Burle MCP-PMT in the scanning setup during the ADC test: \quad 1.19.2007

- Populate two columns of the tube, the rest is the pads are shorted to ground or amplifiers loaded by 50 Ohms .
- Burle MCP-PMT \#11, serial number 09130301
- Increase voltage to 2.5 kV to offset a pulse height loss due to splitter
- Have only 1 amplifier card available (the 2-nd one does not work), 1 CFD, 1 TDC and 1 ADC
- Split the amplifier signal to CFD \& Phillips TDC branch, and to Phillips ADC branch
- Phillips TDC 7186 is CAMAC slot 11, Phillips ADC 7166 is in slot 12.

		1	2	5	${ }^{3+}$		*	${ }^{30}$	
,	+	18	\%	35	s		5	s	
,	-			3	30		5	s	
		5	6						
,	-	7	8	"	\cdots		s	s	
,	*		\%	${ }^{4}$	2		-		-
${ }^{1}$	-		$:$	${ }^{4}$	${ }^{4}$		*	\%	
15	${ }^{14}$	3	"	4	*		${ }^{6}$	\because	
${ }^{15}$	${ }^{16}$	15	16	"	*		\cdots	\cdots	

Connections:

Pad 17 -> TDC ch. 1, ADC ch. 1
Pad 18 -> TDC ch. 2, ADC ch. 2
Pad 31 -> TDC ch. 15, ADC ch. 15
Pad 32 -> TDC ch. 16, ADC ch. 16

Look at the charge sharing with a splitter for ADC:

- MCP-PMT at -2.5 kV ; the early design of the MCP-PMT.
- Use a passive splitter to provide an input to CFD \& ADC.
- Top trace: pad 23, bottom trace: pad 24.
- CFD at a nominal threshold of $\mathbf{- 1 0 0 \mathrm { mV }}$.

Center, Amplifier/ADC signals 7,8

$+1 \mathrm{~mm}$

Center, CFD outputs

$(\mathrm{x}, \mathrm{y}): \quad 39.5,12.0$
(x,y): 38.5, 12.0

- Change CFD threshold to $-\mathbf{3 0} \mathrm{mV}$.

Is a 30 mV threshold safe ? It looks OK in the scanning setup:

(x,y): 39.5, 12.0

Center, CFD outputs

$+2 \mathrm{~mm}$

$-1 \mathrm{~mm}$
$-3 \mathrm{~mm}$

$+1 \mathrm{~mm}$

$+3 \mathrm{~mm}$

$-2 \mathrm{~mm}$

Corner, Amplifier/ADC signals 7,8

Center, Amplifier/ADC signals 7,8

Corner, CFD outputs

Center, CFD outputs

Seems to fire in the corner with similar frequency.
**
From: Joe Schwiening Jochen.Schwiening@slac.stanford.edu
To: "Jaroslav Va'Vra" jjv@slac.stanford.edu
Subject: placing the laser in a specific position in X and Y
\# this is a comment, don't type it
\# the computer in the scanning setup is called DIRCQC
\# log into the console (you may have to switch the screen on)
\# or ssh to DIRCQC from your laptop with
ssh -X jjv@dircqc
\# go to the directory with the script
cd /u2/DAQ/CosmicRayTelescope/ScanTests/special_cases
\# the middle (start) position between pad 23 and 24 we used today was
\# the first value is X , the second value is Y (mm unit)
./set_to_position.pl 39.512 .0
\# if you want to move to your right (looking at the back of the PMT)
\# towards pad 24 use a smaller value for the first value
./set_to_position.pl 38.512 .0
\# if you want to move to your left (looking at the back of the PMT)
\# towards pad 23 use a larger value for the first value
./set_to_position.pl 40.512 .0

\# To place it to the corner I used:
./set_to_position.pl 39.59 .0

Corner of 4 pads, Amplifier/ADC sig.

Single, 100mV/div, 2ns/div

Single, $100 \mathrm{mV} / \mathrm{div}$, 2ns/div

Single, $100 \mathrm{mV} / \mathrm{div}$, $2 \mathrm{~ns} / \mathrm{div}$

$100 \mathrm{mV} / \mathrm{div}, 2 \mathrm{~ns} / \mathrm{div}$

4.2.2007

(x,y): 39.5, 9.0

Single, $100 \mathrm{mV} / \mathrm{div}$, $2 \mathrm{~ns} / \mathrm{div}$

Single, $100 \mathrm{mV} / \mathrm{div}$, $2 \mathrm{~ns} /$ div

Many single pe shots, $200 \mathrm{mV} / \mathrm{div}$, $2 \mathrm{~ns} / \mathrm{div}$

$200 \mathrm{mV} / \mathrm{div}$, $2 \mathrm{~ns} / \mathrm{div}$

200mV/div, 2ns/div

200mV/div, 2ns/div

200mV/div, 2ns/div

200mV/div, 2ns/div

200mV/div, 2ns/div

(x,y): 39.5, 9.0

$(\mathrm{x}, \mathrm{y}): 39.5,12.0$

(x,y): 42.5, 12.0

(x,y): 36.5, 12.0
$200 \mathrm{mV} / \mathrm{div}, 2 \mathrm{~ns} / \mathrm{div}$

Worse pulse height spectrum near the MCP-PMT edge ? Smaller gain very likely.

