Monte Carlo simulation of the DIRC prototype

03/21/06

- Main features of the program
- Charge sharing implementation
- Comparison of simulated data with test beam data

Program overview

- All important features have been added (main parts of the DIRC prototype, refractive indices of materials, probabilities of reflection on the mirrors, physics, etc.)
- Three different types of PMTs (Hamamatsu 8500 and 9500, Burle)
- Two different configurations of PMTs

The DIRC prototype

Generation of photons

Up to ~1000 cherenkov photons (about 300 transported)

Detection of photons

Two configurations

- 1. Configuration
 - Two Hamamatsu 8500 in slot 2 and 3
 - Three Burle PMT in slot 4, 5, and 6

- 2. Configuration
 - Five Hamamatsu 9500 (estimation for best position)

Cherenkov Ring visualization

Charge sharing implementation

Main features of charge sharing

- It depends on the position of the hit inside the pad and its distance from the neighbor pads.
- Up to 4 (6) pads can be involved in charge sharing.

CHARGE SHARING RANGE

~1mm range for drop to 50% relative hit probability ~2mm range for drop to 10% relative hit probability

Distance dependence

Requirements:

- On the edge of pad– 90% probability of the hit in neighbor pad
- 1 mm far from the edge 50% probability of the hit in the neighbor pad
- 2 mm far from the edge 10% probability of the hit => requirements for error function
- Same implementation for all PMTs

Charge sharing division of Hamamatsu 8500 & Burle

Charge sharing summary for configuration 1

	Total hit	Percentage
2 pads	147542	33.3% (16.7)%
3 pads	46157	10.4% (6.9)%
4 pads	15132	3.4% (2.6)%
Total	208831	47.1% (26.2)%

Charge sharing summary for configuration 2

	Total hits	Percentage
2 pads	523322	51.5 (25.7)
3 pads	115826	11.4 (7.6)
4 pads	34179	3.4 (2.5)
5 pads	1065	0.1 (0.1)
6 pads	48	5x10 ⁻⁵
Total	674444	66.4 (35.9)

Conclusion

- Charge sharing does not change the shape and occupancy of the Cerenkov ring
- It creates about 26% (36) of "fake" hits in configuration 1 (2) and about each second (two of three) cherenkov photon detected causes charge sharing

ThetaC resolution from pixels

- Full Monte Carlo simulation
- Assignment of average cherenkov angle for each pad (each hit within one pad has the same cherenkov angle)
- Single gauss fit

ThetaC from pixels (cont.)

σ	PEAK 1			PEAK2			PEAK 1 & 2			
Slot	MC ch. sh	<i>MC without</i> ch. sh	Run 12b	Run 14	MC ch. sh	MC without ch. Sh.	Run 12b	Run 14	MC ch. sh	MC without ch. Sh.
2	10.8	9.7	10.9	11.6	11.4	10.1	12.1	11.7	10.9	9.9
3	10.7	9.9	9.2	9.4	10.4	9.6	9.9	9.8	10.6	9.9
4	9.2	8.1	10.9	10.2	8.8	7.8	11.3	11.5	9.1	8.0
5	11.4	10.4	13.5	13.8	11.3	10.4	15.4	16.7	11.4	10.4
6	11.8	11.2	13.4	13.5	11.6	11.1	13.1	13.0	11.8	11.3

Configuration 1 (two hamamatsu 8500 + three burle)

ThetaC from pixels

Sigma (mrad)	PEAK 1		PEAK2		PEAK 1 & 2	
Slot	MC ch.sh	MC without ch. sh	MC ch. sh	MC without ch. sh.	MC ch. sh	MC without ch. sh.
2	11.1	10.1	10.8	10.0	11.1	10.1
3	8.4	7.3	8.1	7.2	8.4	7.4
4	8.7	7.8	8.4	7.8	8.6	7.9
5	7.7	5.8	7.4	5.9	7.9	6.0
6	13.4	12.3	12.4	11.6	13.2	12.2

Comparison of simulated data with test beam data

Location of the Cherenkov ring and multiplicity of hits

Focusing DIRC Prototype Occupancy Run 12b, November 16/17, 2005

Slot 6

Burle

Simulated Focusing DIRC Prototype Occupancy Position 1

Overall multiplicity of hits per event

h_6_mult

Conclusion

- The flexible model of the DIRC prototype with most important features was created (different configurations of PMTs, different positions, different particles, etc.)
- It makes possible to generate direction cosine and cherenkov angle assignments.

Conclusion (cont.)

- The output file can be converted into the format of DIRC prototype output file, so it is possible to analyze simulated data with the analysis software
- It was written manual which explains MC implementation.