What is inside?

Detail description of all G4 features

Bars & Endblock

- Mirror at the end (reflectivity depends on wavelength)
- Epotek between bars and bar-endblock (thickness of 0.001")
- Refractive indices for epotek and bar material (depend on wavelength)
- Internal reflection coefficient for 1 bounce
- Absorption in both materials (wav. dependence)
- Roughness of surface (will be discussed later)

Kamland Oil & Mirror

Refractive index (wavelength dependence)
 Absorption probability (wavelength dependence)

 Mirror reflectivity (wavelength dependence)

PMT's

Quantum efficiency (wav. dependence)
Average efficiency of each pad (dependence on position inside each pad)
Borosilicate window absorption
Charge sharing in close future

What else is missing?

Roughness

 Why do I start entering roughness into G4?

Jose's analysis showed that the hits outside the ring have "time property" of cherenkov hits
The ch. ring is much broader from test

beam data

Roughness

Two (?) possibilities could cause the broadening of the ring 1) Roughness of the bar itself 2) Rough surfaces between bar-epotek, endblock-epotek, or "Berkeley cookie" I started simulating the first possibility

Two models in G4

G3 – model – just one parameters called "polish" <0,1>

 if this parameter is <1, a random point is generated in a sphere of radius 1-polish and the corresponding vector is taken as a normal vector

Unified model

New model in G4 called unified (taken from DETECT MC code)
 More parameters for tuning

Unified model

- Generates α-angle according gaussian distribution with σ_α and mean value equal to zero
- φ generates randomly (0-2PI)
- Setting of how many times the photon reflects according normal vector (n) and how many times according normal vector (n')
- How to set or tune σ_a and probability for reflection according n and n'? – not a simple task

Scattering from optical surfaces

(J.Melson, H.E.bennet and J.M. Bennet, Applied optics and Optical engineering, Vol. VII, 1979, SLACX library: QC371:K48 v.9)

The fraction of the total reflected light (specular plus nonspecular) scattered away from the specular direction by microirregularities is described by a simple scallar scattering theory based on the Kirchoff diffraction integral. The total integrated scater **TIS**:

$$TIS = 1 - (R/R_o) = 1 - \exp[-(4 \pi \delta \cos \theta_o/\lambda)^2 \sim (4 \pi \delta \cos \theta_o/\lambda)^2]$$

where

R_o is the fraction of the incident light which is reflected into all angles including the specular direction.

R is the fraction which is specularly reflected at an angle θ_0 , the angle of incidence.

 δ is the rms height of surface microirregularities (4-8A in our case)

TIS (λ =410 nm, δ = 8 A) ~ 3x10⁻⁴

Probability of reflection according n or n' (=TIS)

Too many reflections according n' => it doesn't spread the Cherenkov angle resolution because the mean value of aangle is zero

- Only few reflection according n' => it depends significantly on σ_a

Choices of σ_a

 If σ_a too big (big change in angle) => it changes drastically the photon angle and photon is mostly kicked out of the bar (instead of reflection, refraction occurs and photon leaves the bar)

If σ_a too small (small change in angle)
 =>it just augments the cherenkov angle resolution, however too little

Conclusion

 Not any significant progress in solving hits outside the ring

 It is needed farther investigation, but I am a little bit pessimistic that roughness of bars will solve this issue => new approach