Latest results of the G4 simulation

Ivan Bědajánek

Outline

, New features in G4 DIRC simulation

, Physical processes and their influence on background

- Peak 1 - Peak 2 ratio

Part 1

New features in G4 simulation

New features

$>$ Choice of main parameters from batch fille \Rightarrow called "messengers" in G4
$>$ Choices have been added for:

1. Plotting of cherenkov photons and electrons
2. Beam position
3. Primary particle and its energy
4. Charge sharing - on/off

How these commands look in G4

 batch fille$>$ beam position
/Dirc/beam/position 1
$>$ primary particle /particle/gun eenergy of entering particle /particle/energy 10 GeV
\square all options will be described in a manual

Charge sharing

$>$ When particle hits PMT between pads => charge sharing is created.
$>$ Two hits are created in the nearest two pads.
$>$ Time of second particle is generated within 200 ps window, pmt delay generated separately
$>$ Cherenkov angle is the same
$>$ Position efficiency is set to one

Charge sharing

Charge sharing (cont.)

Hlits with	Peak 1	Peak 2	Ratio per event
charge sharing	291633	202414	$5.8: 4.0$
Hits without charge sh.	255739	179075	$5.1: 3.6$

50000 events

PMT smearing

, PMMT smearing has been added according pictures

- Different smearing for Hamamatsu and Burle PMTs

PMT smearing

Part 2

Physical processes in G4 simulation

Physics in G4 simulation

$>$ Background in data is much higher than in $G 4$ simulation $=>$ attempt to explain this discrepancy

Two main processes have been studied: 1. Bremstrahlung
2. Multiple scattering

Physics in G4 (continue)

$>$ First, I was interested only in photons
which are generated by secondary electrons (I killed all photons generated by primary electrons)

Physics in G4 (cont.)

All photons - all slots

Slot 4

Angle vs, energy of delta-elec.

Conclusion

$>$ bremstrahlung - electrons produce photons mainly in the same direction as primary electron
$>$ multiple scattering - electrons produce photons uniformly
due to small acceptance of DIRC prototype (42-50 deg), most of photons produced by sec. electrons are not registered

Part 3

Peak 1 - Peak 2 ratio
 \section*{\section*{\begin{abstract} \end{abstract}

}

 }}
42
$+2$
$-$
\cos
(

4

-

$=$
18

\section*{3}

3
3
1
$=$

模
$E=46$

Peak 1 - Peak 2 ratio

7 huge discrepancy between real data ($2.1: 1$) and G4 simulation (1.3:1) presented last time by Joe

Let me try to explain this discrepancy

Peak 1 - Peak 2 ratio

$>$ Differences between Peak 1 and Peak 2 for 410 nm photon:

1. 4 layers of epotek - transmission

- for 410 nm photon - no attenuation

2. 400 (600) bounces

- for $410 \mathrm{~nm}-\mathrm{p}=0.999700708=>$

$$
\text { loss of } 11.3 \% \text { (16.4\%) }
$$

Peak 1 - Peak 2 ratio (cont.)

3. Transmission through quartz (10 m dififference) - 410 nm photon $p=.99729958$ per $1 \mathrm{~m}=>$ loss of 2.7%
4. Reflection coefficient of the mirror at the end of the bar - 410 nm photon -

$$
p=0.94=>\text { loss of } 6 \%
$$

=> Total loss of about 20\% (25\%) photons

Ratio from G4 simulation

Comparison

, $1.33: 1$ from the simulation

, $1.25(1.33): 1$ from values which have been put into simulation

\Rightarrow good agreement

Blindness of PMT's

$>$ I accept only first hit in a given pad $=>$ if two hits occur in one pad $=>$ hit from peak 1 is accepted

Note: charge sharing does not change Peak1 - Peak 2 ratio

Blindness of PMT's (cont.)

Peak 1 - Peak 2 ratio (cont.)

$>$ The ratio from $G 4$ simulation is still very low comparing to real data

Nevertheless, bar is not perfect, and the edges are round with radius of $5 \mu \mathrm{~m}$ \Rightarrow let me kill all photons which bounced not far than $5 \mu \mathrm{~m}$ from the edge

Peak 1 - Peak 2 ratio (cont.)

Peak 1 - Peak 2 ratio (cont.)

$>$ still not satisfying ratio
so let me try to do last attempt - let me Kill all photons which bounced less than 10 Hm far from the edge

Peak 1 - Peak 2 ratio (cont.)

First conclusion

$>$ Even with killing of photons which bounced not far than 10um from the edge, the ratio is $1.77: 1=>$ still very far from data ratio 2.1:1.
Not able to explain with current knowledge (:) => necessity to explore the diffferent positions

Ratio 1 - Ratio 2 (cont.)

7 Position $1-z=59.6 \mathrm{~cm}-$ first bar
$>$ Position $3-z=161.21 \mathrm{~cm}$ - second bar

Position $5-z=262.89 \mathrm{~cm}$ - third bar

Peak 1 - Peak 2 ratio (cont.)

Position 1	Data			Simulation			ratio
slot	peak 1	peak 2	ratio 1:2	peak 1	peak 2	ratio 1:2	data/MC
2	30,873	14,530	2.12	57,495	38,357	1.50	1.42
3	21,169	10,742	1.97	44,399	30,486	1.46	1.35
4	29,673	14,625	2.03	46,748	34,946	1.34	1.52
5	54,233	25,740	2.11	56,755	40,222	1.41	1.49
6	19,153	8,371	2.29	50,342	35,064	1.44	1.59

Peak 1 - Peak 2 ratio (cont.)

Position 3	Data			Simulation			ratio
slot	peak 1	peak 2	ratio 1:2	peak 1	peak 2	ratio 1:2	data/MC
2	36,969	22,490	1.64	1,256	867	1.45	1.13
3	25,451	16,156	1.58	852	611	1.39	1.13
4	35,902	22,064	1.63	922	682	1.35	1.20
5	66,707	41,222	1.62	1,144	866	1.32	1.22
6	21,877	12,608	1.74	1,011	741	1.36	1.27

Peak 1 - Peak 2 ratio (cont.)

Position 5	Data			Simulation			ratio
slot	peak 1	peak 2	ratio 1:2	peak 1	peak 2	ratio 1:2	data/MC
2	15,912	12,548	1.27	1,132	925	1.22	1.04
3	11,208	8,706	1.29	895	693	1.29	1.00
4	16,354	11,766	1.39	949	712	1.33	1.04
5	29,705	23,049	1.29	1,030	858	1.20	1.07
6	9,273	7,237	1.28	994	766	1.30	0.99

Conclusion

$>$ Position 1 (first bar) - the ratio doesn't correspond at all ($2.1: 1$ vs. $1.4: 1 ~=>$ data/MC $=$ 1.50)
$>$ Position 3 (second bar) - the ratio is better, however it still doesn't correspond (1.63:1 vs. 1.38:1 \Rightarrow data/MC $=1.18$)
$>$ Position 5 (third bar) - the ratio corresponds quite well ($1.30: 1$ vs. $1.26: 1 ~=>$ data/MC = 1.03)

