# Latest results of the G4 simulation

Ivan Bědajánek

#### Outline

New features in G4 DIRC simulation

Physical processes and their influence on background

Peak 1 - Peak 2 ratio

#### Part 1

New features in G4 simulation

#### New features

- Choice of main parameters from batch file => called "messengers" in G4
- Choices have been added for:
- Plotting of cherenkov photons and electrons
- 2. Beam position
- 3. Primary particle and its energy
- 4. Charge sharing on/off

# How these commands look in G4 batch file

- beam position/Dirc/beam/position 1
- primary particle /particle/gun e-
- energy of entering particle /particle/energy 10 GeV
- all options will be described in a manual

# Charge sharing

- When particle hits PMT between pads => charge sharing is created.
- Two hits are created in the nearest two pads.
- Time of second particle is generated within 200 ps window, pmt delay generated separately
- > Cherenkov angle is the same
- Position efficiency is set to one

# Charge sharing



# Charge sharing (cont.)

|                              | Peak 1  | Peak 2  | Ratio per<br>event |
|------------------------------|---------|---------|--------------------|
| Hits with charge sharing     | 291633  | 202414  | 5.8:4.0            |
| Hits<br>without<br>charge sh | 255 739 | 179 075 | 5.1:3.6            |

# 50000 events

# PMT smearing

PMT smearing has been added according pictures

Different smearing for Hamamatsu and Burle PMTs

# PMT smearing





#### Part 2

Physical processes in G4 simulation

# Physics in G4 simulation

- Background in data is much higher than in G4 simulation => attempt to explain this discrepancy
- > Two main processes have been studied:
- 1. Bremstrahlung
- 2. Multiple scattering

# Physics in G4 (continue)

First, I was interested only in photons which are generated by secondary electrons (I killed all photons generated by primary electrons)

# Physics in G4 (cont.)



# All photons — all slots



#### Slot 4



# Angle vs. energy of delta-elec.



#### Conclusion

- bremstrahlung electrons produce photons mainly in the same direction as primary electron
- multiple scattering electrons produce photons uniformly
- due to small acceptance of DIRC prototype (42-50 deg), most of photons produced by sec. electrons are not registered

#### Part 3

Peak 1 – Peak 2 ratio

#### Peak 1 - Peak 2 ratio

huge discrepancy between real data (2.1:1) and G4 simulation (1.3:1) presented last time by Joe

Let me try to explain this discrepancy

#### Peak 1 — Peak 2 ratio

- Differences between Peak 1 and Peak 2 for 410 nm photon:
- 1. 4 layers of epotek transmission
  - for 410 nm photon no attenuation
- 2. 400 (600) bounces
  - for 410 nm p = 0.999700708 = > loss of 11.3% (16.4%)

- 3. Transmission through quartz (10 m difference) 410 nm photon p = .99729958 per 1 m => loss of 2.7%
- 4. Reflection coefficient of the mirror at the end of the bar -410 nm photon p = 0.94 => loss of 6%
- => Total loss of about 20% (25%) photons

#### Ratio from G4 simulation



# Comparison

1.33 : 1 from the simulation

1.25 (1.33): 1 from values which have been put into simulation

=> good agreement

#### Blindness of PMT's

➤ I accept only first hit in a given pad => if two hits occur in one pad => hit from peak 1 is accepted

Note: charge sharing does not change Peak1 - Peak 2 ratio

# Blindness of PMT's (cont.)



> The ratio from G4 simulation is still very low comparing to real data

- Nevertheless, bar is not perfect, and the edges are round with radius of 5 μm
  - => let me kill all photons which bounced not far than 5 µm from the edge



- > still not satisfying ratio
- so let me try to do last attempt let me kill all photons which bounced less than 10 µm far from the edge



#### First conclusion

- Even with killing of photons which bounced not far than 10μm from the edge, the ratio is 1.77:1 => still very far from data ratio 2.1:1.
- Not able to explain with current knowledge ⊗ => necessity to explore the different positions

# Ratio 1 – Ratio 2 (cont.)

 $\triangleright$  Position 1-z=59.6 cm - first bar

 $\triangleright$  Position 3 – z = 161.21 cm – second bar

 $\rightarrow$  Position 5 – z = 262.89 cm – third bar

| Position 1 |        | Data   |           |        | Simulation |           | ratio   |
|------------|--------|--------|-----------|--------|------------|-----------|---------|
| slot       | peak 1 | peak 2 | ratio 1:2 | peak 1 | peak 2     | ratio 1:2 | data/MC |
| 2          | 30,873 | 14,530 | 2.12      | 57,495 | 38,357     | 1.50      | 1.42    |
| 3          | 21,169 | 10,742 | 1.97      | 44,399 | 30,486     | 1.46      | 1.35    |
| 4          | 29,673 | 14,625 | 2.03      | 46,748 | 34,946     | 1.34      | 1.52    |
| 5          | 54,233 | 25,740 | 2.11      | 56,755 | 40,222     | 1.41      | 1.49    |
| 6          | 19,153 | 8,371  | 2.29      | 50,342 | 35,064     | 1.44      | 1.59    |

| Position |        |        |           |        |            |           |         |
|----------|--------|--------|-----------|--------|------------|-----------|---------|
| 3        |        | Data   |           |        | Simulation |           | ratio   |
| slot     | peak 1 | peak 2 | ratio 1:2 | peak 1 | peak 2     | ratio 1:2 | data/MC |
| 2        | 36,969 | 22,490 | 1.64      | 1,256  | 867        | 1.45      | 1.13    |
| 3        | 25,451 | 16,156 | 1.58      | 852    | 611        | 1.39      | 1.13    |
| 4        | 35,902 | 22,064 | 1.63      | 922    | 682        | 1.35      | 1.20    |
| 5        | 66,707 | 41,222 | 1.62      | 1,144  | 866        | 1.32      | 1.22    |
| 6        | 21,877 | 12,608 | 1.74      | 1,011  | 741        | 1.36      | 1.27    |

| Position |        |        |           |        |            |           |   |         |
|----------|--------|--------|-----------|--------|------------|-----------|---|---------|
| 5        |        | Data   |           |        | Simulation |           | ı | ratio   |
| slot     | peak 1 | peak 2 | ratio 1:2 | peak 1 | peak 2     | ratio 1:2 | ı | data/MC |
| 2        | 15,912 | 12,548 | 1.27      | 1,132  | 925        | 1.22      | ı | 1.04    |
| 3        | 11,208 | 8,706  | 1.29      | 895    | 693        | 1.29      | ı | 1.00    |
| 4        | 16,354 | 11,766 | 1.39      | 949    | 712        | 1.33      | ı | 1.04    |
| 5        | 29,705 | 23,049 | 1.29      | 1,030  | 858        | 1.20      | ı | 1.07    |
| 6        | 9,273  | 7,237  | 1.28      | 994    | 766        | 1.30      |   | 0.99    |

#### Conclusion

- Position 1 (first bar) the ratio doesn't correspond at all (2.1:1 vs. 1.4:1 => data/MC = 1.50)
- Position 3 (second bar) the ratio is better, however it still doesn't correspond (1.63:1 vs. 1.38:1 => data/MC = 1.18)
- Position 5 (third bar) the ratio corresponds quite well (1.30:1 vs. 1.26:1 => data/MC = 1.03)