PiLas tests in ESA using a fiber splitter:

TOF Start:

TOF Stop:

Run 288, 1-st MCP at $2.27 \mathrm{kV}, 2-\mathrm{nd}$ MCP at 1.88 kV
TAC start: TOF Start, TAC stop: TOF Stop, use a fiber splitter to feed both detectors Comparable number of photoelectrons as I had in the trailer (Npe ~ 50)

Run 289, the same as run 288, but add a ground strap between TAC \& ADC crates

$$
\begin{aligned}
\sigma_{\text {single detector }} & \sim(1 / \sqrt{ } 2) \sigma_{\text {double detector }} \\
& \sim 7.2 \mathrm{pS}
\end{aligned}
$$

- With a help of surveyors, align the following counters in x \& y: hodoscope \#2, TOF_start and TOF_stop, and check alignment of the hodocope \#1.

Results:

- Hodoscope 1: elevation +0.110 ", horizontal: $+0.127 "$ (+ means that counter is towards North).
- Hodoscope 2: elevation $-0.035^{\prime \prime}$, horizontal: $+0.020^{\prime \prime}$.
- TOF-Start: elevation $+0.016^{\prime \prime}$, horizontal: $+0.009^{\prime \prime}$.
- TOF-Stop: elevation -0.016", horizontal: +0.000 ".

Beam line modifications sine August 2006 (last run)

 (T-469/492 test)

- A lot of new rather tight restrictions added by the most recent ILC test (Mike Woods et al.).
- Plus, a horizontal focus quad Q-38 has been moved by 3 mm since we run last time.

Beam tuning of electron beam at far end of ESA

Start with a bad spectrum in lead glass

Electrons in lead glass:

1-st hodoscope:

- Start with a bad spectrum in lead glass - impossible to separate singles from doubles
- A long tail observed in the 1 -st hodoscope

After finishing tuning of $\mathrm{x} \& \mathrm{y}$ correctors

1-st hodoscope:

- A clear improvement - easy to separate singles from doubles or tripples
- No more tail in the 1 -st hodoscope
- However, beam is still not centered in the hodoscope.

Process of tuning of the $\mathrm{x} \& \mathrm{y}$ correctors

- Tuning of upstream corrector XCOR_2890 not very effective.
- Tunning of downstream corrector XCOR_3212 much more effective

Centered beam position in the hodoscope does give the best lead glass spectrum

- We coulkd center the beam on our hodoscope, but the lead glass spectrum is not the best at that point. Decided to leave it off center.
- For a best spectrum in lead glass, the beam is not centered in the hodoscope

Conclusion

- Can coexist with LCLS beam energy, at least in principle.
- Have a good particle yield with a $10 \mathrm{GeV} / \mathrm{c}$ secondary beam. Adjust the flux by SL10 slits (defines a momentum byte).
- SL10 slits: 0.2%, C24 slits: 4 mm (more open than in August 2006).
- Achieve a good lead glass spectrum by tuning of XCOR_3212 and YCOR_3313. However, since then it detoriorated a bit. Not clear why.
- An optimum tune from a point of view of the lead glass does not center the beam in the hodoscopes.
- Cannot rely on alignment marks on the ESA floor (the beam line is too complicated upstream).

