}-\mathrm{ym}_{0} / \mathbf{a}\right)^{2}+\left(\mathrm{z}-\mathrm{zm}_{0} / \mathrm{b}\right)^{2}-1=0$ (axis along the x -axis)
 $a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z+2 a_{14} x+2 a_{24} y+2 a_{34} z+a_{44}=0$
 $\mathrm{xm} 0=0 ; \mathrm{ym} 0=23.0 ; \mathrm{zm} 0=-86.6 ; \mathrm{r}=2 *(49.5) ; \mathrm{a}=\mathrm{r} ; \mathrm{b}=\mathrm{r}$;
 $\mathrm{a} 11=0 ; \mathrm{a} 22=1 /\left(\mathrm{a}^{*} \mathrm{a}\right) ; \mathrm{a} 33=1 /(\mathrm{b} * \mathrm{~b}) ; \mathrm{a} 12=0 ; \mathrm{a} 13=0 ; \mathrm{a} 23=0.0 ; \mathrm{a} 14=0 ; \mathrm{a} 24=-\mathrm{ym} 0 /\left(\mathrm{a}^{*} \mathrm{a}\right) ; \mathrm{a} 34=-\mathrm{zm} 0 /\left(\mathrm{b}^{*} \mathrm{~b}\right) ; \mathrm{a} 44=\mathrm{ym} 0^{\wedge} 2 / \mathrm{a}^{\wedge} 2+\mathrm{zm} 0^{\wedge} 2 / \mathrm{b}^{\wedge} 2-1 ;$

If a new FDIRC would have a wedge \& circular cylindrical mirror and similar dimensions as the FDIRC prototype in ESA, one would get these results (all in the bar coordinate system):

Image at the cylindrical mirror surface:

1) Detector plane located in the cylindrical mirror focus:

FDIRC ring images at the detector surface with a cylindrical mirror:

Real DIRC ring images at BaBar:

2) Move the detector plane out of focus $(y=y+5 \mathrm{~cm})$:

FDIRC ring images at the detector surface with a cylindrical mirror:

- Both images almost merged.

3) Move the detector plane out of focus $(y=y+10 \mathrm{~cm})$:

FDIRC ring images at the detector surface with a cylindrical mirror:

- Both images merged.

4) Move the detector plane out of focus other way $(y=y-5 c m)$:

FDIRC ring images at the detector surface with a cylindrical mirror:

- This is another solution: separate images completely and analyze them separately.

