What is inside?

Detail description of all G4 features

Bars \& Endblock

, Mirror at the end (reflectivity depends on Wavelength)
, Epotek between bars and bar-endblock (thickness of 0.001")
, Refractive indices for epotek and bar material (depend on wavelength)

- Internal reflection coefficient for 1 bounce
- Absorption in both materials (wav. dependence)
- Roughness of surface (will be discussed later)

Kamland Oil \& Mirror

, Refiractive index (wavelength dependence)
, Absorption probability (wavelength dependence)

Mirror reflectivity (wavelength dependence)

PMTI's

, Quantum efficiency (wav. dependence)
, Average efficiency of each pad
(dependence on position inside each pad)
Borosilicate window absorption
Charge sharing in close future

What else is missing?

Roughness

- Wriy do I stant entering roughiness into G4?
, Jose's analysis showed that the hits outside the ring have "time property" of cherenkov hits
- The ch. ring is much broader from test beam data

Roughness

, Two (?) possibilitites could cause the broadening of the ring

1) Roughness of the bar itself
2) Rough surfaces between bar-epotek, endblock-epotek, or "Berkeley cookie"

- I started simulating the first possibility

Two models in G4

- G3 - model - just one parameters called "polish" <0,1>
, if this parameter is <1, a random point is generated in a sphere of radius 1-polish and the corresponding vector is taken as a normal vector

Unified mode!

\checkmark New model in G4 called unified (taken firom DETECT MC code)
More parameters for tuning

Unified model

BAR

, Generates a-angle according gaussian distribution with σ_{q} and mean value equal to zero
\lrcorner © - generates randomly (0-2PI)
, Seiting of how many times the photon reflects according normal vector (n) and how many times according normal vector (n')

- How to set or tune σ_{a} and probability for reflection according n and n^{\prime} ? - not a simple task

Scattering from optical surfaces

(J.Melson, H.E.bennet and J.M. Bennet, Applied optics and Optical engineering, Vol. VII, 1979, SLACX library: QC371:K48 v.9)

The fraction of the total reflected light (specular plus nonspecular) scattered away from the specular direction by microirregularities is described by a simple scallar scattering theory based on the Kirchoff difraction integral. The total integrated scater TIS:

$$
\text { TIS }=1-\left(\mathrm{R} / \mathrm{R}_{\mathrm{o}}\right)=1-\exp \left[-\left(4 \pi \delta \cos \theta_{\mathrm{o}} / \lambda\right)^{2} \sim\left(4 \pi \delta \cos \theta_{\mathrm{o}} / \lambda\right)^{2}\right.
$$

where
R_{o} is the fraction of the incident light which is reflected into all angles including the specular direction.
R is the fraction which is specularly reflected at an angle θ_{0}, the angle of incidence. δ is the rms height of surface microirregularities (4-8A in our case)

$\operatorname{TIS}(\lambda=410 \mathrm{~nm}, \delta=8 \mathrm{~A}) \sim 3 \times 10^{-4}$

Probability of reffection according n or n^{\prime} (=TIS)

, Too many reflections according $n^{\prime}=>$ it doesn't spread the Cherenkov angle resolution because the mean value of aangle is zero
Only few reflection according $n^{\prime}=>$ it depends significantly on σ_{a}

Choices of σ_{σ}

, If σ_{q} too big (big change in angle) $\Rightarrow>$ it changes drastically the photon angle and photon is mostly kicked out of the bar (instead of reflection, refraction occurs and photon leaves the bar)
Off σ_{a} too small (small change in angle) $\Rightarrow>i t$ just augments the cherenkov angle resolution, however too little

Conclusion

, Not any significant progress in solving hits outiside the ring
, It is needed farther investigation, but I am a little bit pessimistic that roughness of bars will solve this issue => new approach

