Photodetector Timing Resolution Burle Micro-Channel Plate Photo Multiplier Tubes (MCP-PMTs)

> H. Wells Wulsin SLAC Group B Winter 2005

Photo Multiplier Tube Specifications

	DIRC PMT	2x2 MCP-PMT
Pixel Size	~2.8 cm	~24 mm
Timing resolution (σ)	1.6 ns [single photo- electrons]	 80-100 ps [single photoelectrons] 30-50 ps [test beam: ~60 photoelectrons]

End Station A Setup

Limits to MCP Timing Resolution

- Cross-talk between channels
- Charge-sharing between pads
- Electronics noise
- Avalanche fluctuations [focus of this analysis]

Timing resolution varies with ADC

• TDC measures hit time when pulse exceeds level set by single threshold discriminator.

- Size of pulse (# photoelectrons) affects the measured hit time.
- More photoelectrons reduce the variability of measured hit time (avalanche fluctuations have a smaller effect).

ADC Distribution of Runs 1-8, taken 11-22-04, 11-24-04

TDC v. ADC, Runs 1-8

TDC Histogram, Runs 1-8

Linear fit to Run 8

Linear correction to Run 8

Linear fit to Run 7

Linear correction to Run 7

Hyperbolic fit to Runs 1-6

Hyperbolic correction to Runs 1-6

Independent fits to three data sets

Optimized total fit

Total correction for Runs 1-8

Timing Resolution Correction: All Runs

FWHM ~ 50 counts ADC

FWHM ~ 15 counts ADC

Use Run 1 (maximum attenuation): ADC counts \rightarrow photoelectrons

1 photoelectron = 2.1 counts ADC

Timing Resolution vs. Photoelectrons

Comparison to Previous Analysis

Wells

Josef (different data runs)

Similar resolution spectrum

Conclusions

Achieved timing resolution of 30 – 50 ps for ~100 photoelectrons (Run 8) down to ~30 photoelectrons (Run 7).

- Correction for timing photon correlation most helpful in comparing disparate runs.
 - For constant number of photoelectrons, correction less useful.
- Further study:
 - Confirm # photoelectrons per ADC count.
 Examine charge-sharing between pads.

Thanks to all Group B for lots of help this quarter!