Changes in the July 2006 run

(PiLas laser calibration one day before the beam test started)
Added a new

MCP-PMT

To be instrumented in the next run

- Added 32 new pixels in slot 1 (Burle MCP-PMT).
- Slot 3 will has a new 256-pad Hamamatsu MaPMT, which are converted to the rectangular pads.
- Slot 4 will have a Burle MCP-PMT with TDC \& ADC readout (we want to compare the CFD timing with the leading-edge timing, etc.).
- Timing improvements of the Hamamatsu MaPMTs in slots $2 \& 3$ (reduce the amplifier gain and increasing the voltage to recommended values).
- Better timing calibration (add two new ways to do it).
- Many dead channels were fixed.
- Re-arrange the pad assignments to do a better coverage of the Cherenkov ring.
- Build the 2-nd fiber hodoscope.

The 2-nd hodoscope

Where the 2-nd hodoscope was placed ?

- There was no time to place it in front of the Start counters.
- Total mass in front of it: almost 50% of X_{0}

New 256-pixel Hamamatsu MaPMT H-9500 in Slot 3

256-pad MaPMT:

- 256 pixels (16×16 pattern).
- Pixel size: 2.8 mmx 2.8 mm ; pitch 3.04 mm
- 12 stage MaPMT, gain $\sim 10^{6}$, bialkali QE.
- Typical timing resolution $\sigma \sim 190-220 \mathrm{ps}$.
- Charge sharing is significant in this tube.

"Open area" 1024-pixel Burle MCP 85021-600

1024-pad MCP-PMT: Burle was supposed to connect pads as follows:

2D scan:

- Large rectangular pad: 2x8 little ones
- Small margin around boundary
- Nominally 1024 pixels (32×32 pattern)
- Pixel size: $\sim 1.4 \mathrm{~mm} \times 1.4 \mathrm{~mm}$, pitch: 1.6 mm
- Ask Burle to make an adaptor board.
- This tube was supposed to be in slot 4 . However, we found that pads extended to much larger region in the small size direction (2-3x). In addition, scope tests indicated that several pads are responding. So, we decided not to use it.
J.V.

